ffvertex_prog.c revision c1f859d4
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36#include "main/glheader.h"
37#include "main/mtypes.h"
38#include "main/macros.h"
39#include "main/enums.h"
40#include "main/ffvertex_prog.h"
41#include "shader/program.h"
42#include "shader/prog_cache.h"
43#include "shader/prog_instruction.h"
44#include "shader/prog_parameter.h"
45#include "shader/prog_print.h"
46#include "shader/prog_statevars.h"
47
48
49struct state_key {
50   unsigned light_global_enabled:1;
51   unsigned light_local_viewer:1;
52   unsigned light_twoside:1;
53   unsigned light_color_material:1;
54   unsigned light_color_material_mask:12;
55   unsigned light_material_mask:12;
56   unsigned material_shininess_is_zero:1;
57
58   unsigned need_eye_coords:1;
59   unsigned normalize:1;
60   unsigned rescale_normals:1;
61   unsigned fog_source_is_depth:1;
62   unsigned tnl_do_vertex_fog:1;
63   unsigned separate_specular:1;
64   unsigned fog_mode:2;
65   unsigned point_attenuated:1;
66   unsigned point_array:1;
67   unsigned texture_enabled_global:1;
68   unsigned fragprog_inputs_read:12;
69
70   struct {
71      unsigned light_enabled:1;
72      unsigned light_eyepos3_is_zero:1;
73      unsigned light_spotcutoff_is_180:1;
74      unsigned light_attenuated:1;
75      unsigned texunit_really_enabled:1;
76      unsigned texmat_enabled:1;
77      unsigned texgen_enabled:4;
78      unsigned texgen_mode0:4;
79      unsigned texgen_mode1:4;
80      unsigned texgen_mode2:4;
81      unsigned texgen_mode3:4;
82   } unit[8];
83};
84
85
86
87#define FOG_NONE   0
88#define FOG_LINEAR 1
89#define FOG_EXP    2
90#define FOG_EXP2   3
91
92static GLuint translate_fog_mode( GLenum mode )
93{
94   switch (mode) {
95   case GL_LINEAR: return FOG_LINEAR;
96   case GL_EXP: return FOG_EXP;
97   case GL_EXP2: return FOG_EXP2;
98   default: return FOG_NONE;
99   }
100}
101
102
103#define TXG_NONE           0
104#define TXG_OBJ_LINEAR     1
105#define TXG_EYE_LINEAR     2
106#define TXG_SPHERE_MAP     3
107#define TXG_REFLECTION_MAP 4
108#define TXG_NORMAL_MAP     5
109
110static GLuint translate_texgen( GLboolean enabled, GLenum mode )
111{
112   if (!enabled)
113      return TXG_NONE;
114
115   switch (mode) {
116   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
117   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
118   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
119   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
120   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
121   default: return TXG_NONE;
122   }
123}
124
125
126/**
127 * Returns bitmask of flags indicating which materials are set per-vertex
128 * in the current VB.
129 * XXX get these from the VBO...
130 */
131static GLbitfield
132tnl_get_per_vertex_materials(GLcontext *ctx)
133{
134   GLbitfield mask = 0x0;
135#if 0
136   TNLcontext *tnl = TNL_CONTEXT(ctx);
137   struct vertex_buffer *VB = &tnl->vb;
138   GLuint i;
139
140   for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
141      if (VB->AttribPtr[i] && VB->AttribPtr[i]->stride)
142         mask |= 1 << (i - _TNL_FIRST_MAT);
143#endif
144   return mask;
145}
146
147
148/**
149 * Should fog be computed per-vertex?
150 */
151static GLboolean
152tnl_get_per_vertex_fog(GLcontext *ctx)
153{
154#if 0
155   TNLcontext *tnl = TNL_CONTEXT(ctx);
156   return tnl->_DoVertexFog;
157#else
158   return GL_FALSE;
159#endif
160}
161
162
163static GLboolean check_active_shininess( GLcontext *ctx,
164                                         const struct state_key *key,
165                                         GLuint side )
166{
167   GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
168
169   if (key->light_color_material_mask & bit)
170      return GL_TRUE;
171
172   if (key->light_material_mask & bit)
173      return GL_TRUE;
174
175   if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
176      return GL_TRUE;
177
178   return GL_FALSE;
179}
180
181
182static void make_state_key( GLcontext *ctx, struct state_key *key )
183{
184   const struct gl_fragment_program *fp;
185   GLuint i;
186
187   memset(key, 0, sizeof(struct state_key));
188   fp = ctx->FragmentProgram._Current;
189
190   /* This now relies on texenvprogram.c being active:
191    */
192   assert(fp);
193
194   key->need_eye_coords = ctx->_NeedEyeCoords;
195
196   key->fragprog_inputs_read = fp->Base.InputsRead;
197
198   if (ctx->RenderMode == GL_FEEDBACK) {
199      /* make sure the vertprog emits color and tex0 */
200      key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
201   }
202
203   key->separate_specular = (ctx->Light.Model.ColorControl ==
204			     GL_SEPARATE_SPECULAR_COLOR);
205
206   if (ctx->Light.Enabled) {
207      key->light_global_enabled = 1;
208
209      if (ctx->Light.Model.LocalViewer)
210	 key->light_local_viewer = 1;
211
212      if (ctx->Light.Model.TwoSide)
213	 key->light_twoside = 1;
214
215      if (ctx->Light.ColorMaterialEnabled) {
216	 key->light_color_material = 1;
217	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
218      }
219
220      key->light_material_mask = tnl_get_per_vertex_materials(ctx);
221
222      for (i = 0; i < MAX_LIGHTS; i++) {
223	 struct gl_light *light = &ctx->Light.Light[i];
224
225	 if (light->Enabled) {
226	    key->unit[i].light_enabled = 1;
227
228	    if (light->EyePosition[3] == 0.0)
229	       key->unit[i].light_eyepos3_is_zero = 1;
230
231	    if (light->SpotCutoff == 180.0)
232	       key->unit[i].light_spotcutoff_is_180 = 1;
233
234	    if (light->ConstantAttenuation != 1.0 ||
235		light->LinearAttenuation != 0.0 ||
236		light->QuadraticAttenuation != 0.0)
237	       key->unit[i].light_attenuated = 1;
238	 }
239      }
240
241      if (check_active_shininess(ctx, key, 0)) {
242         key->material_shininess_is_zero = 0;
243      }
244      else if (key->light_twoside &&
245               check_active_shininess(ctx, key, 1)) {
246         key->material_shininess_is_zero = 0;
247      }
248      else {
249         key->material_shininess_is_zero = 1;
250      }
251   }
252
253   if (ctx->Transform.Normalize)
254      key->normalize = 1;
255
256   if (ctx->Transform.RescaleNormals)
257      key->rescale_normals = 1;
258
259   key->fog_mode = translate_fog_mode(fp->FogOption);
260
261   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
262      key->fog_source_is_depth = 1;
263
264   key->tnl_do_vertex_fog = tnl_get_per_vertex_fog(ctx);
265
266   if (ctx->Point._Attenuated)
267      key->point_attenuated = 1;
268
269#if FEATURE_point_size_array
270   if (ctx->Array.ArrayObj->PointSize.Enabled)
271      key->point_array = 1;
272#endif
273
274   if (ctx->Texture._TexGenEnabled ||
275       ctx->Texture._TexMatEnabled ||
276       ctx->Texture._EnabledUnits)
277      key->texture_enabled_global = 1;
278
279   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
280      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
281
282      if (texUnit->_ReallyEnabled)
283	 key->unit[i].texunit_really_enabled = 1;
284
285      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
286	 key->unit[i].texmat_enabled = 1;
287
288      if (texUnit->TexGenEnabled) {
289	 key->unit[i].texgen_enabled = 1;
290
291	 key->unit[i].texgen_mode0 =
292	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
293			      texUnit->GenModeS );
294	 key->unit[i].texgen_mode1 =
295	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
296			      texUnit->GenModeT );
297	 key->unit[i].texgen_mode2 =
298	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
299			      texUnit->GenModeR );
300	 key->unit[i].texgen_mode3 =
301	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
302			      texUnit->GenModeQ );
303      }
304   }
305}
306
307
308
309/* Very useful debugging tool - produces annotated listing of
310 * generated program with line/function references for each
311 * instruction back into this file:
312 */
313#define DISASSEM 0
314
315/* Should be tunable by the driver - do we want to do matrix
316 * multiplications with DP4's or with MUL/MAD's?  SSE works better
317 * with the latter, drivers may differ.
318 */
319#define PREFER_DP4 0
320
321
322/* Use uregs to represent registers internally, translate to Mesa's
323 * expected formats on emit.
324 *
325 * NOTE: These are passed by value extensively in this file rather
326 * than as usual by pointer reference.  If this disturbs you, try
327 * remembering they are just 32bits in size.
328 *
329 * GCC is smart enough to deal with these dword-sized structures in
330 * much the same way as if I had defined them as dwords and was using
331 * macros to access and set the fields.  This is much nicer and easier
332 * to evolve.
333 */
334struct ureg {
335   GLuint file:4;
336   GLint idx:9;      /* relative addressing may be negative */
337                     /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
338   GLuint negate:1;
339   GLuint swz:12;
340   GLuint pad:6;
341};
342
343
344struct tnl_program {
345   const struct state_key *state;
346   struct gl_vertex_program *program;
347   GLint max_inst;  /** number of instructions allocated for program */
348
349   GLuint temp_in_use;
350   GLuint temp_reserved;
351
352   struct ureg eye_position;
353   struct ureg eye_position_z;
354   struct ureg eye_position_normalized;
355   struct ureg transformed_normal;
356   struct ureg identity;
357
358   GLuint materials;
359   GLuint color_materials;
360};
361
362
363static const struct ureg undef = {
364   PROGRAM_UNDEFINED,
365   0,
366   0,
367   0,
368   0
369};
370
371/* Local shorthand:
372 */
373#define X    SWIZZLE_X
374#define Y    SWIZZLE_Y
375#define Z    SWIZZLE_Z
376#define W    SWIZZLE_W
377
378
379/* Construct a ureg:
380 */
381static struct ureg make_ureg(GLuint file, GLint idx)
382{
383   struct ureg reg;
384   reg.file = file;
385   reg.idx = idx;
386   reg.negate = 0;
387   reg.swz = SWIZZLE_NOOP;
388   reg.pad = 0;
389   return reg;
390}
391
392
393
394static struct ureg negate( struct ureg reg )
395{
396   reg.negate ^= 1;
397   return reg;
398}
399
400
401static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
402{
403   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
404			   GET_SWZ(reg.swz, y),
405			   GET_SWZ(reg.swz, z),
406			   GET_SWZ(reg.swz, w));
407
408   return reg;
409}
410
411
412static struct ureg swizzle1( struct ureg reg, int x )
413{
414   return swizzle(reg, x, x, x, x);
415}
416
417
418static struct ureg get_temp( struct tnl_program *p )
419{
420   int bit = _mesa_ffs( ~p->temp_in_use );
421   if (!bit) {
422      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
423      _mesa_exit(1);
424   }
425
426   if ((GLuint) bit > p->program->Base.NumTemporaries)
427      p->program->Base.NumTemporaries = bit;
428
429   p->temp_in_use |= 1<<(bit-1);
430   return make_ureg(PROGRAM_TEMPORARY, bit-1);
431}
432
433
434static struct ureg reserve_temp( struct tnl_program *p )
435{
436   struct ureg temp = get_temp( p );
437   p->temp_reserved |= 1<<temp.idx;
438   return temp;
439}
440
441
442static void release_temp( struct tnl_program *p, struct ureg reg )
443{
444   if (reg.file == PROGRAM_TEMPORARY) {
445      p->temp_in_use &= ~(1<<reg.idx);
446      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
447   }
448}
449
450
451static void release_temps( struct tnl_program *p )
452{
453   p->temp_in_use = p->temp_reserved;
454}
455
456
457/**
458 * \param input  one of VERT_ATTRIB_x tokens.
459 */
460static struct ureg register_input( struct tnl_program *p, GLuint input )
461{
462   p->program->Base.InputsRead |= (1<<input);
463   return make_ureg(PROGRAM_INPUT, input);
464}
465
466
467/**
468 * \param input  one of VERT_RESULT_x tokens.
469 */
470static struct ureg register_output( struct tnl_program *p, GLuint output )
471{
472   p->program->Base.OutputsWritten |= (1<<output);
473   return make_ureg(PROGRAM_OUTPUT, output);
474}
475
476
477static struct ureg register_const4f( struct tnl_program *p,
478			      GLfloat s0,
479			      GLfloat s1,
480			      GLfloat s2,
481			      GLfloat s3)
482{
483   GLfloat values[4];
484   GLint idx;
485   GLuint swizzle;
486   values[0] = s0;
487   values[1] = s1;
488   values[2] = s2;
489   values[3] = s3;
490   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
491                                     &swizzle );
492   ASSERT(swizzle == SWIZZLE_NOOP);
493   return make_ureg(PROGRAM_CONSTANT, idx);
494}
495
496
497#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
498#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
499#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
500#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
501
502static GLboolean is_undef( struct ureg reg )
503{
504   return reg.file == PROGRAM_UNDEFINED;
505}
506
507
508static struct ureg get_identity_param( struct tnl_program *p )
509{
510   if (is_undef(p->identity))
511      p->identity = register_const4f(p, 0,0,0,1);
512
513   return p->identity;
514}
515
516
517static struct ureg register_param5(struct tnl_program *p,
518				   GLint s0,
519				   GLint s1,
520				   GLint s2,
521				   GLint s3,
522                                   GLint s4)
523{
524   gl_state_index tokens[STATE_LENGTH];
525   GLint idx;
526   tokens[0] = s0;
527   tokens[1] = s1;
528   tokens[2] = s2;
529   tokens[3] = s3;
530   tokens[4] = s4;
531   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
532   return make_ureg(PROGRAM_STATE_VAR, idx);
533}
534
535
536#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
537#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
538#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
539#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
540
541
542static void register_matrix_param5( struct tnl_program *p,
543				    GLint s0, /* modelview, projection, etc */
544				    GLint s1, /* texture matrix number */
545				    GLint s2, /* first row */
546				    GLint s3, /* last row */
547				    GLint s4, /* inverse, transpose, etc */
548				    struct ureg *matrix )
549{
550   GLint i;
551
552   /* This is a bit sad as the support is there to pull the whole
553    * matrix out in one go:
554    */
555   for (i = 0; i <= s3 - s2; i++)
556      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
557}
558
559
560static void emit_arg( struct prog_src_register *src,
561		      struct ureg reg )
562{
563   src->File = reg.file;
564   src->Index = reg.idx;
565   src->Swizzle = reg.swz;
566   src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
567   src->Abs = 0;
568   src->NegateAbs = 0;
569   src->RelAddr = 0;
570   /* Check that bitfield sizes aren't exceeded */
571   ASSERT(src->Index == reg.idx);
572}
573
574
575static void emit_dst( struct prog_dst_register *dst,
576		      struct ureg reg, GLuint mask )
577{
578   dst->File = reg.file;
579   dst->Index = reg.idx;
580   /* allow zero as a shorthand for xyzw */
581   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
582   dst->CondMask = COND_TR;  /* always pass cond test */
583   dst->CondSwizzle = SWIZZLE_NOOP;
584   dst->CondSrc = 0;
585   dst->pad = 0;
586   /* Check that bitfield sizes aren't exceeded */
587   ASSERT(dst->Index == reg.idx);
588}
589
590
591static void debug_insn( struct prog_instruction *inst, const char *fn,
592			GLuint line )
593{
594   if (DISASSEM) {
595      static const char *last_fn;
596
597      if (fn != last_fn) {
598	 last_fn = fn;
599	 _mesa_printf("%s:\n", fn);
600      }
601
602      _mesa_printf("%d:\t", line);
603      _mesa_print_instruction(inst);
604   }
605}
606
607
608static void emit_op3fn(struct tnl_program *p,
609                       enum prog_opcode op,
610		       struct ureg dest,
611		       GLuint mask,
612		       struct ureg src0,
613		       struct ureg src1,
614		       struct ureg src2,
615		       const char *fn,
616		       GLuint line)
617{
618   GLuint nr;
619   struct prog_instruction *inst;
620
621   assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
622
623   if (p->program->Base.NumInstructions == p->max_inst) {
624      /* need to extend the program's instruction array */
625      struct prog_instruction *newInst;
626
627      /* double the size */
628      p->max_inst *= 2;
629
630      newInst = _mesa_alloc_instructions(p->max_inst);
631      if (!newInst) {
632         _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
633         return;
634      }
635
636      _mesa_copy_instructions(newInst,
637                              p->program->Base.Instructions,
638                              p->program->Base.NumInstructions);
639
640      _mesa_free_instructions(p->program->Base.Instructions,
641                              p->program->Base.NumInstructions);
642
643      p->program->Base.Instructions = newInst;
644   }
645
646   nr = p->program->Base.NumInstructions++;
647
648   inst = &p->program->Base.Instructions[nr];
649   inst->Opcode = (enum prog_opcode) op;
650   inst->StringPos = 0;
651   inst->Data = 0;
652
653   emit_arg( &inst->SrcReg[0], src0 );
654   emit_arg( &inst->SrcReg[1], src1 );
655   emit_arg( &inst->SrcReg[2], src2 );
656
657   emit_dst( &inst->DstReg, dest, mask );
658
659   debug_insn(inst, fn, line);
660}
661
662
663#define emit_op3(p, op, dst, mask, src0, src1, src2) \
664   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
665
666#define emit_op2(p, op, dst, mask, src0, src1) \
667    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
668
669#define emit_op1(p, op, dst, mask, src0) \
670    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
671
672
673static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
674{
675   if (reg.file == PROGRAM_TEMPORARY &&
676       !(p->temp_reserved & (1<<reg.idx)))
677      return reg;
678   else {
679      struct ureg temp = get_temp(p);
680      emit_op1(p, OPCODE_MOV, temp, 0, reg);
681      return temp;
682   }
683}
684
685
686/* Currently no tracking performed of input/output/register size or
687 * active elements.  Could be used to reduce these operations, as
688 * could the matrix type.
689 */
690static void emit_matrix_transform_vec4( struct tnl_program *p,
691					struct ureg dest,
692					const struct ureg *mat,
693					struct ureg src)
694{
695   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
696   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
697   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
698   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
699}
700
701
702/* This version is much easier to implement if writemasks are not
703 * supported natively on the target or (like SSE), the target doesn't
704 * have a clean/obvious dotproduct implementation.
705 */
706static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
707						  struct ureg dest,
708						  const struct ureg *mat,
709						  struct ureg src)
710{
711   struct ureg tmp;
712
713   if (dest.file != PROGRAM_TEMPORARY)
714      tmp = get_temp(p);
715   else
716      tmp = dest;
717
718   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
719   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
720   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
721   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
722
723   if (dest.file != PROGRAM_TEMPORARY)
724      release_temp(p, tmp);
725}
726
727
728static void emit_matrix_transform_vec3( struct tnl_program *p,
729					struct ureg dest,
730					const struct ureg *mat,
731					struct ureg src)
732{
733   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
734   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
735   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
736}
737
738
739static void emit_normalize_vec3( struct tnl_program *p,
740				 struct ureg dest,
741				 struct ureg src )
742{
743#if 0
744   /* XXX use this when drivers are ready for NRM3 */
745   emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
746#else
747   struct ureg tmp = get_temp(p);
748   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
749   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
750   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
751   release_temp(p, tmp);
752#endif
753}
754
755
756static void emit_passthrough( struct tnl_program *p,
757			      GLuint input,
758			      GLuint output )
759{
760   struct ureg out = register_output(p, output);
761   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
762}
763
764
765static struct ureg get_eye_position( struct tnl_program *p )
766{
767   if (is_undef(p->eye_position)) {
768      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
769      struct ureg modelview[4];
770
771      p->eye_position = reserve_temp(p);
772
773      if (PREFER_DP4) {
774	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
775                                 0, modelview );
776
777	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
778      }
779      else {
780	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
781				 STATE_MATRIX_TRANSPOSE, modelview );
782
783	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
784      }
785   }
786
787   return p->eye_position;
788}
789
790
791static struct ureg get_eye_position_z( struct tnl_program *p )
792{
793   if (!is_undef(p->eye_position))
794      return swizzle1(p->eye_position, Z);
795
796   if (is_undef(p->eye_position_z)) {
797      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
798      struct ureg modelview[4];
799
800      p->eye_position_z = reserve_temp(p);
801
802      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
803                              0, modelview );
804
805      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
806   }
807
808   return p->eye_position_z;
809}
810
811
812static struct ureg get_eye_position_normalized( struct tnl_program *p )
813{
814   if (is_undef(p->eye_position_normalized)) {
815      struct ureg eye = get_eye_position(p);
816      p->eye_position_normalized = reserve_temp(p);
817      emit_normalize_vec3(p, p->eye_position_normalized, eye);
818   }
819
820   return p->eye_position_normalized;
821}
822
823
824static struct ureg get_transformed_normal( struct tnl_program *p )
825{
826   if (is_undef(p->transformed_normal) &&
827       !p->state->need_eye_coords &&
828       !p->state->normalize &&
829       !(p->state->need_eye_coords == p->state->rescale_normals))
830   {
831      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
832   }
833   else if (is_undef(p->transformed_normal))
834   {
835      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
836      struct ureg mvinv[3];
837      struct ureg transformed_normal = reserve_temp(p);
838
839      if (p->state->need_eye_coords) {
840         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
841                                 STATE_MATRIX_INVTRANS, mvinv );
842
843         /* Transform to eye space:
844          */
845         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
846         normal = transformed_normal;
847      }
848
849      /* Normalize/Rescale:
850       */
851      if (p->state->normalize) {
852	 emit_normalize_vec3( p, transformed_normal, normal );
853         normal = transformed_normal;
854      }
855      else if (p->state->need_eye_coords == p->state->rescale_normals) {
856         /* This is already adjusted for eye/non-eye rendering:
857          */
858	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
859                                               STATE_NORMAL_SCALE);
860
861	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
862         normal = transformed_normal;
863      }
864
865      assert(normal.file == PROGRAM_TEMPORARY);
866      p->transformed_normal = normal;
867   }
868
869   return p->transformed_normal;
870}
871
872
873static void build_hpos( struct tnl_program *p )
874{
875   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
876   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
877   struct ureg mvp[4];
878
879   if (PREFER_DP4) {
880      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
881			      0, mvp );
882      emit_matrix_transform_vec4( p, hpos, mvp, pos );
883   }
884   else {
885      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
886			      STATE_MATRIX_TRANSPOSE, mvp );
887      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
888   }
889}
890
891
892static GLuint material_attrib( GLuint side, GLuint property )
893{
894   return ((property - STATE_AMBIENT) * 2 +
895	   side);
896}
897
898
899/**
900 * Get a bitmask of which material values vary on a per-vertex basis.
901 */
902static void set_material_flags( struct tnl_program *p )
903{
904   p->color_materials = 0;
905   p->materials = 0;
906
907   if (p->state->light_color_material) {
908      p->materials =
909	 p->color_materials = p->state->light_color_material_mask;
910   }
911
912   p->materials |= p->state->light_material_mask;
913}
914
915
916/* XXX temporary!!! */
917#define _TNL_ATTRIB_MAT_FRONT_AMBIENT 32
918
919static struct ureg get_material( struct tnl_program *p, GLuint side,
920				 GLuint property )
921{
922   GLuint attrib = material_attrib(side, property);
923
924   if (p->color_materials & (1<<attrib))
925      return register_input(p, VERT_ATTRIB_COLOR0);
926   else if (p->materials & (1<<attrib))
927      return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
928   else
929      return register_param3( p, STATE_MATERIAL, side, property );
930}
931
932#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
933				   MAT_BIT_FRONT_AMBIENT | \
934				   MAT_BIT_FRONT_DIFFUSE) << (side))
935
936
937/**
938 * Either return a precalculated constant value or emit code to
939 * calculate these values dynamically in the case where material calls
940 * are present between begin/end pairs.
941 *
942 * Probably want to shift this to the program compilation phase - if
943 * we always emitted the calculation here, a smart compiler could
944 * detect that it was constant (given a certain set of inputs), and
945 * lift it out of the main loop.  That way the programs created here
946 * would be independent of the vertex_buffer details.
947 */
948static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
949{
950   if (p->materials & SCENE_COLOR_BITS(side)) {
951      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
952      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
953      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
954      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
955      struct ureg tmp = make_temp(p, material_diffuse);
956      emit_op3(p, OPCODE_MAD, tmp,  WRITEMASK_XYZ, lm_ambient,
957	       material_ambient, material_emission);
958      return tmp;
959   }
960   else
961      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
962}
963
964
965static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
966				  GLuint side, GLuint property )
967{
968   GLuint attrib = material_attrib(side, property);
969   if (p->materials & (1<<attrib)) {
970      struct ureg light_value =
971	 register_param3(p, STATE_LIGHT, light, property);
972      struct ureg material_value = get_material(p, side, property);
973      struct ureg tmp = get_temp(p);
974      emit_op2(p, OPCODE_MUL, tmp,  0, light_value, material_value);
975      return tmp;
976   }
977   else
978      return register_param4(p, STATE_LIGHTPROD, light, side, property);
979}
980
981
982static struct ureg calculate_light_attenuation( struct tnl_program *p,
983						GLuint i,
984						struct ureg VPpli,
985						struct ureg dist )
986{
987   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
988					     STATE_ATTENUATION);
989   struct ureg att = get_temp(p);
990
991   /* Calculate spot attenuation:
992    */
993   if (!p->state->unit[i].light_spotcutoff_is_180) {
994      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
995						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
996      struct ureg spot = get_temp(p);
997      struct ureg slt = get_temp(p);
998
999      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
1000      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
1001      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
1002      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
1003
1004      release_temp(p, spot);
1005      release_temp(p, slt);
1006   }
1007
1008   /* Calculate distance attenuation:
1009    */
1010   if (p->state->unit[i].light_attenuated) {
1011
1012      /* 1/d,d,d,1/d */
1013      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
1014      /* 1,d,d*d,1/d */
1015      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
1016      /* 1/dist-atten */
1017      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
1018
1019      if (!p->state->unit[i].light_spotcutoff_is_180) {
1020	 /* dist-atten */
1021	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
1022	 /* spot-atten * dist-atten */
1023	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1024      } else {
1025	 /* dist-atten */
1026	 emit_op1(p, OPCODE_RCP, att, 0, dist);
1027      }
1028   }
1029
1030   return att;
1031}
1032
1033
1034/**
1035 * Compute:
1036 *   lit.y = MAX(0, dots.x)
1037 *   lit.z = SLT(0, dots.x)
1038 */
1039static void emit_degenerate_lit( struct tnl_program *p,
1040                                 struct ureg lit,
1041                                 struct ureg dots )
1042{
1043   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
1044
1045   /* Note that lit.x & lit.w will not be examined.  Note also that
1046    * dots.xyzw == dots.xxxx.
1047    */
1048
1049   /* MAX lit, id, dots;
1050    */
1051   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1052
1053   /* result[2] = (in > 0 ? 1 : 0)
1054    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1055    */
1056   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1057}
1058
1059
1060/* Need to add some addtional parameters to allow lighting in object
1061 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1062 * space lighting.
1063 */
1064static void build_lighting( struct tnl_program *p )
1065{
1066   const GLboolean twoside = p->state->light_twoside;
1067   const GLboolean separate = p->state->separate_specular;
1068   GLuint nr_lights = 0, count = 0;
1069   struct ureg normal = get_transformed_normal(p);
1070   struct ureg lit = get_temp(p);
1071   struct ureg dots = get_temp(p);
1072   struct ureg _col0 = undef, _col1 = undef;
1073   struct ureg _bfc0 = undef, _bfc1 = undef;
1074   GLuint i;
1075
1076   /*
1077    * NOTE:
1078    * dot.x = dot(normal, VPpli)
1079    * dot.y = dot(normal, halfAngle)
1080    * dot.z = back.shininess
1081    * dot.w = front.shininess
1082    */
1083
1084   for (i = 0; i < MAX_LIGHTS; i++)
1085      if (p->state->unit[i].light_enabled)
1086	 nr_lights++;
1087
1088   set_material_flags(p);
1089
1090   {
1091      if (!p->state->material_shininess_is_zero) {
1092         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1093         emit_op1(p, OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
1094         release_temp(p, shininess);
1095      }
1096
1097      _col0 = make_temp(p, get_scenecolor(p, 0));
1098      if (separate)
1099	 _col1 = make_temp(p, get_identity_param(p));
1100      else
1101	 _col1 = _col0;
1102
1103   }
1104
1105   if (twoside) {
1106      if (!p->state->material_shininess_is_zero) {
1107         /* Note that we negate the back-face specular exponent here.
1108          * The negation will be un-done later in the back-face code below.
1109          */
1110         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1111         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1112                  negate(swizzle1(shininess,X)));
1113         release_temp(p, shininess);
1114      }
1115
1116      _bfc0 = make_temp(p, get_scenecolor(p, 1));
1117      if (separate)
1118	 _bfc1 = make_temp(p, get_identity_param(p));
1119      else
1120	 _bfc1 = _bfc0;
1121   }
1122
1123   /* If no lights, still need to emit the scenecolor.
1124    */
1125   {
1126      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1127      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1128   }
1129
1130   if (separate) {
1131      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1132      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1133   }
1134
1135   if (twoside) {
1136      struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1137      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1138   }
1139
1140   if (twoside && separate) {
1141      struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1142      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1143   }
1144
1145   if (nr_lights == 0) {
1146      release_temps(p);
1147      return;
1148   }
1149
1150   for (i = 0; i < MAX_LIGHTS; i++) {
1151      if (p->state->unit[i].light_enabled) {
1152	 struct ureg half = undef;
1153	 struct ureg att = undef, VPpli = undef;
1154
1155	 count++;
1156
1157	 if (p->state->unit[i].light_eyepos3_is_zero) {
1158	    /* Can used precomputed constants in this case.
1159	     * Attenuation never applies to infinite lights.
1160	     */
1161	    VPpli = register_param3(p, STATE_INTERNAL,
1162				    STATE_LIGHT_POSITION_NORMALIZED, i);
1163
1164            if (!p->state->material_shininess_is_zero) {
1165               if (p->state->light_local_viewer) {
1166                  struct ureg eye_hat = get_eye_position_normalized(p);
1167                  half = get_temp(p);
1168                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1169                  emit_normalize_vec3(p, half, half);
1170               } else {
1171                  half = register_param3(p, STATE_INTERNAL,
1172                                         STATE_LIGHT_HALF_VECTOR, i);
1173               }
1174            }
1175	 }
1176	 else {
1177	    struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1178					       STATE_LIGHT_POSITION, i);
1179	    struct ureg V = get_eye_position(p);
1180	    struct ureg dist = get_temp(p);
1181
1182	    VPpli = get_temp(p);
1183
1184	    /* Calculate VPpli vector
1185	     */
1186	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1187
1188	    /* Normalize VPpli.  The dist value also used in
1189	     * attenuation below.
1190	     */
1191	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1192	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1193	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1194
1195	    /* Calculate attenuation:
1196	     */
1197	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
1198		p->state->unit[i].light_attenuated) {
1199	       att = calculate_light_attenuation(p, i, VPpli, dist);
1200	    }
1201
1202	    /* Calculate viewer direction, or use infinite viewer:
1203	     */
1204            if (!p->state->material_shininess_is_zero) {
1205               half = get_temp(p);
1206
1207               if (p->state->light_local_viewer) {
1208                  struct ureg eye_hat = get_eye_position_normalized(p);
1209                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1210               }
1211               else {
1212                  struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1213                  emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1214               }
1215
1216               emit_normalize_vec3(p, half, half);
1217            }
1218
1219	    release_temp(p, dist);
1220	 }
1221
1222	 /* Calculate dot products:
1223	  */
1224         if (p->state->material_shininess_is_zero) {
1225            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1226         }
1227         else {
1228            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1229            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1230         }
1231
1232	 /* Front face lighting:
1233	  */
1234	 {
1235	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1236	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1237	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1238	    struct ureg res0, res1;
1239	    GLuint mask0, mask1;
1240
1241	    if (count == nr_lights) {
1242	       if (separate) {
1243		  mask0 = WRITEMASK_XYZ;
1244		  mask1 = WRITEMASK_XYZ;
1245		  res0 = register_output( p, VERT_RESULT_COL0 );
1246		  res1 = register_output( p, VERT_RESULT_COL1 );
1247	       }
1248	       else {
1249		  mask0 = 0;
1250		  mask1 = WRITEMASK_XYZ;
1251		  res0 = _col0;
1252		  res1 = register_output( p, VERT_RESULT_COL0 );
1253	       }
1254	    } else {
1255	       mask0 = 0;
1256	       mask1 = 0;
1257	       res0 = _col0;
1258	       res1 = _col1;
1259	    }
1260
1261	    if (!is_undef(att)) {
1262               /* light is attenuated by distance */
1263               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1264               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1265               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1266            }
1267            else if (!p->state->material_shininess_is_zero) {
1268               /* there's a non-zero specular term */
1269               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1270               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1271            }
1272            else {
1273               /* no attenutation, no specular */
1274               emit_degenerate_lit(p, lit, dots);
1275               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1276            }
1277
1278	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1279	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1280
1281	    release_temp(p, ambient);
1282	    release_temp(p, diffuse);
1283	    release_temp(p, specular);
1284	 }
1285
1286	 /* Back face lighting:
1287	  */
1288	 if (twoside) {
1289	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1290	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1291	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1292	    struct ureg res0, res1;
1293	    GLuint mask0, mask1;
1294
1295	    if (count == nr_lights) {
1296	       if (separate) {
1297		  mask0 = WRITEMASK_XYZ;
1298		  mask1 = WRITEMASK_XYZ;
1299		  res0 = register_output( p, VERT_RESULT_BFC0 );
1300		  res1 = register_output( p, VERT_RESULT_BFC1 );
1301	       }
1302	       else {
1303		  mask0 = 0;
1304		  mask1 = WRITEMASK_XYZ;
1305		  res0 = _bfc0;
1306		  res1 = register_output( p, VERT_RESULT_BFC0 );
1307	       }
1308	    } else {
1309	       res0 = _bfc0;
1310	       res1 = _bfc1;
1311	       mask0 = 0;
1312	       mask1 = 0;
1313	    }
1314
1315            /* For the back face we need to negate the X and Y component
1316             * dot products.  dots.Z has the negated back-face specular
1317             * exponent.  We swizzle that into the W position.  This
1318             * negation makes the back-face specular term positive again.
1319             */
1320            dots = negate(swizzle(dots,X,Y,W,Z));
1321
1322	    if (!is_undef(att)) {
1323               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1324	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1325               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1326            }
1327            else if (!p->state->material_shininess_is_zero) {
1328               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1329               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1330            }
1331            else {
1332               emit_degenerate_lit(p, lit, dots);
1333               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1334            }
1335
1336	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1337	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1338            /* restore dots to its original state for subsequent lights
1339             * by negating and swizzling again.
1340             */
1341            dots = negate(swizzle(dots,X,Y,W,Z));
1342
1343	    release_temp(p, ambient);
1344	    release_temp(p, diffuse);
1345	    release_temp(p, specular);
1346	 }
1347
1348	 release_temp(p, half);
1349	 release_temp(p, VPpli);
1350	 release_temp(p, att);
1351      }
1352   }
1353
1354   release_temps( p );
1355}
1356
1357
1358static void build_fog( struct tnl_program *p )
1359{
1360   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1361   struct ureg input;
1362
1363   if (p->state->fog_source_is_depth) {
1364      input = get_eye_position_z(p);
1365   }
1366   else {
1367      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1368   }
1369
1370   if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1371      struct ureg params = register_param2(p, STATE_INTERNAL,
1372					   STATE_FOG_PARAMS_OPTIMIZED);
1373      struct ureg tmp = get_temp(p);
1374      GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1375
1376      if (useabs) {
1377	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1378      }
1379
1380      switch (p->state->fog_mode) {
1381      case FOG_LINEAR: {
1382	 struct ureg id = get_identity_param(p);
1383	 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1384			swizzle1(params,X), swizzle1(params,Y));
1385	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1386	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1387	 break;
1388      }
1389      case FOG_EXP:
1390	 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1391			swizzle1(params,Z));
1392	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1393	 break;
1394      case FOG_EXP2:
1395	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1396	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1397	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1398	 break;
1399      }
1400
1401      release_temp(p, tmp);
1402   }
1403   else {
1404      /* results = incoming fog coords (compute fog per-fragment later)
1405       *
1406       * KW:  Is it really necessary to do anything in this case?
1407       * BP: Yes, we always need to compute the absolute value, unless
1408       * we want to push that down into the fragment program...
1409       */
1410      GLboolean useabs = GL_TRUE;
1411      emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1412   }
1413}
1414
1415
1416static void build_reflect_texgen( struct tnl_program *p,
1417				  struct ureg dest,
1418				  GLuint writemask )
1419{
1420   struct ureg normal = get_transformed_normal(p);
1421   struct ureg eye_hat = get_eye_position_normalized(p);
1422   struct ureg tmp = get_temp(p);
1423
1424   /* n.u */
1425   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1426   /* 2n.u */
1427   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1428   /* (-2n.u)n + u */
1429   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1430
1431   release_temp(p, tmp);
1432}
1433
1434
1435static void build_sphere_texgen( struct tnl_program *p,
1436				 struct ureg dest,
1437				 GLuint writemask )
1438{
1439   struct ureg normal = get_transformed_normal(p);
1440   struct ureg eye_hat = get_eye_position_normalized(p);
1441   struct ureg tmp = get_temp(p);
1442   struct ureg half = register_scalar_const(p, .5);
1443   struct ureg r = get_temp(p);
1444   struct ureg inv_m = get_temp(p);
1445   struct ureg id = get_identity_param(p);
1446
1447   /* Could share the above calculations, but it would be
1448    * a fairly odd state for someone to set (both sphere and
1449    * reflection active for different texture coordinate
1450    * components.  Of course - if two texture units enable
1451    * reflect and/or sphere, things start to tilt in favour
1452    * of seperating this out:
1453    */
1454
1455   /* n.u */
1456   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1457   /* 2n.u */
1458   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1459   /* (-2n.u)n + u */
1460   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1461   /* r + 0,0,1 */
1462   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1463   /* rx^2 + ry^2 + (rz+1)^2 */
1464   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1465   /* 2/m */
1466   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1467   /* 1/m */
1468   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1469   /* r/m + 1/2 */
1470   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1471
1472   release_temp(p, tmp);
1473   release_temp(p, r);
1474   release_temp(p, inv_m);
1475}
1476
1477
1478static void build_texture_transform( struct tnl_program *p )
1479{
1480   GLuint i, j;
1481
1482   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1483
1484      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1485	 continue;
1486
1487      if (p->state->unit[i].texgen_enabled ||
1488	  p->state->unit[i].texmat_enabled) {
1489
1490	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1491	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1492	 struct ureg out_texgen = undef;
1493
1494	 if (p->state->unit[i].texgen_enabled) {
1495	    GLuint copy_mask = 0;
1496	    GLuint sphere_mask = 0;
1497	    GLuint reflect_mask = 0;
1498	    GLuint normal_mask = 0;
1499	    GLuint modes[4];
1500
1501	    if (texmat_enabled)
1502	       out_texgen = get_temp(p);
1503	    else
1504	       out_texgen = out;
1505
1506	    modes[0] = p->state->unit[i].texgen_mode0;
1507	    modes[1] = p->state->unit[i].texgen_mode1;
1508	    modes[2] = p->state->unit[i].texgen_mode2;
1509	    modes[3] = p->state->unit[i].texgen_mode3;
1510
1511	    for (j = 0; j < 4; j++) {
1512	       switch (modes[j]) {
1513	       case TXG_OBJ_LINEAR: {
1514		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1515		  struct ureg plane =
1516		     register_param3(p, STATE_TEXGEN, i,
1517				     STATE_TEXGEN_OBJECT_S + j);
1518
1519		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1520			   obj, plane );
1521		  break;
1522	       }
1523	       case TXG_EYE_LINEAR: {
1524		  struct ureg eye = get_eye_position(p);
1525		  struct ureg plane =
1526		     register_param3(p, STATE_TEXGEN, i,
1527				     STATE_TEXGEN_EYE_S + j);
1528
1529		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1530			   eye, plane );
1531		  break;
1532	       }
1533	       case TXG_SPHERE_MAP:
1534		  sphere_mask |= WRITEMASK_X << j;
1535		  break;
1536	       case TXG_REFLECTION_MAP:
1537		  reflect_mask |= WRITEMASK_X << j;
1538		  break;
1539	       case TXG_NORMAL_MAP:
1540		  normal_mask |= WRITEMASK_X << j;
1541		  break;
1542	       case TXG_NONE:
1543		  copy_mask |= WRITEMASK_X << j;
1544	       }
1545	    }
1546
1547	    if (sphere_mask) {
1548	       build_sphere_texgen(p, out_texgen, sphere_mask);
1549	    }
1550
1551	    if (reflect_mask) {
1552	       build_reflect_texgen(p, out_texgen, reflect_mask);
1553	    }
1554
1555	    if (normal_mask) {
1556	       struct ureg normal = get_transformed_normal(p);
1557	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1558	    }
1559
1560	    if (copy_mask) {
1561	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1562	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1563	    }
1564	 }
1565
1566	 if (texmat_enabled) {
1567	    struct ureg texmat[4];
1568	    struct ureg in = (!is_undef(out_texgen) ?
1569			      out_texgen :
1570			      register_input(p, VERT_ATTRIB_TEX0+i));
1571	    if (PREFER_DP4) {
1572	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1573				       0, texmat );
1574	       emit_matrix_transform_vec4( p, out, texmat, in );
1575	    }
1576	    else {
1577	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1578				       STATE_MATRIX_TRANSPOSE, texmat );
1579	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1580	    }
1581	 }
1582
1583	 release_temps(p);
1584      }
1585      else {
1586	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1587      }
1588   }
1589}
1590
1591
1592/**
1593 * Point size attenuation computation.
1594 */
1595static void build_atten_pointsize( struct tnl_program *p )
1596{
1597   struct ureg eye = get_eye_position_z(p);
1598   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1599   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1600   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1601   struct ureg ut = get_temp(p);
1602
1603   /* dist = |eyez| */
1604   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1605   /* p1 + dist * (p2 + dist * p3); */
1606   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1607		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1608   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1609		ut, swizzle1(state_attenuation, X));
1610
1611   /* 1 / sqrt(factor) */
1612   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1613
1614#if 0
1615   /* out = pointSize / sqrt(factor) */
1616   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1617#else
1618   /* this is a good place to clamp the point size since there's likely
1619    * no hardware registers to clamp point size at rasterization time.
1620    */
1621   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1622   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1623   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1624#endif
1625
1626   release_temp(p, ut);
1627}
1628
1629
1630/**
1631 * Emit constant point size.
1632 */
1633static void build_constant_pointsize( struct tnl_program *p )
1634{
1635   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1636   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1637   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, state_size);
1638}
1639
1640
1641/**
1642 * Pass-though per-vertex point size, from user's point size array.
1643 */
1644static void build_array_pointsize( struct tnl_program *p )
1645{
1646   struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1647   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1648   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1649}
1650
1651
1652static void build_tnl_program( struct tnl_program *p )
1653{   /* Emit the program, starting with modelviewproject:
1654    */
1655   build_hpos(p);
1656
1657   /* Lighting calculations:
1658    */
1659   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1660      if (p->state->light_global_enabled)
1661	 build_lighting(p);
1662      else {
1663	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1664	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1665
1666	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1667	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1668      }
1669   }
1670
1671   if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1672       p->state->fog_mode != FOG_NONE)
1673      build_fog(p);
1674
1675   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1676      build_texture_transform(p);
1677
1678   if (p->state->point_attenuated)
1679      build_atten_pointsize(p);
1680   else if (p->state->point_array)
1681      build_array_pointsize(p);
1682#if 0
1683   else
1684      build_constant_pointsize(p);
1685#else
1686   (void) build_constant_pointsize;
1687#endif
1688
1689   /* Finish up:
1690    */
1691   emit_op1(p, OPCODE_END, undef, 0, undef);
1692
1693   /* Disassemble:
1694    */
1695   if (DISASSEM) {
1696      _mesa_printf ("\n");
1697   }
1698}
1699
1700
1701static void
1702create_new_program( const struct state_key *key,
1703                    struct gl_vertex_program *program,
1704                    GLuint max_temps)
1705{
1706   struct tnl_program p;
1707
1708   _mesa_memset(&p, 0, sizeof(p));
1709   p.state = key;
1710   p.program = program;
1711   p.eye_position = undef;
1712   p.eye_position_z = undef;
1713   p.eye_position_normalized = undef;
1714   p.transformed_normal = undef;
1715   p.identity = undef;
1716   p.temp_in_use = 0;
1717
1718   if (max_temps >= sizeof(int) * 8)
1719      p.temp_reserved = 0;
1720   else
1721      p.temp_reserved = ~((1<<max_temps)-1);
1722
1723   /* Start by allocating 32 instructions.
1724    * If we need more, we'll grow the instruction array as needed.
1725    */
1726   p.max_inst = 32;
1727   p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1728   p.program->Base.String = NULL;
1729   p.program->Base.NumInstructions =
1730   p.program->Base.NumTemporaries =
1731   p.program->Base.NumParameters =
1732   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1733   p.program->Base.Parameters = _mesa_new_parameter_list();
1734   p.program->Base.InputsRead = 0;
1735   p.program->Base.OutputsWritten = 0;
1736
1737   build_tnl_program( &p );
1738}
1739
1740
1741/**
1742 * Return a vertex program which implements the current fixed-function
1743 * transform/lighting/texgen operations.
1744 * XXX move this into core mesa (main/)
1745 */
1746struct gl_vertex_program *
1747_mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1748{
1749   struct gl_vertex_program *prog;
1750   struct state_key key;
1751
1752   /* Grab all the relevent state and put it in a single structure:
1753    */
1754   make_state_key(ctx, &key);
1755
1756   /* Look for an already-prepared program for this state:
1757    */
1758   prog = (struct gl_vertex_program *)
1759      _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1760
1761   if (!prog) {
1762      /* OK, we'll have to build a new one */
1763      if (0)
1764         _mesa_printf("Build new TNL program\n");
1765
1766      prog = (struct gl_vertex_program *)
1767         ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1768      if (!prog)
1769         return NULL;
1770
1771      create_new_program( &key, prog,
1772                          ctx->Const.VertexProgram.MaxTemps );
1773
1774#if 0
1775      if (ctx->Driver.ProgramStringNotify)
1776         ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1777                                          &prog->Base );
1778#endif
1779      _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1780                                 &key, sizeof(key), &prog->Base);
1781   }
1782
1783   return prog;
1784}
1785