17117f1b4Smrg/* 27117f1b4Smrg * Mesa 3-D graphics library 37117f1b4Smrg * 47117f1b4Smrg * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. 57117f1b4Smrg * 67117f1b4Smrg * Permission is hereby granted, free of charge, to any person obtaining a 77117f1b4Smrg * copy of this software and associated documentation files (the "Software"), 87117f1b4Smrg * to deal in the Software without restriction, including without limitation 97117f1b4Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 107117f1b4Smrg * and/or sell copies of the Software, and to permit persons to whom the 117117f1b4Smrg * Software is furnished to do so, subject to the following conditions: 127117f1b4Smrg * 137117f1b4Smrg * The above copyright notice and this permission notice shall be included 147117f1b4Smrg * in all copies or substantial portions of the Software. 157117f1b4Smrg * 167117f1b4Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 177117f1b4Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 187117f1b4Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19af69d88dSmrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20af69d88dSmrg * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21af69d88dSmrg * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22af69d88dSmrg * OTHER DEALINGS IN THE SOFTWARE. 237117f1b4Smrg */ 247117f1b4Smrg 257117f1b4Smrg 267117f1b4Smrg/** 277117f1b4Smrg * \file m_matrix.c 287117f1b4Smrg * Matrix operations. 297117f1b4Smrg * 307117f1b4Smrg * \note 317117f1b4Smrg * -# 4x4 transformation matrices are stored in memory in column major order. 327117f1b4Smrg * -# Points/vertices are to be thought of as column vectors. 337117f1b4Smrg * -# Transformation of a point p by a matrix M is: p' = M * p 347117f1b4Smrg */ 357117f1b4Smrg 367ec681f3Smrg#include <stddef.h> 377117f1b4Smrg 3801e04c3fSmrg#include "c99_math.h" 3901e04c3fSmrg#include "main/errors.h" 40c1f859d4Smrg#include "main/glheader.h" 41c1f859d4Smrg#include "main/macros.h" 427ec681f3Smrg#define MATH_ASM_PTR_SIZE sizeof(void *) 437ec681f3Smrg#include "math/m_vector_asm.h" 447117f1b4Smrg 457117f1b4Smrg#include "m_matrix.h" 467117f1b4Smrg 477ec681f3Smrg#include "util/u_memory.h" 487ec681f3Smrg 497117f1b4Smrg 507117f1b4Smrg/** 517117f1b4Smrg * \defgroup MatFlags MAT_FLAG_XXX-flags 527117f1b4Smrg * 537117f1b4Smrg * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags 547117f1b4Smrg */ 557117f1b4Smrg/*@{*/ 567117f1b4Smrg#define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 577117f1b4Smrg * (Not actually used - the identity 5801e04c3fSmrg * matrix is identified by the absence 597117f1b4Smrg * of all other flags.) 607117f1b4Smrg */ 617117f1b4Smrg#define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 627117f1b4Smrg#define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 637117f1b4Smrg#define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 647117f1b4Smrg#define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 657117f1b4Smrg#define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 667117f1b4Smrg#define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ 677117f1b4Smrg#define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ 687117f1b4Smrg#define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ 697117f1b4Smrg#define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ 707117f1b4Smrg#define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ 717117f1b4Smrg#define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ 727117f1b4Smrg 737117f1b4Smrg/** angle preserving matrix flags mask */ 747117f1b4Smrg#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ 757117f1b4Smrg MAT_FLAG_TRANSLATION | \ 767117f1b4Smrg MAT_FLAG_UNIFORM_SCALE) 777117f1b4Smrg 787117f1b4Smrg/** geometry related matrix flags mask */ 797117f1b4Smrg#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ 807117f1b4Smrg MAT_FLAG_ROTATION | \ 817117f1b4Smrg MAT_FLAG_TRANSLATION | \ 827117f1b4Smrg MAT_FLAG_UNIFORM_SCALE | \ 837117f1b4Smrg MAT_FLAG_GENERAL_SCALE | \ 847117f1b4Smrg MAT_FLAG_GENERAL_3D | \ 857117f1b4Smrg MAT_FLAG_PERSPECTIVE | \ 867117f1b4Smrg MAT_FLAG_SINGULAR) 877117f1b4Smrg 887117f1b4Smrg/** length preserving matrix flags mask */ 897117f1b4Smrg#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ 907117f1b4Smrg MAT_FLAG_TRANSLATION) 917117f1b4Smrg 927117f1b4Smrg 937117f1b4Smrg/** 3D (non-perspective) matrix flags mask */ 947117f1b4Smrg#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ 957117f1b4Smrg MAT_FLAG_TRANSLATION | \ 967117f1b4Smrg MAT_FLAG_UNIFORM_SCALE | \ 977117f1b4Smrg MAT_FLAG_GENERAL_SCALE | \ 987117f1b4Smrg MAT_FLAG_GENERAL_3D) 997117f1b4Smrg 1007117f1b4Smrg/** dirty matrix flags mask */ 1017117f1b4Smrg#define MAT_DIRTY (MAT_DIRTY_TYPE | \ 1027117f1b4Smrg MAT_DIRTY_FLAGS | \ 1037117f1b4Smrg MAT_DIRTY_INVERSE) 1047117f1b4Smrg 1057117f1b4Smrg/*@}*/ 1067117f1b4Smrg 1077117f1b4Smrg 1087ec681f3Smrg/** 1097117f1b4Smrg * Test geometry related matrix flags. 1107ec681f3Smrg * 1117117f1b4Smrg * \param mat a pointer to a GLmatrix structure. 1127117f1b4Smrg * \param a flags mask. 1137117f1b4Smrg * 1147117f1b4Smrg * \returns non-zero if all geometry related matrix flags are contained within 1157117f1b4Smrg * the mask, or zero otherwise. 1167ec681f3Smrg */ 1177117f1b4Smrg#define TEST_MAT_FLAGS(mat, a) \ 1187117f1b4Smrg ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) 1197117f1b4Smrg 1207117f1b4Smrg 1217117f1b4Smrg 1227117f1b4Smrg/** 1237117f1b4Smrg * Names of the corresponding GLmatrixtype values. 1247117f1b4Smrg */ 1257117f1b4Smrgstatic const char *types[] = { 1267117f1b4Smrg "MATRIX_GENERAL", 1277117f1b4Smrg "MATRIX_IDENTITY", 1287117f1b4Smrg "MATRIX_3D_NO_ROT", 1297117f1b4Smrg "MATRIX_PERSPECTIVE", 1307117f1b4Smrg "MATRIX_2D", 1317117f1b4Smrg "MATRIX_2D_NO_ROT", 1327117f1b4Smrg "MATRIX_3D" 1337117f1b4Smrg}; 1347117f1b4Smrg 1357117f1b4Smrg 1367117f1b4Smrg/** 1377117f1b4Smrg * Identity matrix. 1387117f1b4Smrg */ 13901e04c3fSmrgstatic const GLfloat Identity[16] = { 1407117f1b4Smrg 1.0, 0.0, 0.0, 0.0, 1417117f1b4Smrg 0.0, 1.0, 0.0, 0.0, 1427117f1b4Smrg 0.0, 0.0, 1.0, 0.0, 1437117f1b4Smrg 0.0, 0.0, 0.0, 1.0 1447117f1b4Smrg}; 1457117f1b4Smrg 1467117f1b4Smrg 1477117f1b4Smrg 1487117f1b4Smrg/**********************************************************************/ 1497117f1b4Smrg/** \name Matrix multiplication */ 1507117f1b4Smrg/*@{*/ 1517117f1b4Smrg 1527117f1b4Smrg#define A(row,col) a[(col<<2)+row] 1537117f1b4Smrg#define B(row,col) b[(col<<2)+row] 1547117f1b4Smrg#define P(row,col) product[(col<<2)+row] 1557117f1b4Smrg 1567117f1b4Smrg/** 1577117f1b4Smrg * Perform a full 4x4 matrix multiplication. 1587117f1b4Smrg * 1597117f1b4Smrg * \param a matrix. 1607117f1b4Smrg * \param b matrix. 1617117f1b4Smrg * \param product will receive the product of \p a and \p b. 1627117f1b4Smrg * 1637117f1b4Smrg * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. 1647117f1b4Smrg * 1657117f1b4Smrg * \note KW: 4*16 = 64 multiplications 1667ec681f3Smrg * 1677117f1b4Smrg * \author This \c matmul was contributed by Thomas Malik 1687117f1b4Smrg */ 1697117f1b4Smrgstatic void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) 1707117f1b4Smrg{ 1717117f1b4Smrg GLint i; 1727117f1b4Smrg for (i = 0; i < 4; i++) { 1737117f1b4Smrg const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 1747117f1b4Smrg P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); 1757117f1b4Smrg P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); 1767117f1b4Smrg P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); 1777117f1b4Smrg P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); 1787117f1b4Smrg } 1797117f1b4Smrg} 1807117f1b4Smrg 1817117f1b4Smrg/** 1827117f1b4Smrg * Multiply two matrices known to occupy only the top three rows, such 1837117f1b4Smrg * as typical model matrices, and orthogonal matrices. 1847117f1b4Smrg * 1857117f1b4Smrg * \param a matrix. 1867117f1b4Smrg * \param b matrix. 1877117f1b4Smrg * \param product will receive the product of \p a and \p b. 1887117f1b4Smrg */ 1897117f1b4Smrgstatic void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) 1907117f1b4Smrg{ 1917117f1b4Smrg GLint i; 1927117f1b4Smrg for (i = 0; i < 3; i++) { 1937117f1b4Smrg const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 1947117f1b4Smrg P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); 1957117f1b4Smrg P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); 1967117f1b4Smrg P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); 1977117f1b4Smrg P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; 1987117f1b4Smrg } 1997117f1b4Smrg P(3,0) = 0; 2007117f1b4Smrg P(3,1) = 0; 2017117f1b4Smrg P(3,2) = 0; 2027117f1b4Smrg P(3,3) = 1; 2037117f1b4Smrg} 2047117f1b4Smrg 2057117f1b4Smrg#undef A 2067117f1b4Smrg#undef B 2077117f1b4Smrg#undef P 2087117f1b4Smrg 2097117f1b4Smrg/** 2107117f1b4Smrg * Multiply a matrix by an array of floats with known properties. 2117117f1b4Smrg * 2127117f1b4Smrg * \param mat pointer to a GLmatrix structure containing the left multiplication 2137117f1b4Smrg * matrix, and that will receive the product result. 2147117f1b4Smrg * \param m right multiplication matrix array. 2157117f1b4Smrg * \param flags flags of the matrix \p m. 2167ec681f3Smrg * 2177117f1b4Smrg * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 2187117f1b4Smrg * if both matrices are 3D, or matmul4() otherwise. 2197117f1b4Smrg */ 2207117f1b4Smrgstatic void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) 2217117f1b4Smrg{ 2227117f1b4Smrg mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); 2237117f1b4Smrg 2247117f1b4Smrg if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) 2257117f1b4Smrg matmul34( mat->m, mat->m, m ); 2267117f1b4Smrg else 2277117f1b4Smrg matmul4( mat->m, mat->m, m ); 2287117f1b4Smrg} 2297117f1b4Smrg 2307117f1b4Smrg/** 2317117f1b4Smrg * Matrix multiplication. 2327117f1b4Smrg * 2337117f1b4Smrg * \param dest destination matrix. 2347117f1b4Smrg * \param a left matrix. 2357117f1b4Smrg * \param b right matrix. 2367ec681f3Smrg * 2377117f1b4Smrg * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 2387117f1b4Smrg * if both matrices are 3D, or matmul4() otherwise. 2397117f1b4Smrg */ 2407117f1b4Smrgvoid 2417117f1b4Smrg_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) 2427117f1b4Smrg{ 2437117f1b4Smrg dest->flags = (a->flags | 2447117f1b4Smrg b->flags | 2457117f1b4Smrg MAT_DIRTY_TYPE | 2467117f1b4Smrg MAT_DIRTY_INVERSE); 2477117f1b4Smrg 2487117f1b4Smrg if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) 2497117f1b4Smrg matmul34( dest->m, a->m, b->m ); 2507117f1b4Smrg else 2517117f1b4Smrg matmul4( dest->m, a->m, b->m ); 2527117f1b4Smrg} 2537117f1b4Smrg 2547117f1b4Smrg/** 2557117f1b4Smrg * Matrix multiplication. 2567117f1b4Smrg * 2577117f1b4Smrg * \param dest left and destination matrix. 2587117f1b4Smrg * \param m right matrix array. 2597ec681f3Smrg * 2607117f1b4Smrg * Marks the matrix flags with general flag, and type and inverse dirty flags. 2617117f1b4Smrg * Calls matmul4() for the multiplication. 2627117f1b4Smrg */ 2637117f1b4Smrgvoid 2647117f1b4Smrg_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) 2657117f1b4Smrg{ 2667117f1b4Smrg dest->flags |= (MAT_FLAG_GENERAL | 2677117f1b4Smrg MAT_DIRTY_TYPE | 2687117f1b4Smrg MAT_DIRTY_INVERSE | 2697117f1b4Smrg MAT_DIRTY_FLAGS); 2707117f1b4Smrg 2717117f1b4Smrg matmul4( dest->m, dest->m, m ); 2727117f1b4Smrg} 2737117f1b4Smrg 2747117f1b4Smrg/*@}*/ 2757117f1b4Smrg 2767117f1b4Smrg 2777117f1b4Smrg/**********************************************************************/ 2787117f1b4Smrg/** \name Matrix output */ 2797117f1b4Smrg/*@{*/ 2807117f1b4Smrg 2817117f1b4Smrg/** 2827117f1b4Smrg * Print a matrix array. 2837117f1b4Smrg * 2847117f1b4Smrg * \param m matrix array. 2857117f1b4Smrg * 2867117f1b4Smrg * Called by _math_matrix_print() to print a matrix or its inverse. 2877117f1b4Smrg */ 2887117f1b4Smrgstatic void print_matrix_floats( const GLfloat m[16] ) 2897117f1b4Smrg{ 2907117f1b4Smrg int i; 2917117f1b4Smrg for (i=0;i<4;i++) { 2927117f1b4Smrg _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); 2937117f1b4Smrg } 2947117f1b4Smrg} 2957117f1b4Smrg 2967117f1b4Smrg/** 2977117f1b4Smrg * Dumps the contents of a GLmatrix structure. 2987ec681f3Smrg * 2997117f1b4Smrg * \param m pointer to the GLmatrix structure. 3007117f1b4Smrg */ 3017117f1b4Smrgvoid 3027117f1b4Smrg_math_matrix_print( const GLmatrix *m ) 3037117f1b4Smrg{ 304af69d88dSmrg GLfloat prod[16]; 305af69d88dSmrg 3067117f1b4Smrg _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); 3077117f1b4Smrg print_matrix_floats(m->m); 3087117f1b4Smrg _mesa_debug(NULL, "Inverse: \n"); 309af69d88dSmrg print_matrix_floats(m->inv); 310af69d88dSmrg matmul4(prod, m->m, m->inv); 311af69d88dSmrg _mesa_debug(NULL, "Mat * Inverse:\n"); 312af69d88dSmrg print_matrix_floats(prod); 3137117f1b4Smrg} 3147117f1b4Smrg 3157117f1b4Smrg/*@}*/ 3167117f1b4Smrg 3177117f1b4Smrg 3187117f1b4Smrg/** 3197117f1b4Smrg * References an element of 4x4 matrix. 3207117f1b4Smrg * 3217117f1b4Smrg * \param m matrix array. 3227117f1b4Smrg * \param c column of the desired element. 3237117f1b4Smrg * \param r row of the desired element. 3247ec681f3Smrg * 3257117f1b4Smrg * \return value of the desired element. 3267117f1b4Smrg * 3277ec681f3Smrg * Calculate the linear storage index of the element and references it. 3287117f1b4Smrg */ 3297117f1b4Smrg#define MAT(m,r,c) (m)[(c)*4+(r)] 3307117f1b4Smrg 3317117f1b4Smrg 3327117f1b4Smrg/**********************************************************************/ 3337117f1b4Smrg/** \name Matrix inversion */ 3347117f1b4Smrg/*@{*/ 3357117f1b4Smrg 3367117f1b4Smrg/** 3377117f1b4Smrg * Compute inverse of 4x4 transformation matrix. 3387ec681f3Smrg * 3397117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 3407117f1b4Smrg * stored in the GLmatrix::inv attribute. 3417ec681f3Smrg * 3427117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 3437ec681f3Smrg * 3447117f1b4Smrg * \author 3457117f1b4Smrg * Code contributed by Jacques Leroy jle@star.be 3467117f1b4Smrg * 3477117f1b4Smrg * Calculates the inverse matrix by performing the gaussian matrix reduction 3487117f1b4Smrg * with partial pivoting followed by back/substitution with the loops manually 3497117f1b4Smrg * unrolled. 3507117f1b4Smrg */ 3517117f1b4Smrgstatic GLboolean invert_matrix_general( GLmatrix *mat ) 3527117f1b4Smrg{ 3537ec681f3Smrg return util_invert_mat4x4(mat->inv, mat->m); 3547117f1b4Smrg} 3557117f1b4Smrg 3567117f1b4Smrg/** 3577117f1b4Smrg * Compute inverse of a general 3d transformation matrix. 3587ec681f3Smrg * 3597117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 3607117f1b4Smrg * stored in the GLmatrix::inv attribute. 3617ec681f3Smrg * 3627117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 3637117f1b4Smrg * 3647117f1b4Smrg * \author Adapted from graphics gems II. 3657117f1b4Smrg * 3667117f1b4Smrg * Calculates the inverse of the upper left by first calculating its 3677117f1b4Smrg * determinant and multiplying it to the symmetric adjust matrix of each 3687117f1b4Smrg * element. Finally deals with the translation part by transforming the 3697117f1b4Smrg * original translation vector using by the calculated submatrix inverse. 3707117f1b4Smrg */ 3717117f1b4Smrgstatic GLboolean invert_matrix_3d_general( GLmatrix *mat ) 3727117f1b4Smrg{ 3737117f1b4Smrg const GLfloat *in = mat->m; 3747117f1b4Smrg GLfloat *out = mat->inv; 3757117f1b4Smrg GLfloat pos, neg, t; 3767117f1b4Smrg GLfloat det; 3777117f1b4Smrg 3787117f1b4Smrg /* Calculate the determinant of upper left 3x3 submatrix and 3797117f1b4Smrg * determine if the matrix is singular. 3807117f1b4Smrg */ 3817117f1b4Smrg pos = neg = 0.0; 3827117f1b4Smrg t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); 38301e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3847117f1b4Smrg 3857117f1b4Smrg t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); 38601e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3877117f1b4Smrg 3887117f1b4Smrg t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); 38901e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3907117f1b4Smrg 3917117f1b4Smrg t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); 39201e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3937117f1b4Smrg 3947117f1b4Smrg t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); 39501e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3967117f1b4Smrg 3977117f1b4Smrg t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); 39801e04c3fSmrg if (t >= 0.0F) pos += t; else neg += t; 3997117f1b4Smrg 4007117f1b4Smrg det = pos + neg; 4017117f1b4Smrg 40201e04c3fSmrg if (fabsf(det) < 1e-25F) 4037117f1b4Smrg return GL_FALSE; 4047117f1b4Smrg 4057117f1b4Smrg det = 1.0F / det; 4067117f1b4Smrg MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); 4077117f1b4Smrg MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); 4087117f1b4Smrg MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); 4097117f1b4Smrg MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); 4107117f1b4Smrg MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); 4117117f1b4Smrg MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); 4127117f1b4Smrg MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); 4137117f1b4Smrg MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); 4147117f1b4Smrg MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); 4157117f1b4Smrg 4167117f1b4Smrg /* Do the translation part */ 4177117f1b4Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 4187117f1b4Smrg MAT(in,1,3) * MAT(out,0,1) + 4197117f1b4Smrg MAT(in,2,3) * MAT(out,0,2) ); 4207117f1b4Smrg MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 4217117f1b4Smrg MAT(in,1,3) * MAT(out,1,1) + 4227117f1b4Smrg MAT(in,2,3) * MAT(out,1,2) ); 4237117f1b4Smrg MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 4247117f1b4Smrg MAT(in,1,3) * MAT(out,2,1) + 4257117f1b4Smrg MAT(in,2,3) * MAT(out,2,2) ); 4267117f1b4Smrg 4277117f1b4Smrg return GL_TRUE; 4287117f1b4Smrg} 4297117f1b4Smrg 4307117f1b4Smrg/** 4317117f1b4Smrg * Compute inverse of a 3d transformation matrix. 4327ec681f3Smrg * 4337117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 4347117f1b4Smrg * stored in the GLmatrix::inv attribute. 4357ec681f3Smrg * 4367117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 4377117f1b4Smrg * 4387117f1b4Smrg * If the matrix is not an angle preserving matrix then calls 4397117f1b4Smrg * invert_matrix_3d_general for the actual calculation. Otherwise calculates 4407117f1b4Smrg * the inverse matrix analyzing and inverting each of the scaling, rotation and 4417117f1b4Smrg * translation parts. 4427117f1b4Smrg */ 4437117f1b4Smrgstatic GLboolean invert_matrix_3d( GLmatrix *mat ) 4447117f1b4Smrg{ 4457117f1b4Smrg const GLfloat *in = mat->m; 4467117f1b4Smrg GLfloat *out = mat->inv; 4477117f1b4Smrg 4487117f1b4Smrg if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { 4497117f1b4Smrg return invert_matrix_3d_general( mat ); 4507117f1b4Smrg } 4517117f1b4Smrg 4527117f1b4Smrg if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { 4537117f1b4Smrg GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + 4547117f1b4Smrg MAT(in,0,1) * MAT(in,0,1) + 4557117f1b4Smrg MAT(in,0,2) * MAT(in,0,2)); 4567117f1b4Smrg 45701e04c3fSmrg if (scale == 0.0F) 4587117f1b4Smrg return GL_FALSE; 4597117f1b4Smrg 4607117f1b4Smrg scale = 1.0F / scale; 4617117f1b4Smrg 4627117f1b4Smrg /* Transpose and scale the 3 by 3 upper-left submatrix. */ 4637117f1b4Smrg MAT(out,0,0) = scale * MAT(in,0,0); 4647117f1b4Smrg MAT(out,1,0) = scale * MAT(in,0,1); 4657117f1b4Smrg MAT(out,2,0) = scale * MAT(in,0,2); 4667117f1b4Smrg MAT(out,0,1) = scale * MAT(in,1,0); 4677117f1b4Smrg MAT(out,1,1) = scale * MAT(in,1,1); 4687117f1b4Smrg MAT(out,2,1) = scale * MAT(in,1,2); 4697117f1b4Smrg MAT(out,0,2) = scale * MAT(in,2,0); 4707117f1b4Smrg MAT(out,1,2) = scale * MAT(in,2,1); 4717117f1b4Smrg MAT(out,2,2) = scale * MAT(in,2,2); 4727117f1b4Smrg } 4737117f1b4Smrg else if (mat->flags & MAT_FLAG_ROTATION) { 4747117f1b4Smrg /* Transpose the 3 by 3 upper-left submatrix. */ 4757117f1b4Smrg MAT(out,0,0) = MAT(in,0,0); 4767117f1b4Smrg MAT(out,1,0) = MAT(in,0,1); 4777117f1b4Smrg MAT(out,2,0) = MAT(in,0,2); 4787117f1b4Smrg MAT(out,0,1) = MAT(in,1,0); 4797117f1b4Smrg MAT(out,1,1) = MAT(in,1,1); 4807117f1b4Smrg MAT(out,2,1) = MAT(in,1,2); 4817117f1b4Smrg MAT(out,0,2) = MAT(in,2,0); 4827117f1b4Smrg MAT(out,1,2) = MAT(in,2,1); 4837117f1b4Smrg MAT(out,2,2) = MAT(in,2,2); 4847117f1b4Smrg } 4857117f1b4Smrg else { 4867117f1b4Smrg /* pure translation */ 487cdc920a0Smrg memcpy( out, Identity, sizeof(Identity) ); 4887117f1b4Smrg MAT(out,0,3) = - MAT(in,0,3); 4897117f1b4Smrg MAT(out,1,3) = - MAT(in,1,3); 4907117f1b4Smrg MAT(out,2,3) = - MAT(in,2,3); 4917117f1b4Smrg return GL_TRUE; 4927117f1b4Smrg } 4937117f1b4Smrg 4947117f1b4Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 4957117f1b4Smrg /* Do the translation part */ 4967117f1b4Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 4977117f1b4Smrg MAT(in,1,3) * MAT(out,0,1) + 4987117f1b4Smrg MAT(in,2,3) * MAT(out,0,2) ); 4997117f1b4Smrg MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 5007117f1b4Smrg MAT(in,1,3) * MAT(out,1,1) + 5017117f1b4Smrg MAT(in,2,3) * MAT(out,1,2) ); 5027117f1b4Smrg MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 5037117f1b4Smrg MAT(in,1,3) * MAT(out,2,1) + 5047117f1b4Smrg MAT(in,2,3) * MAT(out,2,2) ); 5057117f1b4Smrg } 5067117f1b4Smrg else { 5077117f1b4Smrg MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; 5087117f1b4Smrg } 5097117f1b4Smrg 5107117f1b4Smrg return GL_TRUE; 5117117f1b4Smrg} 5127117f1b4Smrg 5137117f1b4Smrg/** 5147117f1b4Smrg * Compute inverse of an identity transformation matrix. 5157ec681f3Smrg * 5167117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 5177117f1b4Smrg * stored in the GLmatrix::inv attribute. 5187ec681f3Smrg * 5197117f1b4Smrg * \return always GL_TRUE. 5207117f1b4Smrg * 5217117f1b4Smrg * Simply copies Identity into GLmatrix::inv. 5227117f1b4Smrg */ 5237117f1b4Smrgstatic GLboolean invert_matrix_identity( GLmatrix *mat ) 5247117f1b4Smrg{ 525cdc920a0Smrg memcpy( mat->inv, Identity, sizeof(Identity) ); 5267117f1b4Smrg return GL_TRUE; 5277117f1b4Smrg} 5287117f1b4Smrg 5297117f1b4Smrg/** 5307117f1b4Smrg * Compute inverse of a no-rotation 3d transformation matrix. 5317ec681f3Smrg * 5327117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 5337117f1b4Smrg * stored in the GLmatrix::inv attribute. 5347ec681f3Smrg * 5357117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 5367117f1b4Smrg * 5377ec681f3Smrg * Calculates the 5387117f1b4Smrg */ 5397117f1b4Smrgstatic GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) 5407117f1b4Smrg{ 5417117f1b4Smrg const GLfloat *in = mat->m; 5427117f1b4Smrg GLfloat *out = mat->inv; 5437117f1b4Smrg 5447117f1b4Smrg if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) 5457117f1b4Smrg return GL_FALSE; 5467117f1b4Smrg 54701e04c3fSmrg memcpy( out, Identity, sizeof(Identity) ); 5487117f1b4Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 5497117f1b4Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 5507117f1b4Smrg MAT(out,2,2) = 1.0F / MAT(in,2,2); 5517117f1b4Smrg 5527117f1b4Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 5537117f1b4Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 5547117f1b4Smrg MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 5557117f1b4Smrg MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); 5567117f1b4Smrg } 5577117f1b4Smrg 5587117f1b4Smrg return GL_TRUE; 5597117f1b4Smrg} 5607117f1b4Smrg 5617117f1b4Smrg/** 5627117f1b4Smrg * Compute inverse of a no-rotation 2d transformation matrix. 5637ec681f3Smrg * 5647117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 5657117f1b4Smrg * stored in the GLmatrix::inv attribute. 5667ec681f3Smrg * 5677117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 5687117f1b4Smrg * 5697117f1b4Smrg * Calculates the inverse matrix by applying the inverse scaling and 5707117f1b4Smrg * translation to the identity matrix. 5717117f1b4Smrg */ 5727117f1b4Smrgstatic GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) 5737117f1b4Smrg{ 5747117f1b4Smrg const GLfloat *in = mat->m; 5757117f1b4Smrg GLfloat *out = mat->inv; 5767117f1b4Smrg 5777117f1b4Smrg if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) 5787117f1b4Smrg return GL_FALSE; 5797117f1b4Smrg 58001e04c3fSmrg memcpy( out, Identity, sizeof(Identity) ); 5817117f1b4Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 5827117f1b4Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 5837117f1b4Smrg 5847117f1b4Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 5857117f1b4Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 5867117f1b4Smrg MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 5877117f1b4Smrg } 5887117f1b4Smrg 5897117f1b4Smrg return GL_TRUE; 5907117f1b4Smrg} 5917117f1b4Smrg 5927117f1b4Smrg#if 0 5937117f1b4Smrg/* broken */ 5947117f1b4Smrgstatic GLboolean invert_matrix_perspective( GLmatrix *mat ) 5957117f1b4Smrg{ 5967117f1b4Smrg const GLfloat *in = mat->m; 5977117f1b4Smrg GLfloat *out = mat->inv; 5987117f1b4Smrg 5997117f1b4Smrg if (MAT(in,2,3) == 0) 6007117f1b4Smrg return GL_FALSE; 6017117f1b4Smrg 60201e04c3fSmrg memcpy( out, Identity, sizeof(Identity) ); 6037117f1b4Smrg 6047117f1b4Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 6057117f1b4Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 6067117f1b4Smrg 6077117f1b4Smrg MAT(out,0,3) = MAT(in,0,2); 6087117f1b4Smrg MAT(out,1,3) = MAT(in,1,2); 6097117f1b4Smrg 6107117f1b4Smrg MAT(out,2,2) = 0; 6117117f1b4Smrg MAT(out,2,3) = -1; 6127117f1b4Smrg 6137117f1b4Smrg MAT(out,3,2) = 1.0F / MAT(in,2,3); 6147117f1b4Smrg MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); 6157117f1b4Smrg 6167117f1b4Smrg return GL_TRUE; 6177117f1b4Smrg} 6187117f1b4Smrg#endif 6197117f1b4Smrg 6207117f1b4Smrg/** 6217117f1b4Smrg * Matrix inversion function pointer type. 6227117f1b4Smrg */ 6237117f1b4Smrgtypedef GLboolean (*inv_mat_func)( GLmatrix *mat ); 6247117f1b4Smrg 6257117f1b4Smrg/** 6267117f1b4Smrg * Table of the matrix inversion functions according to the matrix type. 6277117f1b4Smrg */ 6287117f1b4Smrgstatic inv_mat_func inv_mat_tab[7] = { 6297117f1b4Smrg invert_matrix_general, 6307117f1b4Smrg invert_matrix_identity, 6317117f1b4Smrg invert_matrix_3d_no_rot, 6327117f1b4Smrg#if 0 6337117f1b4Smrg /* Don't use this function for now - it fails when the projection matrix 6347117f1b4Smrg * is premultiplied by a translation (ala Chromium's tilesort SPU). 6357117f1b4Smrg */ 6367117f1b4Smrg invert_matrix_perspective, 6377117f1b4Smrg#else 6387117f1b4Smrg invert_matrix_general, 6397117f1b4Smrg#endif 6407117f1b4Smrg invert_matrix_3d, /* lazy! */ 6417117f1b4Smrg invert_matrix_2d_no_rot, 6427117f1b4Smrg invert_matrix_3d 6437117f1b4Smrg}; 6447117f1b4Smrg 6457117f1b4Smrg/** 6467117f1b4Smrg * Compute inverse of a transformation matrix. 6477ec681f3Smrg * 6487117f1b4Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 6497117f1b4Smrg * stored in the GLmatrix::inv attribute. 6507ec681f3Smrg * 6517117f1b4Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 6527117f1b4Smrg * 6537117f1b4Smrg * Calls the matrix inversion function in inv_mat_tab corresponding to the 6547117f1b4Smrg * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, 6557117f1b4Smrg * and copies the identity matrix into GLmatrix::inv. 6567117f1b4Smrg */ 6577117f1b4Smrgstatic GLboolean matrix_invert( GLmatrix *mat ) 6587117f1b4Smrg{ 6597117f1b4Smrg if (inv_mat_tab[mat->type](mat)) { 6607117f1b4Smrg mat->flags &= ~MAT_FLAG_SINGULAR; 6617117f1b4Smrg return GL_TRUE; 6627117f1b4Smrg } else { 6637117f1b4Smrg mat->flags |= MAT_FLAG_SINGULAR; 664cdc920a0Smrg memcpy( mat->inv, Identity, sizeof(Identity) ); 6657117f1b4Smrg return GL_FALSE; 6667117f1b4Smrg } 6677117f1b4Smrg} 6687117f1b4Smrg 6697117f1b4Smrg/*@}*/ 6707117f1b4Smrg 6717117f1b4Smrg 6727117f1b4Smrg/**********************************************************************/ 6737117f1b4Smrg/** \name Matrix generation */ 6747117f1b4Smrg/*@{*/ 6757117f1b4Smrg 6767117f1b4Smrg/** 6777117f1b4Smrg * Generate a 4x4 transformation matrix from glRotate parameters, and 6787117f1b4Smrg * post-multiply the input matrix by it. 6797117f1b4Smrg * 6807117f1b4Smrg * \author 6817117f1b4Smrg * This function was contributed by Erich Boleyn (erich@uruk.org). 6827117f1b4Smrg * Optimizations contributed by Rudolf Opalla (rudi@khm.de). 6837117f1b4Smrg */ 6847117f1b4Smrgvoid 6857117f1b4Smrg_math_matrix_rotate( GLmatrix *mat, 6867117f1b4Smrg GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) 6877117f1b4Smrg{ 6887117f1b4Smrg GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; 6897117f1b4Smrg GLfloat m[16]; 6907117f1b4Smrg GLboolean optimized; 6917117f1b4Smrg 69201e04c3fSmrg s = sinf( angle * M_PI / 180.0 ); 69301e04c3fSmrg c = cosf( angle * M_PI / 180.0 ); 6947117f1b4Smrg 69501e04c3fSmrg memcpy(m, Identity, sizeof(Identity)); 6967117f1b4Smrg optimized = GL_FALSE; 6977117f1b4Smrg 6987117f1b4Smrg#define M(row,col) m[col*4+row] 6997117f1b4Smrg 7007117f1b4Smrg if (x == 0.0F) { 7017117f1b4Smrg if (y == 0.0F) { 7027117f1b4Smrg if (z != 0.0F) { 7037117f1b4Smrg optimized = GL_TRUE; 7047117f1b4Smrg /* rotate only around z-axis */ 7057117f1b4Smrg M(0,0) = c; 7067117f1b4Smrg M(1,1) = c; 7077117f1b4Smrg if (z < 0.0F) { 7087117f1b4Smrg M(0,1) = s; 7097117f1b4Smrg M(1,0) = -s; 7107117f1b4Smrg } 7117117f1b4Smrg else { 7127117f1b4Smrg M(0,1) = -s; 7137117f1b4Smrg M(1,0) = s; 7147117f1b4Smrg } 7157117f1b4Smrg } 7167117f1b4Smrg } 7177117f1b4Smrg else if (z == 0.0F) { 7187117f1b4Smrg optimized = GL_TRUE; 7197117f1b4Smrg /* rotate only around y-axis */ 7207117f1b4Smrg M(0,0) = c; 7217117f1b4Smrg M(2,2) = c; 7227117f1b4Smrg if (y < 0.0F) { 7237117f1b4Smrg M(0,2) = -s; 7247117f1b4Smrg M(2,0) = s; 7257117f1b4Smrg } 7267117f1b4Smrg else { 7277117f1b4Smrg M(0,2) = s; 7287117f1b4Smrg M(2,0) = -s; 7297117f1b4Smrg } 7307117f1b4Smrg } 7317117f1b4Smrg } 7327117f1b4Smrg else if (y == 0.0F) { 7337117f1b4Smrg if (z == 0.0F) { 7347117f1b4Smrg optimized = GL_TRUE; 7357117f1b4Smrg /* rotate only around x-axis */ 7367117f1b4Smrg M(1,1) = c; 7377117f1b4Smrg M(2,2) = c; 7387117f1b4Smrg if (x < 0.0F) { 7397117f1b4Smrg M(1,2) = s; 7407117f1b4Smrg M(2,1) = -s; 7417117f1b4Smrg } 7427117f1b4Smrg else { 7437117f1b4Smrg M(1,2) = -s; 7447117f1b4Smrg M(2,1) = s; 7457117f1b4Smrg } 7467117f1b4Smrg } 7477117f1b4Smrg } 7487117f1b4Smrg 7497117f1b4Smrg if (!optimized) { 750af69d88dSmrg const GLfloat mag = sqrtf(x * x + y * y + z * z); 7517117f1b4Smrg 75201e04c3fSmrg if (mag <= 1.0e-4F) { 7537117f1b4Smrg /* no rotation, leave mat as-is */ 7547117f1b4Smrg return; 7557117f1b4Smrg } 7567117f1b4Smrg 7577117f1b4Smrg x /= mag; 7587117f1b4Smrg y /= mag; 7597117f1b4Smrg z /= mag; 7607117f1b4Smrg 7617117f1b4Smrg 7627117f1b4Smrg /* 7637117f1b4Smrg * Arbitrary axis rotation matrix. 7647117f1b4Smrg * 7657117f1b4Smrg * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied 7667117f1b4Smrg * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation 7677117f1b4Smrg * (which is about the X-axis), and the two composite transforms 7687117f1b4Smrg * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary 7697117f1b4Smrg * from the arbitrary axis to the X-axis then back. They are 7707117f1b4Smrg * all elementary rotations. 7717117f1b4Smrg * 7727117f1b4Smrg * Rz' is a rotation about the Z-axis, to bring the axis vector 7737117f1b4Smrg * into the x-z plane. Then Ry' is applied, rotating about the 7747117f1b4Smrg * Y-axis to bring the axis vector parallel with the X-axis. The 7757117f1b4Smrg * rotation about the X-axis is then performed. Ry and Rz are 7767117f1b4Smrg * simply the respective inverse transforms to bring the arbitrary 777cdc920a0Smrg * axis back to its original orientation. The first transforms 7787117f1b4Smrg * Rz' and Ry' are considered inverses, since the data from the 7797117f1b4Smrg * arbitrary axis gives you info on how to get to it, not how 7807117f1b4Smrg * to get away from it, and an inverse must be applied. 7817117f1b4Smrg * 7827117f1b4Smrg * The basic calculation used is to recognize that the arbitrary 7837117f1b4Smrg * axis vector (x, y, z), since it is of unit length, actually 7847117f1b4Smrg * represents the sines and cosines of the angles to rotate the 7857117f1b4Smrg * X-axis to the same orientation, with theta being the angle about 7867117f1b4Smrg * Z and phi the angle about Y (in the order described above) 7877117f1b4Smrg * as follows: 7887117f1b4Smrg * 7897117f1b4Smrg * cos ( theta ) = x / sqrt ( 1 - z^2 ) 7907117f1b4Smrg * sin ( theta ) = y / sqrt ( 1 - z^2 ) 7917117f1b4Smrg * 7927117f1b4Smrg * cos ( phi ) = sqrt ( 1 - z^2 ) 7937117f1b4Smrg * sin ( phi ) = z 7947117f1b4Smrg * 7957117f1b4Smrg * Note that cos ( phi ) can further be inserted to the above 7967117f1b4Smrg * formulas: 7977117f1b4Smrg * 7987117f1b4Smrg * cos ( theta ) = x / cos ( phi ) 7997117f1b4Smrg * sin ( theta ) = y / sin ( phi ) 8007117f1b4Smrg * 8017117f1b4Smrg * ...etc. Because of those relations and the standard trigonometric 8027117f1b4Smrg * relations, it is pssible to reduce the transforms down to what 8037117f1b4Smrg * is used below. It may be that any primary axis chosen will give the 8047117f1b4Smrg * same results (modulo a sign convention) using thie method. 8057117f1b4Smrg * 8067117f1b4Smrg * Particularly nice is to notice that all divisions that might 8077117f1b4Smrg * have caused trouble when parallel to certain planes or 8087117f1b4Smrg * axis go away with care paid to reducing the expressions. 8097117f1b4Smrg * After checking, it does perform correctly under all cases, since 8107117f1b4Smrg * in all the cases of division where the denominator would have 8117117f1b4Smrg * been zero, the numerator would have been zero as well, giving 8127117f1b4Smrg * the expected result. 8137117f1b4Smrg */ 8147117f1b4Smrg 8157117f1b4Smrg xx = x * x; 8167117f1b4Smrg yy = y * y; 8177117f1b4Smrg zz = z * z; 8187117f1b4Smrg xy = x * y; 8197117f1b4Smrg yz = y * z; 8207117f1b4Smrg zx = z * x; 8217117f1b4Smrg xs = x * s; 8227117f1b4Smrg ys = y * s; 8237117f1b4Smrg zs = z * s; 8247117f1b4Smrg one_c = 1.0F - c; 8257117f1b4Smrg 8267117f1b4Smrg /* We already hold the identity-matrix so we can skip some statements */ 8277117f1b4Smrg M(0,0) = (one_c * xx) + c; 8287117f1b4Smrg M(0,1) = (one_c * xy) - zs; 8297117f1b4Smrg M(0,2) = (one_c * zx) + ys; 8307117f1b4Smrg/* M(0,3) = 0.0F; */ 8317117f1b4Smrg 8327117f1b4Smrg M(1,0) = (one_c * xy) + zs; 8337117f1b4Smrg M(1,1) = (one_c * yy) + c; 8347117f1b4Smrg M(1,2) = (one_c * yz) - xs; 8357117f1b4Smrg/* M(1,3) = 0.0F; */ 8367117f1b4Smrg 8377117f1b4Smrg M(2,0) = (one_c * zx) - ys; 8387117f1b4Smrg M(2,1) = (one_c * yz) + xs; 8397117f1b4Smrg M(2,2) = (one_c * zz) + c; 8407117f1b4Smrg/* M(2,3) = 0.0F; */ 8417117f1b4Smrg 8427117f1b4Smrg/* 8437117f1b4Smrg M(3,0) = 0.0F; 8447117f1b4Smrg M(3,1) = 0.0F; 8457117f1b4Smrg M(3,2) = 0.0F; 8467117f1b4Smrg M(3,3) = 1.0F; 8477117f1b4Smrg*/ 8487117f1b4Smrg } 8497117f1b4Smrg#undef M 8507117f1b4Smrg 8517117f1b4Smrg matrix_multf( mat, m, MAT_FLAG_ROTATION ); 8527117f1b4Smrg} 8537117f1b4Smrg 8547117f1b4Smrg/** 8557117f1b4Smrg * Apply a perspective projection matrix. 8567117f1b4Smrg * 8577117f1b4Smrg * \param mat matrix to apply the projection. 8587117f1b4Smrg * \param left left clipping plane coordinate. 8597117f1b4Smrg * \param right right clipping plane coordinate. 8607117f1b4Smrg * \param bottom bottom clipping plane coordinate. 8617117f1b4Smrg * \param top top clipping plane coordinate. 8627117f1b4Smrg * \param nearval distance to the near clipping plane. 8637117f1b4Smrg * \param farval distance to the far clipping plane. 8647117f1b4Smrg * 8657117f1b4Smrg * Creates the projection matrix and multiplies it with \p mat, marking the 8667117f1b4Smrg * MAT_FLAG_PERSPECTIVE flag. 8677117f1b4Smrg */ 8687117f1b4Smrgvoid 8697117f1b4Smrg_math_matrix_frustum( GLmatrix *mat, 8707117f1b4Smrg GLfloat left, GLfloat right, 8717117f1b4Smrg GLfloat bottom, GLfloat top, 8727117f1b4Smrg GLfloat nearval, GLfloat farval ) 8737117f1b4Smrg{ 8747117f1b4Smrg GLfloat x, y, a, b, c, d; 8757117f1b4Smrg GLfloat m[16]; 8767117f1b4Smrg 8777117f1b4Smrg x = (2.0F*nearval) / (right-left); 8787117f1b4Smrg y = (2.0F*nearval) / (top-bottom); 8797117f1b4Smrg a = (right+left) / (right-left); 8807117f1b4Smrg b = (top+bottom) / (top-bottom); 8817117f1b4Smrg c = -(farval+nearval) / ( farval-nearval); 8827117f1b4Smrg d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ 8837117f1b4Smrg 8847117f1b4Smrg#define M(row,col) m[col*4+row] 8857117f1b4Smrg M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; 8867117f1b4Smrg M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; 8877117f1b4Smrg M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; 8887117f1b4Smrg M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; 8897117f1b4Smrg#undef M 8907117f1b4Smrg 8917117f1b4Smrg matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); 8927117f1b4Smrg} 8937117f1b4Smrg 8947117f1b4Smrg/** 8957ec681f3Smrg * Create an orthographic projection matrix. 8967117f1b4Smrg * 8977ec681f3Smrg * \param m float array in which to store the project matrix 8987117f1b4Smrg * \param left left clipping plane coordinate. 8997117f1b4Smrg * \param right right clipping plane coordinate. 9007117f1b4Smrg * \param bottom bottom clipping plane coordinate. 9017117f1b4Smrg * \param top top clipping plane coordinate. 9027117f1b4Smrg * \param nearval distance to the near clipping plane. 9037117f1b4Smrg * \param farval distance to the far clipping plane. 9047117f1b4Smrg * 9057ec681f3Smrg * Creates the projection matrix and stored the values in \p m. As with other 9067ec681f3Smrg * OpenGL matrices, the data is stored in column-major ordering. 9077117f1b4Smrg */ 9087117f1b4Smrgvoid 9097ec681f3Smrg_math_float_ortho(float *m, 9107ec681f3Smrg float left, float right, 9117ec681f3Smrg float bottom, float top, 9127ec681f3Smrg float nearval, float farval) 9137117f1b4Smrg{ 9147117f1b4Smrg#define M(row,col) m[col*4+row] 9157117f1b4Smrg M(0,0) = 2.0F / (right-left); 9167117f1b4Smrg M(0,1) = 0.0F; 9177117f1b4Smrg M(0,2) = 0.0F; 9187117f1b4Smrg M(0,3) = -(right+left) / (right-left); 9197117f1b4Smrg 9207117f1b4Smrg M(1,0) = 0.0F; 9217117f1b4Smrg M(1,1) = 2.0F / (top-bottom); 9227117f1b4Smrg M(1,2) = 0.0F; 9237117f1b4Smrg M(1,3) = -(top+bottom) / (top-bottom); 9247117f1b4Smrg 9257117f1b4Smrg M(2,0) = 0.0F; 9267117f1b4Smrg M(2,1) = 0.0F; 9277117f1b4Smrg M(2,2) = -2.0F / (farval-nearval); 9287117f1b4Smrg M(2,3) = -(farval+nearval) / (farval-nearval); 9297117f1b4Smrg 9307117f1b4Smrg M(3,0) = 0.0F; 9317117f1b4Smrg M(3,1) = 0.0F; 9327117f1b4Smrg M(3,2) = 0.0F; 9337117f1b4Smrg M(3,3) = 1.0F; 9347117f1b4Smrg#undef M 9357ec681f3Smrg} 9367117f1b4Smrg 9377ec681f3Smrg/** 9387ec681f3Smrg * Apply an orthographic projection matrix. 9397ec681f3Smrg * 9407ec681f3Smrg * \param mat matrix to apply the projection. 9417ec681f3Smrg * \param left left clipping plane coordinate. 9427ec681f3Smrg * \param right right clipping plane coordinate. 9437ec681f3Smrg * \param bottom bottom clipping plane coordinate. 9447ec681f3Smrg * \param top top clipping plane coordinate. 9457ec681f3Smrg * \param nearval distance to the near clipping plane. 9467ec681f3Smrg * \param farval distance to the far clipping plane. 9477ec681f3Smrg * 9487ec681f3Smrg * Creates the projection matrix and multiplies it with \p mat, marking the 9497ec681f3Smrg * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. 9507ec681f3Smrg */ 9517ec681f3Smrgvoid 9527ec681f3Smrg_math_matrix_ortho( GLmatrix *mat, 9537ec681f3Smrg GLfloat left, GLfloat right, 9547ec681f3Smrg GLfloat bottom, GLfloat top, 9557ec681f3Smrg GLfloat nearval, GLfloat farval ) 9567ec681f3Smrg{ 9577ec681f3Smrg GLfloat m[16]; 9587ec681f3Smrg 9597ec681f3Smrg _math_float_ortho(m, left, right, bottom, top, nearval, farval); 9607117f1b4Smrg matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); 9617117f1b4Smrg} 9627117f1b4Smrg 9637117f1b4Smrg/** 9647117f1b4Smrg * Multiply a matrix with a general scaling matrix. 9657117f1b4Smrg * 9667117f1b4Smrg * \param mat matrix. 9677117f1b4Smrg * \param x x axis scale factor. 9687117f1b4Smrg * \param y y axis scale factor. 9697117f1b4Smrg * \param z z axis scale factor. 9707117f1b4Smrg * 9717117f1b4Smrg * Multiplies in-place the elements of \p mat by the scale factors. Checks if 9727117f1b4Smrg * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE 9737117f1b4Smrg * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and 9747117f1b4Smrg * MAT_DIRTY_INVERSE dirty flags. 9757117f1b4Smrg */ 9767117f1b4Smrgvoid 9777117f1b4Smrg_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 9787117f1b4Smrg{ 9797117f1b4Smrg GLfloat *m = mat->m; 9807117f1b4Smrg m[0] *= x; m[4] *= y; m[8] *= z; 9817117f1b4Smrg m[1] *= x; m[5] *= y; m[9] *= z; 9827117f1b4Smrg m[2] *= x; m[6] *= y; m[10] *= z; 9837117f1b4Smrg m[3] *= x; m[7] *= y; m[11] *= z; 9847117f1b4Smrg 98501e04c3fSmrg if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F) 9867117f1b4Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 9877117f1b4Smrg else 9887117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 9897117f1b4Smrg 9907117f1b4Smrg mat->flags |= (MAT_DIRTY_TYPE | 9917117f1b4Smrg MAT_DIRTY_INVERSE); 9927117f1b4Smrg} 9937117f1b4Smrg 9947117f1b4Smrg/** 9957117f1b4Smrg * Multiply a matrix with a translation matrix. 9967117f1b4Smrg * 9977117f1b4Smrg * \param mat matrix. 9987117f1b4Smrg * \param x translation vector x coordinate. 9997117f1b4Smrg * \param y translation vector y coordinate. 10007117f1b4Smrg * \param z translation vector z coordinate. 10017117f1b4Smrg * 10027117f1b4Smrg * Adds the translation coordinates to the elements of \p mat in-place. Marks 10037117f1b4Smrg * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE 10047117f1b4Smrg * dirty flags. 10057117f1b4Smrg */ 10067117f1b4Smrgvoid 10077117f1b4Smrg_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 10087117f1b4Smrg{ 10097117f1b4Smrg GLfloat *m = mat->m; 10107117f1b4Smrg m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; 10117117f1b4Smrg m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; 10127117f1b4Smrg m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; 10137117f1b4Smrg m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; 10147117f1b4Smrg 10157117f1b4Smrg mat->flags |= (MAT_FLAG_TRANSLATION | 10167117f1b4Smrg MAT_DIRTY_TYPE | 10177117f1b4Smrg MAT_DIRTY_INVERSE); 10187117f1b4Smrg} 10197117f1b4Smrg 10207117f1b4Smrg 10217117f1b4Smrg/** 10227117f1b4Smrg * Set matrix to do viewport and depthrange mapping. 10237117f1b4Smrg * Transforms Normalized Device Coords to window/Z values. 10247117f1b4Smrg */ 10257117f1b4Smrgvoid 102601e04c3fSmrg_math_matrix_viewport(GLmatrix *m, const float scale[3], 102701e04c3fSmrg const float translate[3], double depthMax) 10287117f1b4Smrg{ 102901e04c3fSmrg m->m[MAT_SX] = scale[0]; 103001e04c3fSmrg m->m[MAT_TX] = translate[0]; 103101e04c3fSmrg m->m[MAT_SY] = scale[1]; 103201e04c3fSmrg m->m[MAT_TY] = translate[1]; 103301e04c3fSmrg m->m[MAT_SZ] = depthMax*scale[2]; 103401e04c3fSmrg m->m[MAT_TZ] = depthMax*translate[2]; 10357117f1b4Smrg m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; 10367117f1b4Smrg m->type = MATRIX_3D_NO_ROT; 10377117f1b4Smrg} 10387117f1b4Smrg 10397117f1b4Smrg 10407117f1b4Smrg/** 10417117f1b4Smrg * Set a matrix to the identity matrix. 10427117f1b4Smrg * 10437117f1b4Smrg * \param mat matrix. 10447117f1b4Smrg * 10457117f1b4Smrg * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. 10467117f1b4Smrg * Sets the matrix type to identity, and clear the dirty flags. 10477117f1b4Smrg */ 10487117f1b4Smrgvoid 10497117f1b4Smrg_math_matrix_set_identity( GLmatrix *mat ) 10507117f1b4Smrg{ 10517ec681f3Smrg STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m)); 10527ec681f3Smrg STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv)); 10537ec681f3Smrg 105401e04c3fSmrg memcpy( mat->m, Identity, sizeof(Identity) ); 105501e04c3fSmrg memcpy( mat->inv, Identity, sizeof(Identity) ); 10567117f1b4Smrg 10577117f1b4Smrg mat->type = MATRIX_IDENTITY; 10587117f1b4Smrg mat->flags &= ~(MAT_DIRTY_FLAGS| 10597117f1b4Smrg MAT_DIRTY_TYPE| 10607117f1b4Smrg MAT_DIRTY_INVERSE); 10617117f1b4Smrg} 10627117f1b4Smrg 10637117f1b4Smrg/*@}*/ 10647117f1b4Smrg 10657117f1b4Smrg 10667117f1b4Smrg/**********************************************************************/ 10677117f1b4Smrg/** \name Matrix analysis */ 10687117f1b4Smrg/*@{*/ 10697117f1b4Smrg 10707117f1b4Smrg#define ZERO(x) (1<<x) 10717117f1b4Smrg#define ONE(x) (1<<(x+16)) 10727117f1b4Smrg 10737117f1b4Smrg#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) 10747117f1b4Smrg#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) 10757117f1b4Smrg 10767117f1b4Smrg#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ 10777117f1b4Smrg ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ 10787117f1b4Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 10797117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 10807117f1b4Smrg 10817117f1b4Smrg#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ 10827117f1b4Smrg ZERO(1) | ZERO(9) | \ 10837117f1b4Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 10847117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 10857117f1b4Smrg 10867117f1b4Smrg#define MASK_2D ( ZERO(8) | \ 10877117f1b4Smrg ZERO(9) | \ 10887117f1b4Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 10897117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 10907117f1b4Smrg 10917117f1b4Smrg 10927117f1b4Smrg#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ 10937117f1b4Smrg ZERO(1) | ZERO(9) | \ 10947117f1b4Smrg ZERO(2) | ZERO(6) | \ 10957117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 10967117f1b4Smrg 10977117f1b4Smrg#define MASK_3D ( \ 10987117f1b4Smrg \ 10997117f1b4Smrg \ 11007117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 11017117f1b4Smrg 11027117f1b4Smrg 11037117f1b4Smrg#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ 11047117f1b4Smrg ZERO(1) | ZERO(13) |\ 11057117f1b4Smrg ZERO(2) | ZERO(6) | \ 11067117f1b4Smrg ZERO(3) | ZERO(7) | ZERO(15) ) 11077117f1b4Smrg 11087117f1b4Smrg#define SQ(x) ((x)*(x)) 11097117f1b4Smrg 11107117f1b4Smrg/** 11117ec681f3Smrg * Determine type and flags from scratch. 11127117f1b4Smrg * 11137117f1b4Smrg * \param mat matrix. 11147ec681f3Smrg * 11157117f1b4Smrg * This is expensive enough to only want to do it once. 11167117f1b4Smrg */ 11177117f1b4Smrgstatic void analyse_from_scratch( GLmatrix *mat ) 11187117f1b4Smrg{ 11197117f1b4Smrg const GLfloat *m = mat->m; 11207117f1b4Smrg GLuint mask = 0; 11217117f1b4Smrg GLuint i; 11227117f1b4Smrg 11237117f1b4Smrg for (i = 0 ; i < 16 ; i++) { 112401e04c3fSmrg if (m[i] == 0.0F) mask |= (1<<i); 11257117f1b4Smrg } 11267117f1b4Smrg 11277117f1b4Smrg if (m[0] == 1.0F) mask |= (1<<16); 11287117f1b4Smrg if (m[5] == 1.0F) mask |= (1<<21); 11297117f1b4Smrg if (m[10] == 1.0F) mask |= (1<<26); 11307117f1b4Smrg if (m[15] == 1.0F) mask |= (1<<31); 11317117f1b4Smrg 11327117f1b4Smrg mat->flags &= ~MAT_FLAGS_GEOMETRY; 11337117f1b4Smrg 11347117f1b4Smrg /* Check for translation - no-one really cares 11357117f1b4Smrg */ 11367117f1b4Smrg if ((mask & MASK_NO_TRX) != MASK_NO_TRX) 11377117f1b4Smrg mat->flags |= MAT_FLAG_TRANSLATION; 11387117f1b4Smrg 11397117f1b4Smrg /* Do the real work 11407117f1b4Smrg */ 11417117f1b4Smrg if (mask == (GLuint) MASK_IDENTITY) { 11427117f1b4Smrg mat->type = MATRIX_IDENTITY; 11437117f1b4Smrg } 11447117f1b4Smrg else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { 11457117f1b4Smrg mat->type = MATRIX_2D_NO_ROT; 11467117f1b4Smrg 11477117f1b4Smrg if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) 11487117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 11497117f1b4Smrg } 11507117f1b4Smrg else if ((mask & MASK_2D) == (GLuint) MASK_2D) { 11517117f1b4Smrg GLfloat mm = DOT2(m, m); 11527117f1b4Smrg GLfloat m4m4 = DOT2(m+4,m+4); 11537117f1b4Smrg GLfloat mm4 = DOT2(m,m+4); 11547117f1b4Smrg 11557117f1b4Smrg mat->type = MATRIX_2D; 11567117f1b4Smrg 11577117f1b4Smrg /* Check for scale */ 115801e04c3fSmrg if (SQ(mm-1) > SQ(1e-6F) || 115901e04c3fSmrg SQ(m4m4-1) > SQ(1e-6F)) 11607117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 11617117f1b4Smrg 11627117f1b4Smrg /* Check for rotation */ 116301e04c3fSmrg if (SQ(mm4) > SQ(1e-6F)) 11647117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_3D; 11657117f1b4Smrg else 11667117f1b4Smrg mat->flags |= MAT_FLAG_ROTATION; 11677117f1b4Smrg 11687117f1b4Smrg } 11697117f1b4Smrg else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { 11707117f1b4Smrg mat->type = MATRIX_3D_NO_ROT; 11717117f1b4Smrg 11727117f1b4Smrg /* Check for scale */ 117301e04c3fSmrg if (SQ(m[0]-m[5]) < SQ(1e-6F) && 117401e04c3fSmrg SQ(m[0]-m[10]) < SQ(1e-6F)) { 117501e04c3fSmrg if (SQ(m[0]-1.0F) > SQ(1e-6F)) { 11767117f1b4Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 11777117f1b4Smrg } 11787117f1b4Smrg } 11797117f1b4Smrg else { 11807117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 11817117f1b4Smrg } 11827117f1b4Smrg } 11837117f1b4Smrg else if ((mask & MASK_3D) == (GLuint) MASK_3D) { 11847117f1b4Smrg GLfloat c1 = DOT3(m,m); 11857117f1b4Smrg GLfloat c2 = DOT3(m+4,m+4); 11867117f1b4Smrg GLfloat c3 = DOT3(m+8,m+8); 11877117f1b4Smrg GLfloat d1 = DOT3(m, m+4); 11887117f1b4Smrg GLfloat cp[3]; 11897117f1b4Smrg 11907117f1b4Smrg mat->type = MATRIX_3D; 11917117f1b4Smrg 11927117f1b4Smrg /* Check for scale */ 119301e04c3fSmrg if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) { 119401e04c3fSmrg if (SQ(c1-1.0F) > SQ(1e-6F)) 11957117f1b4Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 11967117f1b4Smrg /* else no scale at all */ 11977117f1b4Smrg } 11987117f1b4Smrg else { 11997117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 12007117f1b4Smrg } 12017117f1b4Smrg 12027117f1b4Smrg /* Check for rotation */ 120301e04c3fSmrg if (SQ(d1) < SQ(1e-6F)) { 12047117f1b4Smrg CROSS3( cp, m, m+4 ); 12057117f1b4Smrg SUB_3V( cp, cp, (m+8) ); 120601e04c3fSmrg if (LEN_SQUARED_3FV(cp) < SQ(1e-6F)) 12077117f1b4Smrg mat->flags |= MAT_FLAG_ROTATION; 12087117f1b4Smrg else 12097117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_3D; 12107117f1b4Smrg } 12117117f1b4Smrg else { 12127117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ 12137117f1b4Smrg } 12147117f1b4Smrg } 12157117f1b4Smrg else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { 12167117f1b4Smrg mat->type = MATRIX_PERSPECTIVE; 12177117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL; 12187117f1b4Smrg } 12197117f1b4Smrg else { 12207117f1b4Smrg mat->type = MATRIX_GENERAL; 12217117f1b4Smrg mat->flags |= MAT_FLAG_GENERAL; 12227117f1b4Smrg } 12237117f1b4Smrg} 12247117f1b4Smrg 12257117f1b4Smrg/** 12267117f1b4Smrg * Analyze a matrix given that its flags are accurate. 12277ec681f3Smrg * 12287117f1b4Smrg * This is the more common operation, hopefully. 12297117f1b4Smrg */ 12307117f1b4Smrgstatic void analyse_from_flags( GLmatrix *mat ) 12317117f1b4Smrg{ 12327117f1b4Smrg const GLfloat *m = mat->m; 12337117f1b4Smrg 12347117f1b4Smrg if (TEST_MAT_FLAGS(mat, 0)) { 12357117f1b4Smrg mat->type = MATRIX_IDENTITY; 12367117f1b4Smrg } 12377117f1b4Smrg else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | 12387117f1b4Smrg MAT_FLAG_UNIFORM_SCALE | 12397117f1b4Smrg MAT_FLAG_GENERAL_SCALE))) { 12407117f1b4Smrg if ( m[10]==1.0F && m[14]==0.0F ) { 12417117f1b4Smrg mat->type = MATRIX_2D_NO_ROT; 12427117f1b4Smrg } 12437117f1b4Smrg else { 12447117f1b4Smrg mat->type = MATRIX_3D_NO_ROT; 12457117f1b4Smrg } 12467117f1b4Smrg } 12477117f1b4Smrg else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { 12487117f1b4Smrg if ( m[ 8]==0.0F 12497117f1b4Smrg && m[ 9]==0.0F 12507117f1b4Smrg && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { 12517117f1b4Smrg mat->type = MATRIX_2D; 12527117f1b4Smrg } 12537117f1b4Smrg else { 12547117f1b4Smrg mat->type = MATRIX_3D; 12557117f1b4Smrg } 12567117f1b4Smrg } 12577117f1b4Smrg else if ( m[4]==0.0F && m[12]==0.0F 12587117f1b4Smrg && m[1]==0.0F && m[13]==0.0F 12597117f1b4Smrg && m[2]==0.0F && m[6]==0.0F 12607117f1b4Smrg && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { 12617117f1b4Smrg mat->type = MATRIX_PERSPECTIVE; 12627117f1b4Smrg } 12637117f1b4Smrg else { 12647117f1b4Smrg mat->type = MATRIX_GENERAL; 12657117f1b4Smrg } 12667117f1b4Smrg} 12677117f1b4Smrg 12687117f1b4Smrg/** 12697117f1b4Smrg * Analyze and update a matrix. 12707117f1b4Smrg * 12717117f1b4Smrg * \param mat matrix. 12727117f1b4Smrg * 12737117f1b4Smrg * If the matrix type is dirty then calls either analyse_from_scratch() or 12747117f1b4Smrg * analyse_from_flags() to determine its type, according to whether the flags 12757117f1b4Smrg * are dirty or not, respectively. If the matrix has an inverse and it's dirty 12767117f1b4Smrg * then calls matrix_invert(). Finally clears the dirty flags. 12777117f1b4Smrg */ 12787117f1b4Smrgvoid 12797117f1b4Smrg_math_matrix_analyse( GLmatrix *mat ) 12807117f1b4Smrg{ 12817117f1b4Smrg if (mat->flags & MAT_DIRTY_TYPE) { 12827117f1b4Smrg if (mat->flags & MAT_DIRTY_FLAGS) 12837117f1b4Smrg analyse_from_scratch( mat ); 12847117f1b4Smrg else 12857117f1b4Smrg analyse_from_flags( mat ); 12867117f1b4Smrg } 12877117f1b4Smrg 12887ec681f3Smrg if (mat->flags & MAT_DIRTY_INVERSE) { 12897117f1b4Smrg matrix_invert( mat ); 1290c1f859d4Smrg mat->flags &= ~MAT_DIRTY_INVERSE; 12917117f1b4Smrg } 12927117f1b4Smrg 1293c1f859d4Smrg mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); 12947117f1b4Smrg} 12957117f1b4Smrg 12967117f1b4Smrg/*@}*/ 12977117f1b4Smrg 12987117f1b4Smrg 12997117f1b4Smrg/** 13007117f1b4Smrg * Test if the given matrix preserves vector lengths. 13017117f1b4Smrg */ 13027117f1b4SmrgGLboolean 13037117f1b4Smrg_math_matrix_is_length_preserving( const GLmatrix *m ) 13047117f1b4Smrg{ 13057117f1b4Smrg return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); 13067117f1b4Smrg} 13077117f1b4Smrg 13087117f1b4Smrg 13097117f1b4Smrg/** 13107117f1b4Smrg * Test if the given matrix does any rotation. 13117117f1b4Smrg * (or perhaps if the upper-left 3x3 is non-identity) 13127117f1b4Smrg */ 13137117f1b4SmrgGLboolean 13147117f1b4Smrg_math_matrix_has_rotation( const GLmatrix *m ) 13157117f1b4Smrg{ 13167117f1b4Smrg if (m->flags & (MAT_FLAG_GENERAL | 13177117f1b4Smrg MAT_FLAG_ROTATION | 13187117f1b4Smrg MAT_FLAG_GENERAL_3D | 13197117f1b4Smrg MAT_FLAG_PERSPECTIVE)) 13207117f1b4Smrg return GL_TRUE; 13217117f1b4Smrg else 13227117f1b4Smrg return GL_FALSE; 13237117f1b4Smrg} 13247117f1b4Smrg 13257117f1b4Smrg 13267117f1b4SmrgGLboolean 13277117f1b4Smrg_math_matrix_is_general_scale( const GLmatrix *m ) 13287117f1b4Smrg{ 13297117f1b4Smrg return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; 13307117f1b4Smrg} 13317117f1b4Smrg 13327117f1b4Smrg 13337117f1b4SmrgGLboolean 13347117f1b4Smrg_math_matrix_is_dirty( const GLmatrix *m ) 13357117f1b4Smrg{ 13367117f1b4Smrg return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; 13377117f1b4Smrg} 13387117f1b4Smrg 13397117f1b4Smrg 13407117f1b4Smrg/**********************************************************************/ 13417117f1b4Smrg/** \name Matrix setup */ 13427117f1b4Smrg/*@{*/ 13437117f1b4Smrg 13447117f1b4Smrg/** 13457117f1b4Smrg * Copy a matrix. 13467117f1b4Smrg * 13477117f1b4Smrg * \param to destination matrix. 13487117f1b4Smrg * \param from source matrix. 13497117f1b4Smrg * 13507117f1b4Smrg * Copies all fields in GLmatrix, creating an inverse array if necessary. 13517117f1b4Smrg */ 13527117f1b4Smrgvoid 13537117f1b4Smrg_math_matrix_copy( GLmatrix *to, const GLmatrix *from ) 13547117f1b4Smrg{ 135501e04c3fSmrg memcpy(to->m, from->m, 16 * sizeof(GLfloat)); 1356af69d88dSmrg memcpy(to->inv, from->inv, 16 * sizeof(GLfloat)); 13577117f1b4Smrg to->flags = from->flags; 13587117f1b4Smrg to->type = from->type; 13597117f1b4Smrg} 13607117f1b4Smrg 13617ec681f3Smrg/** 13627ec681f3Smrg * Copy a matrix as part of glPushMatrix. 13637ec681f3Smrg * 13647ec681f3Smrg * The makes the source matrix canonical (inverse and flags are up-to-date), 13657ec681f3Smrg * so that later glPopMatrix is evaluated as a no-op if there is no state 13667ec681f3Smrg * change. 13677ec681f3Smrg * 13687ec681f3Smrg * It this wasn't done, a draw call would canonicalize the matrix, which 13697ec681f3Smrg * would make it different from the pushed one and so glPopMatrix wouldn't be 13707ec681f3Smrg * recognized as a no-op. 13717ec681f3Smrg */ 13727ec681f3Smrgvoid 13737ec681f3Smrg_math_matrix_push_copy(GLmatrix *to, GLmatrix *from) 13747ec681f3Smrg{ 13757ec681f3Smrg if (from->flags & MAT_DIRTY) 13767ec681f3Smrg _math_matrix_analyse(from); 13777ec681f3Smrg 13787ec681f3Smrg _math_matrix_copy(to, from); 13797ec681f3Smrg} 13807ec681f3Smrg 13817117f1b4Smrg/** 13827117f1b4Smrg * Loads a matrix array into GLmatrix. 13837ec681f3Smrg * 13847117f1b4Smrg * \param m matrix array. 13857117f1b4Smrg * \param mat matrix. 13867117f1b4Smrg * 13877117f1b4Smrg * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY 13887117f1b4Smrg * flags. 13897117f1b4Smrg */ 13907117f1b4Smrgvoid 13917117f1b4Smrg_math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) 13927117f1b4Smrg{ 1393cdc920a0Smrg memcpy( mat->m, m, 16*sizeof(GLfloat) ); 13947117f1b4Smrg mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); 13957117f1b4Smrg} 13967117f1b4Smrg 13977117f1b4Smrg/** 13987117f1b4Smrg * Matrix constructor. 13997117f1b4Smrg * 14007117f1b4Smrg * \param m matrix. 14017117f1b4Smrg * 14027117f1b4Smrg * Initialize the GLmatrix fields. 14037117f1b4Smrg */ 14047117f1b4Smrgvoid 14057117f1b4Smrg_math_matrix_ctr( GLmatrix *m ) 14067117f1b4Smrg{ 14077ec681f3Smrg memset(m, 0, sizeof(*m)); 14087ec681f3Smrg memcpy( m->m, Identity, sizeof(Identity) ); 14097ec681f3Smrg memcpy( m->inv, Identity, sizeof(Identity) ); 14107117f1b4Smrg m->type = MATRIX_IDENTITY; 14117117f1b4Smrg m->flags = 0; 14127117f1b4Smrg} 14137117f1b4Smrg 14147117f1b4Smrg/*@}*/ 14157117f1b4Smrg 14167117f1b4Smrg 14177117f1b4Smrg/**********************************************************************/ 14187117f1b4Smrg/** \name Matrix transpose */ 14197117f1b4Smrg/*@{*/ 14207117f1b4Smrg 14217117f1b4Smrg/** 14227117f1b4Smrg * Transpose a GLfloat matrix. 14237117f1b4Smrg * 14247117f1b4Smrg * \param to destination array. 14257117f1b4Smrg * \param from source array. 14267117f1b4Smrg */ 14277117f1b4Smrgvoid 14287117f1b4Smrg_math_transposef( GLfloat to[16], const GLfloat from[16] ) 14297117f1b4Smrg{ 14307117f1b4Smrg to[0] = from[0]; 14317117f1b4Smrg to[1] = from[4]; 14327117f1b4Smrg to[2] = from[8]; 14337117f1b4Smrg to[3] = from[12]; 14347117f1b4Smrg to[4] = from[1]; 14357117f1b4Smrg to[5] = from[5]; 14367117f1b4Smrg to[6] = from[9]; 14377117f1b4Smrg to[7] = from[13]; 14387117f1b4Smrg to[8] = from[2]; 14397117f1b4Smrg to[9] = from[6]; 14407117f1b4Smrg to[10] = from[10]; 14417117f1b4Smrg to[11] = from[14]; 14427117f1b4Smrg to[12] = from[3]; 14437117f1b4Smrg to[13] = from[7]; 14447117f1b4Smrg to[14] = from[11]; 14457117f1b4Smrg to[15] = from[15]; 14467117f1b4Smrg} 14477117f1b4Smrg 14487117f1b4Smrg/** 14497117f1b4Smrg * Transpose a GLdouble matrix. 14507117f1b4Smrg * 14517117f1b4Smrg * \param to destination array. 14527117f1b4Smrg * \param from source array. 14537117f1b4Smrg */ 14547117f1b4Smrgvoid 14557117f1b4Smrg_math_transposed( GLdouble to[16], const GLdouble from[16] ) 14567117f1b4Smrg{ 14577117f1b4Smrg to[0] = from[0]; 14587117f1b4Smrg to[1] = from[4]; 14597117f1b4Smrg to[2] = from[8]; 14607117f1b4Smrg to[3] = from[12]; 14617117f1b4Smrg to[4] = from[1]; 14627117f1b4Smrg to[5] = from[5]; 14637117f1b4Smrg to[6] = from[9]; 14647117f1b4Smrg to[7] = from[13]; 14657117f1b4Smrg to[8] = from[2]; 14667117f1b4Smrg to[9] = from[6]; 14677117f1b4Smrg to[10] = from[10]; 14687117f1b4Smrg to[11] = from[14]; 14697117f1b4Smrg to[12] = from[3]; 14707117f1b4Smrg to[13] = from[7]; 14717117f1b4Smrg to[14] = from[11]; 14727117f1b4Smrg to[15] = from[15]; 14737117f1b4Smrg} 14747117f1b4Smrg 14757117f1b4Smrg/** 14767117f1b4Smrg * Transpose a GLdouble matrix and convert to GLfloat. 14777117f1b4Smrg * 14787117f1b4Smrg * \param to destination array. 14797117f1b4Smrg * \param from source array. 14807117f1b4Smrg */ 14817117f1b4Smrgvoid 14827117f1b4Smrg_math_transposefd( GLfloat to[16], const GLdouble from[16] ) 14837117f1b4Smrg{ 14847117f1b4Smrg to[0] = (GLfloat) from[0]; 14857117f1b4Smrg to[1] = (GLfloat) from[4]; 14867117f1b4Smrg to[2] = (GLfloat) from[8]; 14877117f1b4Smrg to[3] = (GLfloat) from[12]; 14887117f1b4Smrg to[4] = (GLfloat) from[1]; 14897117f1b4Smrg to[5] = (GLfloat) from[5]; 14907117f1b4Smrg to[6] = (GLfloat) from[9]; 14917117f1b4Smrg to[7] = (GLfloat) from[13]; 14927117f1b4Smrg to[8] = (GLfloat) from[2]; 14937117f1b4Smrg to[9] = (GLfloat) from[6]; 14947117f1b4Smrg to[10] = (GLfloat) from[10]; 14957117f1b4Smrg to[11] = (GLfloat) from[14]; 14967117f1b4Smrg to[12] = (GLfloat) from[3]; 14977117f1b4Smrg to[13] = (GLfloat) from[7]; 14987117f1b4Smrg to[14] = (GLfloat) from[11]; 14997117f1b4Smrg to[15] = (GLfloat) from[15]; 15007117f1b4Smrg} 15017117f1b4Smrg 15027117f1b4Smrg/*@}*/ 15037117f1b4Smrg 15044a49301eSmrg 15054a49301eSmrg/** 15064a49301eSmrg * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This 15074a49301eSmrg * function is used for transforming clipping plane equations and spotlight 15084a49301eSmrg * directions. 15094a49301eSmrg * Mathematically, u = v * m. 15104a49301eSmrg * Input: v - input vector 15114a49301eSmrg * m - transformation matrix 15124a49301eSmrg * Output: u - transformed vector 15134a49301eSmrg */ 15144a49301eSmrgvoid 15154a49301eSmrg_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) 15164a49301eSmrg{ 15174a49301eSmrg const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; 15184a49301eSmrg#define M(row,col) m[row + col*4] 15194a49301eSmrg u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); 15204a49301eSmrg u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); 15214a49301eSmrg u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); 15224a49301eSmrg u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); 15234a49301eSmrg#undef M 15244a49301eSmrg} 1525