1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/* 27 * Antialiased Triangle rasterizers 28 */ 29 30 31#include "main/glheader.h" 32#include "main/context.h" 33#include "main/macros.h" 34#include "main/state.h" 35#include "s_aatriangle.h" 36#include "s_context.h" 37#include "s_span.h" 38 39 40/* 41 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2 42 * vertices and the given Z values. 43 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0. 44 */ 45static inline void 46compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[], 47 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4]) 48{ 49 const GLfloat px = v1[0] - v0[0]; 50 const GLfloat py = v1[1] - v0[1]; 51 const GLfloat pz = z1 - z0; 52 53 const GLfloat qx = v2[0] - v0[0]; 54 const GLfloat qy = v2[1] - v0[1]; 55 const GLfloat qz = z2 - z0; 56 57 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */ 58 const GLfloat a = py * qz - pz * qy; 59 const GLfloat b = pz * qx - px * qz; 60 const GLfloat c = px * qy - py * qx; 61 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending 62 on the distance of plane from origin and arbitrary "w" parallel 63 to the plane. */ 64 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)", 65 which is equal to "-d" below. */ 66 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0); 67 68 plane[0] = a; 69 plane[1] = b; 70 plane[2] = c; 71 plane[3] = d; 72} 73 74 75/* 76 * Compute coefficients of a plane with a constant Z value. 77 */ 78static inline void 79constant_plane(GLfloat value, GLfloat plane[4]) 80{ 81 plane[0] = 0.0; 82 plane[1] = 0.0; 83 plane[2] = -1.0; 84 plane[3] = value; 85} 86 87#define CONSTANT_PLANE(VALUE, PLANE) \ 88do { \ 89 PLANE[0] = 0.0F; \ 90 PLANE[1] = 0.0F; \ 91 PLANE[2] = -1.0F; \ 92 PLANE[3] = VALUE; \ 93} while (0) 94 95 96 97/* 98 * Solve plane equation for Z at (X,Y). 99 */ 100static inline GLfloat 101solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) 102{ 103 assert(plane[2] != 0.0F); 104 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; 105} 106 107 108#define SOLVE_PLANE(X, Y, PLANE) \ 109 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) 110 111 112/* 113 * Solve plane and return clamped GLchan value. 114 */ 115static inline GLchan 116solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) 117{ 118 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; 119#if CHAN_TYPE == GL_FLOAT 120 return CLAMP(z, 0.0F, CHAN_MAXF); 121#else 122 if (z < 0) 123 return 0; 124 else if (z > CHAN_MAX) 125 return CHAN_MAX; 126 return (GLchan) lroundf(z); 127#endif 128} 129 130 131static inline GLfloat 132plane_dx(const GLfloat plane[4]) 133{ 134 return -plane[0] / plane[2]; 135} 136 137static inline GLfloat 138plane_dy(const GLfloat plane[4]) 139{ 140 return -plane[1] / plane[2]; 141} 142 143 144 145/* 146 * Compute how much (area) of the given pixel is inside the triangle. 147 * Vertices MUST be specified in counter-clockwise order. 148 * Return: coverage in [0, 1]. 149 */ 150static GLfloat 151compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], 152 const GLfloat v2[3], GLint winx, GLint winy) 153{ 154 /* Given a position [0,3]x[0,3] return the sub-pixel sample position. 155 * Contributed by Ray Tice. 156 * 157 * Jitter sample positions - 158 * - average should be .5 in x & y for each column 159 * - each of the 16 rows and columns should be used once 160 * - the rectangle formed by the first four points 161 * should contain the other points 162 * - the distrubition should be fairly even in any given direction 163 * 164 * The pattern drawn below isn't optimal, but it's better than a regular 165 * grid. In the drawing, the center of each subpixel is surrounded by 166 * four dots. The "x" marks the jittered position relative to the 167 * subpixel center. 168 */ 169#define POS(a, b) (0.5+a*4+b)/16 170 static const GLfloat samples[16][2] = { 171 /* start with the four corners */ 172 { POS(0, 2), POS(0, 0) }, 173 { POS(3, 3), POS(0, 2) }, 174 { POS(0, 0), POS(3, 1) }, 175 { POS(3, 1), POS(3, 3) }, 176 /* continue with interior samples */ 177 { POS(1, 1), POS(0, 1) }, 178 { POS(2, 0), POS(0, 3) }, 179 { POS(0, 3), POS(1, 3) }, 180 { POS(1, 2), POS(1, 0) }, 181 { POS(2, 3), POS(1, 2) }, 182 { POS(3, 2), POS(1, 1) }, 183 { POS(0, 1), POS(2, 2) }, 184 { POS(1, 0), POS(2, 1) }, 185 { POS(2, 1), POS(2, 3) }, 186 { POS(3, 0), POS(2, 0) }, 187 { POS(1, 3), POS(3, 0) }, 188 { POS(2, 2), POS(3, 2) } 189 }; 190 191 const GLfloat x = (GLfloat) winx; 192 const GLfloat y = (GLfloat) winy; 193 const GLfloat dx0 = v1[0] - v0[0]; 194 const GLfloat dy0 = v1[1] - v0[1]; 195 const GLfloat dx1 = v2[0] - v1[0]; 196 const GLfloat dy1 = v2[1] - v1[1]; 197 const GLfloat dx2 = v0[0] - v2[0]; 198 const GLfloat dy2 = v0[1] - v2[1]; 199 GLint stop = 4, i; 200 GLfloat insideCount = 16.0F; 201 202 assert(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */ 203 204 for (i = 0; i < stop; i++) { 205 const GLfloat sx = x + samples[i][0]; 206 const GLfloat sy = y + samples[i][1]; 207 /* cross product determines if sample is inside or outside each edge */ 208 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0])); 209 /* Check if the sample is exactly on an edge. If so, let cross be a 210 * positive or negative value depending on the direction of the edge. 211 */ 212 if (cross == 0.0F) 213 cross = dx0 + dy0; 214 if (cross < 0.0F) { 215 /* sample point is outside first edge */ 216 insideCount -= 1.0F; 217 stop = 16; 218 } 219 else { 220 /* sample point is inside first edge */ 221 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0])); 222 if (cross == 0.0F) 223 cross = dx1 + dy1; 224 if (cross < 0.0F) { 225 /* sample point is outside second edge */ 226 insideCount -= 1.0F; 227 stop = 16; 228 } 229 else { 230 /* sample point is inside first and second edges */ 231 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0])); 232 if (cross == 0.0F) 233 cross = dx2 + dy2; 234 if (cross < 0.0F) { 235 /* sample point is outside third edge */ 236 insideCount -= 1.0F; 237 stop = 16; 238 } 239 } 240 } 241 } 242 if (stop == 4) 243 return 1.0F; 244 else 245 return insideCount * (1.0F / 16.0F); 246} 247 248 249 250static void 251rgba_aa_tri(struct gl_context *ctx, 252 const SWvertex *v0, 253 const SWvertex *v1, 254 const SWvertex *v2) 255{ 256#define DO_Z 257#include "s_aatritemp.h" 258} 259 260 261static void 262general_aa_tri(struct gl_context *ctx, 263 const SWvertex *v0, 264 const SWvertex *v1, 265 const SWvertex *v2) 266{ 267#define DO_Z 268#define DO_ATTRIBS 269#include "s_aatritemp.h" 270} 271 272 273 274/* 275 * Examine GL state and set swrast->Triangle to an 276 * appropriate antialiased triangle rasterizer function. 277 */ 278void 279_swrast_set_aa_triangle_function(struct gl_context *ctx) 280{ 281 SWcontext *swrast = SWRAST_CONTEXT(ctx); 282 283 assert(ctx->Polygon.SmoothFlag); 284 285 if (ctx->Texture._EnabledCoordUnits != 0 286 || _swrast_use_fragment_program(ctx) 287 || swrast->_FogEnabled 288 || _mesa_need_secondary_color(ctx)) { 289 SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri; 290 } 291 else { 292 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri; 293 } 294 295 assert(SWRAST_CONTEXT(ctx)->Triangle); 296} 297