hash_table.c revision 01e04c3f
1/* 2 * Copyright © 2009,2012 Intel Corporation 3 * Copyright © 1988-2004 Keith Packard and Bart Massey. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 * Except as contained in this notice, the names of the authors 25 * or their institutions shall not be used in advertising or 26 * otherwise to promote the sale, use or other dealings in this 27 * Software without prior written authorization from the 28 * authors. 29 * 30 * Authors: 31 * Eric Anholt <eric@anholt.net> 32 * Keith Packard <keithp@keithp.com> 33 */ 34 35/** 36 * Implements an open-addressing, linear-reprobing hash table. 37 * 38 * For more information, see: 39 * 40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README 41 */ 42 43#include <stdlib.h> 44#include <string.h> 45#include <assert.h> 46 47#include "hash_table.h" 48#include "ralloc.h" 49#include "macros.h" 50#include "main/hash.h" 51 52static const uint32_t deleted_key_value; 53 54/** 55 * From Knuth -- a good choice for hash/rehash values is p, p-2 where 56 * p and p-2 are both prime. These tables are sized to have an extra 10% 57 * free to avoid exponential performance degradation as the hash table fills 58 */ 59static const struct { 60 uint32_t max_entries, size, rehash; 61} hash_sizes[] = { 62 { 2, 5, 3 }, 63 { 4, 7, 5 }, 64 { 8, 13, 11 }, 65 { 16, 19, 17 }, 66 { 32, 43, 41 }, 67 { 64, 73, 71 }, 68 { 128, 151, 149 }, 69 { 256, 283, 281 }, 70 { 512, 571, 569 }, 71 { 1024, 1153, 1151 }, 72 { 2048, 2269, 2267 }, 73 { 4096, 4519, 4517 }, 74 { 8192, 9013, 9011 }, 75 { 16384, 18043, 18041 }, 76 { 32768, 36109, 36107 }, 77 { 65536, 72091, 72089 }, 78 { 131072, 144409, 144407 }, 79 { 262144, 288361, 288359 }, 80 { 524288, 576883, 576881 }, 81 { 1048576, 1153459, 1153457 }, 82 { 2097152, 2307163, 2307161 }, 83 { 4194304, 4613893, 4613891 }, 84 { 8388608, 9227641, 9227639 }, 85 { 16777216, 18455029, 18455027 }, 86 { 33554432, 36911011, 36911009 }, 87 { 67108864, 73819861, 73819859 }, 88 { 134217728, 147639589, 147639587 }, 89 { 268435456, 295279081, 295279079 }, 90 { 536870912, 590559793, 590559791 }, 91 { 1073741824, 1181116273, 1181116271}, 92 { 2147483648ul, 2362232233ul, 2362232231ul} 93}; 94 95static int 96entry_is_free(const struct hash_entry *entry) 97{ 98 return entry->key == NULL; 99} 100 101static int 102entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry) 103{ 104 return entry->key == ht->deleted_key; 105} 106 107static int 108entry_is_present(const struct hash_table *ht, struct hash_entry *entry) 109{ 110 return entry->key != NULL && entry->key != ht->deleted_key; 111} 112 113struct hash_table * 114_mesa_hash_table_create(void *mem_ctx, 115 uint32_t (*key_hash_function)(const void *key), 116 bool (*key_equals_function)(const void *a, 117 const void *b)) 118{ 119 struct hash_table *ht; 120 121 ht = ralloc(mem_ctx, struct hash_table); 122 if (ht == NULL) 123 return NULL; 124 125 ht->size_index = 0; 126 ht->size = hash_sizes[ht->size_index].size; 127 ht->rehash = hash_sizes[ht->size_index].rehash; 128 ht->max_entries = hash_sizes[ht->size_index].max_entries; 129 ht->key_hash_function = key_hash_function; 130 ht->key_equals_function = key_equals_function; 131 ht->table = rzalloc_array(ht, struct hash_entry, ht->size); 132 ht->entries = 0; 133 ht->deleted_entries = 0; 134 ht->deleted_key = &deleted_key_value; 135 136 if (ht->table == NULL) { 137 ralloc_free(ht); 138 return NULL; 139 } 140 141 return ht; 142} 143 144struct hash_table * 145_mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx) 146{ 147 struct hash_table *ht; 148 149 ht = ralloc(dst_mem_ctx, struct hash_table); 150 if (ht == NULL) 151 return NULL; 152 153 memcpy(ht, src, sizeof(struct hash_table)); 154 155 ht->table = ralloc_array(ht, struct hash_entry, ht->size); 156 if (ht->table == NULL) { 157 ralloc_free(ht); 158 return NULL; 159 } 160 161 memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry)); 162 163 return ht; 164} 165 166/** 167 * Frees the given hash table. 168 * 169 * If delete_function is passed, it gets called on each entry present before 170 * freeing. 171 */ 172void 173_mesa_hash_table_destroy(struct hash_table *ht, 174 void (*delete_function)(struct hash_entry *entry)) 175{ 176 if (!ht) 177 return; 178 179 if (delete_function) { 180 hash_table_foreach(ht, entry) { 181 delete_function(entry); 182 } 183 } 184 ralloc_free(ht); 185} 186 187/** 188 * Deletes all entries of the given hash table without deleting the table 189 * itself or changing its structure. 190 * 191 * If delete_function is passed, it gets called on each entry present. 192 */ 193void 194_mesa_hash_table_clear(struct hash_table *ht, 195 void (*delete_function)(struct hash_entry *entry)) 196{ 197 struct hash_entry *entry; 198 199 for (entry = ht->table; entry != ht->table + ht->size; entry++) { 200 if (entry->key == NULL) 201 continue; 202 203 if (delete_function != NULL && entry->key != ht->deleted_key) 204 delete_function(entry); 205 206 entry->key = NULL; 207 } 208 209 ht->entries = 0; 210 ht->deleted_entries = 0; 211} 212 213/** Sets the value of the key pointer used for deleted entries in the table. 214 * 215 * The assumption is that usually keys are actual pointers, so we use a 216 * default value of a pointer to an arbitrary piece of storage in the library. 217 * But in some cases a consumer wants to store some other sort of value in the 218 * table, like a uint32_t, in which case that pointer may conflict with one of 219 * their valid keys. This lets that user select a safe value. 220 * 221 * This must be called before any keys are actually deleted from the table. 222 */ 223void 224_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key) 225{ 226 ht->deleted_key = deleted_key; 227} 228 229static struct hash_entry * 230hash_table_search(struct hash_table *ht, uint32_t hash, const void *key) 231{ 232 uint32_t start_hash_address = hash % ht->size; 233 uint32_t hash_address = start_hash_address; 234 235 do { 236 uint32_t double_hash; 237 238 struct hash_entry *entry = ht->table + hash_address; 239 240 if (entry_is_free(entry)) { 241 return NULL; 242 } else if (entry_is_present(ht, entry) && entry->hash == hash) { 243 if (ht->key_equals_function(key, entry->key)) { 244 return entry; 245 } 246 } 247 248 double_hash = 1 + hash % ht->rehash; 249 250 hash_address = (hash_address + double_hash) % ht->size; 251 } while (hash_address != start_hash_address); 252 253 return NULL; 254} 255 256/** 257 * Finds a hash table entry with the given key and hash of that key. 258 * 259 * Returns NULL if no entry is found. Note that the data pointer may be 260 * modified by the user. 261 */ 262struct hash_entry * 263_mesa_hash_table_search(struct hash_table *ht, const void *key) 264{ 265 assert(ht->key_hash_function); 266 return hash_table_search(ht, ht->key_hash_function(key), key); 267} 268 269struct hash_entry * 270_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash, 271 const void *key) 272{ 273 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); 274 return hash_table_search(ht, hash, key); 275} 276 277static struct hash_entry * 278hash_table_insert(struct hash_table *ht, uint32_t hash, 279 const void *key, void *data); 280 281static void 282_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index) 283{ 284 struct hash_table old_ht; 285 struct hash_entry *table; 286 287 if (new_size_index >= ARRAY_SIZE(hash_sizes)) 288 return; 289 290 table = rzalloc_array(ht, struct hash_entry, 291 hash_sizes[new_size_index].size); 292 if (table == NULL) 293 return; 294 295 old_ht = *ht; 296 297 ht->table = table; 298 ht->size_index = new_size_index; 299 ht->size = hash_sizes[ht->size_index].size; 300 ht->rehash = hash_sizes[ht->size_index].rehash; 301 ht->max_entries = hash_sizes[ht->size_index].max_entries; 302 ht->entries = 0; 303 ht->deleted_entries = 0; 304 305 hash_table_foreach(&old_ht, entry) { 306 hash_table_insert(ht, entry->hash, entry->key, entry->data); 307 } 308 309 ralloc_free(old_ht.table); 310} 311 312static struct hash_entry * 313hash_table_insert(struct hash_table *ht, uint32_t hash, 314 const void *key, void *data) 315{ 316 uint32_t start_hash_address, hash_address; 317 struct hash_entry *available_entry = NULL; 318 319 assert(key != NULL); 320 321 if (ht->entries >= ht->max_entries) { 322 _mesa_hash_table_rehash(ht, ht->size_index + 1); 323 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) { 324 _mesa_hash_table_rehash(ht, ht->size_index); 325 } 326 327 start_hash_address = hash % ht->size; 328 hash_address = start_hash_address; 329 do { 330 struct hash_entry *entry = ht->table + hash_address; 331 uint32_t double_hash; 332 333 if (!entry_is_present(ht, entry)) { 334 /* Stash the first available entry we find */ 335 if (available_entry == NULL) 336 available_entry = entry; 337 if (entry_is_free(entry)) 338 break; 339 } 340 341 /* Implement replacement when another insert happens 342 * with a matching key. This is a relatively common 343 * feature of hash tables, with the alternative 344 * generally being "insert the new value as well, and 345 * return it first when the key is searched for". 346 * 347 * Note that the hash table doesn't have a delete 348 * callback. If freeing of old data pointers is 349 * required to avoid memory leaks, perform a search 350 * before inserting. 351 */ 352 if (!entry_is_deleted(ht, entry) && 353 entry->hash == hash && 354 ht->key_equals_function(key, entry->key)) { 355 entry->key = key; 356 entry->data = data; 357 return entry; 358 } 359 360 361 double_hash = 1 + hash % ht->rehash; 362 363 hash_address = (hash_address + double_hash) % ht->size; 364 } while (hash_address != start_hash_address); 365 366 if (available_entry) { 367 if (entry_is_deleted(ht, available_entry)) 368 ht->deleted_entries--; 369 available_entry->hash = hash; 370 available_entry->key = key; 371 available_entry->data = data; 372 ht->entries++; 373 return available_entry; 374 } 375 376 /* We could hit here if a required resize failed. An unchecked-malloc 377 * application could ignore this result. 378 */ 379 return NULL; 380} 381 382/** 383 * Inserts the key with the given hash into the table. 384 * 385 * Note that insertion may rearrange the table on a resize or rehash, 386 * so previously found hash_entries are no longer valid after this function. 387 */ 388struct hash_entry * 389_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data) 390{ 391 assert(ht->key_hash_function); 392 return hash_table_insert(ht, ht->key_hash_function(key), key, data); 393} 394 395struct hash_entry * 396_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash, 397 const void *key, void *data) 398{ 399 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); 400 return hash_table_insert(ht, hash, key, data); 401} 402 403/** 404 * This function deletes the given hash table entry. 405 * 406 * Note that deletion doesn't otherwise modify the table, so an iteration over 407 * the table deleting entries is safe. 408 */ 409void 410_mesa_hash_table_remove(struct hash_table *ht, 411 struct hash_entry *entry) 412{ 413 if (!entry) 414 return; 415 416 entry->key = ht->deleted_key; 417 ht->entries--; 418 ht->deleted_entries++; 419} 420 421/** 422 * Removes the entry with the corresponding key, if exists. 423 */ 424void _mesa_hash_table_remove_key(struct hash_table *ht, 425 const void *key) 426{ 427 _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key)); 428} 429 430/** 431 * This function is an iterator over the hash table. 432 * 433 * Pass in NULL for the first entry, as in the start of a for loop. Note that 434 * an iteration over the table is O(table_size) not O(entries). 435 */ 436struct hash_entry * 437_mesa_hash_table_next_entry(struct hash_table *ht, 438 struct hash_entry *entry) 439{ 440 if (entry == NULL) 441 entry = ht->table; 442 else 443 entry = entry + 1; 444 445 for (; entry != ht->table + ht->size; entry++) { 446 if (entry_is_present(ht, entry)) { 447 return entry; 448 } 449 } 450 451 return NULL; 452} 453 454/** 455 * Returns a random entry from the hash table. 456 * 457 * This may be useful in implementing random replacement (as opposed 458 * to just removing everything) in caches based on this hash table 459 * implementation. @predicate may be used to filter entries, or may 460 * be set to NULL for no filtering. 461 */ 462struct hash_entry * 463_mesa_hash_table_random_entry(struct hash_table *ht, 464 bool (*predicate)(struct hash_entry *entry)) 465{ 466 struct hash_entry *entry; 467 uint32_t i = rand() % ht->size; 468 469 if (ht->entries == 0) 470 return NULL; 471 472 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) { 473 if (entry_is_present(ht, entry) && 474 (!predicate || predicate(entry))) { 475 return entry; 476 } 477 } 478 479 for (entry = ht->table; entry != ht->table + i; entry++) { 480 if (entry_is_present(ht, entry) && 481 (!predicate || predicate(entry))) { 482 return entry; 483 } 484 } 485 486 return NULL; 487} 488 489 490/** 491 * Quick FNV-1a hash implementation based on: 492 * http://www.isthe.com/chongo/tech/comp/fnv/ 493 * 494 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed 495 * to be quite good, and it probably beats FNV. But FNV has the advantage 496 * that it involves almost no code. For an improvement on both, see Paul 497 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html 498 */ 499uint32_t 500_mesa_hash_data(const void *data, size_t size) 501{ 502 return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias, 503 data, size); 504} 505 506/** FNV-1a string hash implementation */ 507uint32_t 508_mesa_hash_string(const void *_key) 509{ 510 uint32_t hash = _mesa_fnv32_1a_offset_bias; 511 const char *key = _key; 512 513 while (*key != 0) { 514 hash = _mesa_fnv32_1a_accumulate(hash, *key); 515 key++; 516 } 517 518 return hash; 519} 520 521/** 522 * String compare function for use as the comparison callback in 523 * _mesa_hash_table_create(). 524 */ 525bool 526_mesa_key_string_equal(const void *a, const void *b) 527{ 528 return strcmp(a, b) == 0; 529} 530 531bool 532_mesa_key_pointer_equal(const void *a, const void *b) 533{ 534 return a == b; 535} 536 537/** 538 * Hash table wrapper which supports 64-bit keys. 539 * 540 * TODO: unify all hash table implementations. 541 */ 542 543struct hash_key_u64 { 544 uint64_t value; 545}; 546 547static uint32_t 548key_u64_hash(const void *key) 549{ 550 return _mesa_hash_data(key, sizeof(struct hash_key_u64)); 551} 552 553static bool 554key_u64_equals(const void *a, const void *b) 555{ 556 const struct hash_key_u64 *aa = a; 557 const struct hash_key_u64 *bb = b; 558 559 return aa->value == bb->value; 560} 561 562struct hash_table_u64 * 563_mesa_hash_table_u64_create(void *mem_ctx) 564{ 565 struct hash_table_u64 *ht; 566 567 ht = CALLOC_STRUCT(hash_table_u64); 568 if (!ht) 569 return NULL; 570 571 if (sizeof(void *) == 8) { 572 ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, 573 _mesa_key_pointer_equal); 574 } else { 575 ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash, 576 key_u64_equals); 577 } 578 579 if (ht->table) 580 _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE)); 581 582 return ht; 583} 584 585void 586_mesa_hash_table_u64_destroy(struct hash_table_u64 *ht, 587 void (*delete_function)(struct hash_entry *entry)) 588{ 589 if (!ht) 590 return; 591 592 if (ht->deleted_key_data) { 593 if (delete_function) { 594 struct hash_table *table = ht->table; 595 struct hash_entry deleted_entry; 596 597 /* Create a fake entry for the delete function. */ 598 deleted_entry.hash = table->key_hash_function(table->deleted_key); 599 deleted_entry.key = table->deleted_key; 600 deleted_entry.data = ht->deleted_key_data; 601 602 delete_function(&deleted_entry); 603 } 604 ht->deleted_key_data = NULL; 605 } 606 607 _mesa_hash_table_destroy(ht->table, delete_function); 608 free(ht); 609} 610 611void 612_mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key, 613 void *data) 614{ 615 if (key == DELETED_KEY_VALUE) { 616 ht->deleted_key_data = data; 617 return; 618 } 619 620 if (sizeof(void *) == 8) { 621 _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data); 622 } else { 623 struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64); 624 625 if (!_key) 626 return; 627 _key->value = key; 628 629 _mesa_hash_table_insert(ht->table, _key, data); 630 } 631} 632 633static struct hash_entry * 634hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) 635{ 636 if (sizeof(void *) == 8) { 637 return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key); 638 } else { 639 struct hash_key_u64 _key = { .value = key }; 640 return _mesa_hash_table_search(ht->table, &_key); 641 } 642} 643 644void * 645_mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) 646{ 647 struct hash_entry *entry; 648 649 if (key == DELETED_KEY_VALUE) 650 return ht->deleted_key_data; 651 652 entry = hash_table_u64_search(ht, key); 653 if (!entry) 654 return NULL; 655 656 return entry->data; 657} 658 659void 660_mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key) 661{ 662 struct hash_entry *entry; 663 664 if (key == DELETED_KEY_VALUE) { 665 ht->deleted_key_data = NULL; 666 return; 667 } 668 669 entry = hash_table_u64_search(ht, key); 670 if (!entry) 671 return; 672 673 if (sizeof(void *) == 8) { 674 _mesa_hash_table_remove(ht->table, entry); 675 } else { 676 struct hash_key *_key = (struct hash_key *)entry->key; 677 678 _mesa_hash_table_remove(ht->table, entry); 679 free(_key); 680 } 681} 682