1/* 2** License Applicability. Except to the extent portions of this file are 3** made subject to an alternative license as permitted in the SGI Free 4** Software License B, Version 1.1 (the "License"), the contents of this 5** file are subject only to the provisions of the License. You may not use 6** this file except in compliance with the License. You may obtain a copy 7** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 8** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: 9** 10** http://oss.sgi.com/projects/FreeB 11** 12** Note that, as provided in the License, the Software is distributed on an 13** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS 14** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND 15** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A 16** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. 17** 18** Original Code. The Original Code is: OpenGL Sample Implementation, 19** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, 20** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. 21** Copyright in any portions created by third parties is as indicated 22** elsewhere herein. All Rights Reserved. 23** 24** Additional Notice Provisions: The application programming interfaces 25** established by SGI in conjunction with the Original Code are The 26** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released 27** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version 28** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X 29** Window System(R) (Version 1.3), released October 19, 1998. This software 30** was created using the OpenGL(R) version 1.2.1 Sample Implementation 31** published by SGI, but has not been independently verified as being 32** compliant with the OpenGL(R) version 1.2.1 Specification. 33** 34*/ 35/* 36*/ 37 38#include <stdlib.h> 39#include <stdio.h> 40#include <assert.h> 41#include <math.h> 42#include "bezierEval.h" 43 44#ifdef __WATCOMC__ 45#pragma warning 14 10 46#endif 47 48#define TOLERANCE 0.0001 49 50#ifndef MAX_ORDER 51#define MAX_ORDER 16 52#endif 53 54#ifndef MAX_DIMENSION 55#define MAX_DIMENSION 4 56#endif 57 58static void normalize(float vec[3]); 59static void crossProduct(float x[3], float y[3], float ret[3]); 60#if 0 // UNUSED 61static void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]); 62#endif 63 64static float binomialCoefficients[8][8] = { 65 {1,0,0,0,0,0,0,0}, 66 {1,1,0,0,0,0,0,0}, 67 {1,2,1,0,0,0,0,0}, 68 {1,3,3,1,0,0,0,0}, 69 {1,4,6,4,1,0,0,0}, 70 {1,5,10,10,5,1,0,0}, 71 {1,6,15,20,15,6,1,0}, 72 {1,7,21,35,35,21,7,1} 73}; 74 75void bezierCurveEval(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]) 76{ 77 float uprime = (u-u0)/(u1-u0); 78 float *ctlptr = ctlpoints; 79 float oneMinusX = 1.0f-uprime; 80 float XPower = 1.0f; 81 82 int i,k; 83 for(k=0; k<dimension; k++) 84 retpoint[k] = (*(ctlptr + k)); 85 86 for(i=1; i<order; i++){ 87 ctlptr += stride; 88 XPower *= uprime; 89 for(k=0; k<dimension; k++) { 90 retpoint[k] = retpoint[k]*oneMinusX + ctlptr[k]* binomialCoefficients[order-1][i] * XPower; 91 } 92 } 93} 94 95 96#if 0 // UNUSED 97/*order = degree +1 >=1. 98 */ 99void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]) 100{ 101 float uprime = (u-u0)/(u1-u0); 102 float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION]; 103 float* ctlptr = ctlpoints; 104 int r, i,j; 105 for(i=0; i<order; i++) { 106 for(j=0; j<dimension; j++) 107 buf[0][i][j] = ctlptr[j]; 108 ctlptr += stride; 109 } 110 for(r=1; r<order; r++){ 111 for(i=0; i<order-r; i++) { 112 for(j=0; j<dimension; j++) 113 buf[r][i][j] = (1-uprime)*buf[r-1][i][j] + uprime*buf[r-1][i+1][j]; 114 } 115 } 116 117 for(j=0; j<dimension; j++) 118 retpoint[j] = buf[order-1][0][j]; 119} 120#endif 121 122 123/*order = degree +1 >=1. 124 */ 125void bezierCurveEvalDer(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retDer[]) 126{ 127 int i,k; 128 float width = u1-u0; 129 float *ctlptr = ctlpoints; 130 131 float buf[MAX_ORDER][MAX_DIMENSION]; 132 if(order == 1){ 133 for(k=0; k<dimension; k++) 134 retDer[k]=0; 135 } 136 for(i=0; i<order-1; i++){ 137 for(k=0; k<dimension; k++) { 138 buf[i][k] = (ctlptr[stride+k] - ctlptr[k])*(order-1)/width; 139 } 140 ctlptr += stride; 141 } 142 143 bezierCurveEval(u0, u1, order-1, (float*) buf, MAX_DIMENSION, dimension, u, retDer); 144} 145 146void bezierCurveEvalDerGen(int der, float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retDer[]) 147{ 148 int i,k,r; 149 float *ctlptr = ctlpoints; 150 float width=u1-u0; 151 float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION]; 152 if(der<0) der=0; 153 for(i=0; i<order; i++){ 154 for(k=0; k<dimension; k++){ 155 buf[0][i][k] = ctlptr[k]; 156 } 157 ctlptr += stride; 158 } 159 160 161 for(r=1; r<=der; r++){ 162 for(i=0; i<order-r; i++){ 163 for(k=0; k<dimension; k++){ 164 buf[r][i][k] = (buf[r-1][i+1][k] - buf[r-1][i][k])*(order-r)/width; 165 } 166 } 167 } 168 169 bezierCurveEval(u0, u1, order-der, (float *) (buf[der]), MAX_DIMENSION, dimension, u, retDer); 170} 171 172/*the Bezier bivarite polynomial is: 173 * sum[i:0,uorder-1][j:0,vorder-1] { ctlpoints[i*ustride+j*vstride] * B(i)*B(j) 174 * where B(i) and B(j) are basis functions 175 */ 176void bezierSurfEvalDerGen(int uder, int vder, float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[]) 177{ 178 int i; 179 float newPoints[MAX_ORDER][MAX_DIMENSION]; 180 181 for(i=0; i<uorder; i++){ 182 183 bezierCurveEvalDerGen(vder, v0, v1, vorder, ctlpoints+ustride*i, vstride, dimension, v, newPoints[i]); 184 185 } 186 187 bezierCurveEvalDerGen(uder, u0, u1, uorder, (float *) newPoints, MAX_DIMENSION, dimension, u, ret); 188} 189 190 191/*division by w is performed*/ 192void bezierSurfEval(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[]) 193{ 194 bezierSurfEvalDerGen(0, 0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, ret); 195 if(dimension == 4) /*homogeneous*/{ 196 ret[0] /= ret[3]; 197 ret[1] /= ret[3]; 198 ret[2] /= ret[3]; 199 } 200} 201 202void bezierSurfEvalNormal(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float retNormal[]) 203{ 204 float partialU[4]; 205 float partialV[4]; 206 assert(dimension>=3 && dimension <=4); 207 bezierSurfEvalDerGen(1,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialU); 208 bezierSurfEvalDerGen(0,1, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialV); 209 210 if(dimension == 3){/*inhomogeneous*/ 211 crossProduct(partialU, partialV, retNormal); 212 213 normalize(retNormal); 214 215 return; 216 } 217 else { /*homogeneous*/ 218 float val[4]; /*the point coordinates (without derivative)*/ 219 float newPartialU[MAX_DIMENSION]; 220 float newPartialV[MAX_DIMENSION]; 221 int i; 222 bezierSurfEvalDerGen(0,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, val); 223 224 for(i=0; i<=2; i++){ 225 newPartialU[i] = partialU[i] * val[3] - val[i] * partialU[3]; 226 newPartialV[i] = partialV[i] * val[3] - val[i] * partialV[3]; 227 } 228 crossProduct(newPartialU, newPartialV, retNormal); 229 normalize(retNormal); 230 } 231} 232 233/*if size is 0, then nothing is done*/ 234static void normalize(float vec[3]) 235{ 236 float size = (float)sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); 237 238 if(size < TOLERANCE) 239 { 240#ifdef DEBUG 241 fprintf(stderr, "Warning: in oglBSpline.c normal is 0\n"); 242#endif 243 return; 244 } 245 else { 246 vec[0] = vec[0]/size; 247 vec[1] = vec[1]/size; 248 vec[2] = vec[2]/size; 249 } 250} 251 252 253static void crossProduct(float x[3], float y[3], float ret[3]) 254{ 255 ret[0] = x[1]*y[2] - y[1]*x[2]; 256 ret[1] = x[2]*y[0] - y[2]*x[0]; 257 ret[2] = x[0]*y[1] - y[0]*x[1]; 258 259} 260 261