1/*
2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
29 */
30/*
31** Author: Eric Veach, July 1994.
32**
33*/
34
35#include "gluos.h"
36#include <assert.h>
37#include <stddef.h>
38#include "mesh.h"
39#include "tess.h"
40#include "render.h"
41
42#ifndef TRUE
43#define TRUE 1
44#endif
45#ifndef FALSE
46#define FALSE 0
47#endif
48
49/* This structure remembers the information we need about a primitive
50 * to be able to render it later, once we have determined which
51 * primitive is able to use the most triangles.
52 */
53struct FaceCount {
54  long		size;		/* number of triangles used */
55  GLUhalfEdge	*eStart;	/* edge where this primitive starts */
56  void		(*render)(GLUtesselator *, GLUhalfEdge *, long);
57                                /* routine to render this primitive */
58};
59
60static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
61static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
62
63static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
64static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
65static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
66			    long size );
67
68static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
69static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
70
71
72
73/************************ Strips and Fans decomposition ******************/
74
75/* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
76 * fans, strips, and separate triangles.  A substantial effort is made
77 * to use as few rendering primitives as possible (ie. to make the fans
78 * and strips as large as possible).
79 *
80 * The rendering output is provided as callbacks (see the api).
81 */
82void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
83{
84  GLUface *f;
85
86  /* Make a list of separate triangles so we can render them all at once */
87  tess->lonelyTriList = NULL;
88
89  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
90    f->marked = FALSE;
91  }
92  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
93
94    /* We examine all faces in an arbitrary order.  Whenever we find
95     * an unprocessed face F, we output a group of faces including F
96     * whose size is maximum.
97     */
98    if( f->inside && ! f->marked ) {
99      RenderMaximumFaceGroup( tess, f );
100      assert( f->marked );
101    }
102  }
103  if( tess->lonelyTriList != NULL ) {
104    RenderLonelyTriangles( tess, tess->lonelyTriList );
105    tess->lonelyTriList = NULL;
106  }
107}
108
109
110static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
111{
112  /* We want to find the largest triangle fan or strip of unmarked faces
113   * which includes the given face fOrig.  There are 3 possible fans
114   * passing through fOrig (one centered at each vertex), and 3 possible
115   * strips (one for each CCW permutation of the vertices).  Our strategy
116   * is to try all of these, and take the primitive which uses the most
117   * triangles (a greedy approach).
118   */
119  GLUhalfEdge *e = fOrig->anEdge;
120  struct FaceCount max, newFace;
121
122  max.size = 1;
123  max.eStart = e;
124  max.render = &RenderTriangle;
125
126  if( ! tess->flagBoundary ) {
127    newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
128    newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
129    newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
130
131    newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
132    newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
133    newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
134  }
135  (*(max.render))( tess, max.eStart, max.size );
136}
137
138
139/* Macros which keep track of faces we have marked temporarily, and allow
140 * us to backtrack when necessary.  With triangle fans, this is not
141 * really necessary, since the only awkward case is a loop of triangles
142 * around a single origin vertex.  However with strips the situation is
143 * more complicated, and we need a general tracking method like the
144 * one here.
145 */
146#define Marked(f)	(! (f)->inside || (f)->marked)
147
148#define AddToTrail(f,t)	((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
149
150#define FreeTrail(t)	do { \
151			  while( (t) != NULL ) { \
152			    (t)->marked = FALSE; t = (t)->trail; \
153			  } \
154			} while(0) /* absorb trailing semicolon */
155
156
157
158static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
159{
160  /* eOrig->Lface is the face we want to render.  We want to find the size
161   * of a maximal fan around eOrig->Org.  To do this we just walk around
162   * the origin vertex as far as possible in both directions.
163   */
164  struct FaceCount newFace = { 0, NULL, &RenderFan };
165  GLUface *trail = NULL;
166  GLUhalfEdge *e;
167
168  for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
169    AddToTrail( e->Lface, trail );
170    ++newFace.size;
171  }
172  for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
173    AddToTrail( e->Rface, trail );
174    ++newFace.size;
175  }
176  newFace.eStart = e;
177  /*LINTED*/
178  FreeTrail( trail );
179  return newFace;
180}
181
182
183#define IsEven(n)	(((n) & 1) == 0)
184
185static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
186{
187  /* Here we are looking for a maximal strip that contains the vertices
188   * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
189   * reverse, such that all triangles are oriented CCW).
190   *
191   * Again we walk forward and backward as far as possible.  However for
192   * strips there is a twist: to get CCW orientations, there must be
193   * an *even* number of triangles in the strip on one side of eOrig.
194   * We walk the strip starting on a side with an even number of triangles;
195   * if both side have an odd number, we are forced to shorten one side.
196   */
197  struct FaceCount newFace = { 0, NULL, &RenderStrip };
198  long headSize = 0, tailSize = 0;
199  GLUface *trail = NULL;
200  GLUhalfEdge *e, *eTail, *eHead;
201
202  for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
203    AddToTrail( e->Lface, trail );
204    ++tailSize;
205    e = e->Dprev;
206    if( Marked( e->Lface )) break;
207    AddToTrail( e->Lface, trail );
208  }
209  eTail = e;
210
211  for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
212    AddToTrail( e->Rface, trail );
213    ++headSize;
214    e = e->Oprev;
215    if( Marked( e->Rface )) break;
216    AddToTrail( e->Rface, trail );
217  }
218  eHead = e;
219
220  newFace.size = tailSize + headSize;
221  if( IsEven( tailSize )) {
222    newFace.eStart = eTail->Sym;
223  } else if( IsEven( headSize )) {
224    newFace.eStart = eHead;
225  } else {
226    /* Both sides have odd length, we must shorten one of them.  In fact,
227     * we must start from eHead to guarantee inclusion of eOrig->Lface.
228     */
229    --newFace.size;
230    newFace.eStart = eHead->Onext;
231  }
232  /*LINTED*/
233  FreeTrail( trail );
234  return newFace;
235}
236
237
238static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
239{
240  /* Just add the triangle to a triangle list, so we can render all
241   * the separate triangles at once.
242   */
243  assert( size == 1 );
244  AddToTrail( e->Lface, tess->lonelyTriList );
245}
246
247
248static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
249{
250  /* Now we render all the separate triangles which could not be
251   * grouped into a triangle fan or strip.
252   */
253  GLUhalfEdge *e;
254  int newState;
255  int edgeState = -1;	/* force edge state output for first vertex */
256
257  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
258
259  for( ; f != NULL; f = f->trail ) {
260    /* Loop once for each edge (there will always be 3 edges) */
261
262    e = f->anEdge;
263    do {
264      if( tess->flagBoundary ) {
265	/* Set the "edge state" to TRUE just before we output the
266	 * first vertex of each edge on the polygon boundary.
267	 */
268	newState = ! e->Rface->inside;
269	if( edgeState != newState ) {
270	  edgeState = newState;
271          CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
272	}
273      }
274      CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
275
276      e = e->Lnext;
277    } while( e != f->anEdge );
278  }
279  CALL_END_OR_END_DATA();
280}
281
282
283static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
284{
285  /* Render as many CCW triangles as possible in a fan starting from
286   * edge "e".  The fan *should* contain exactly "size" triangles
287   * (otherwise we've goofed up somewhere).
288   */
289  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
290  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
291  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
292
293  while( ! Marked( e->Lface )) {
294    e->Lface->marked = TRUE;
295    --size;
296    e = e->Onext;
297    CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
298  }
299
300  assert( size == 0 );
301  CALL_END_OR_END_DATA();
302}
303
304
305static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
306{
307  /* Render as many CCW triangles as possible in a strip starting from
308   * edge "e".  The strip *should* contain exactly "size" triangles
309   * (otherwise we've goofed up somewhere).
310   */
311  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
312  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
313  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
314
315  while( ! Marked( e->Lface )) {
316    e->Lface->marked = TRUE;
317    --size;
318    e = e->Dprev;
319    CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
320    if( Marked( e->Lface )) break;
321
322    e->Lface->marked = TRUE;
323    --size;
324    e = e->Onext;
325    CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
326  }
327
328  assert( size == 0 );
329  CALL_END_OR_END_DATA();
330}
331
332
333/************************ Boundary contour decomposition ******************/
334
335/* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
336 * contour for each face marked "inside".  The rendering output is
337 * provided as callbacks (see the api).
338 */
339void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
340{
341  GLUface *f;
342  GLUhalfEdge *e;
343
344  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
345    if( f->inside ) {
346      CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
347      e = f->anEdge;
348      do {
349        CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
350	e = e->Lnext;
351      } while( e != f->anEdge );
352      CALL_END_OR_END_DATA();
353    }
354  }
355}
356
357
358/************************ Quick-and-dirty decomposition ******************/
359
360#define SIGN_INCONSISTENT 2
361
362static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
363/*
364 * If check==FALSE, we compute the polygon normal and place it in norm[].
365 * If check==TRUE, we check that each triangle in the fan from v0 has a
366 * consistent orientation with respect to norm[].  If triangles are
367 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
368 * are degenerate return 0; otherwise (no consistent orientation) return
369 * SIGN_INCONSISTENT.
370 */
371{
372  CachedVertex *v0 = tess->cache;
373  CachedVertex *vn = v0 + tess->cacheCount;
374  CachedVertex *vc;
375  GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
376  int sign = 0;
377
378  /* Find the polygon normal.  It is important to get a reasonable
379   * normal even when the polygon is self-intersecting (eg. a bowtie).
380   * Otherwise, the computed normal could be very tiny, but perpendicular
381   * to the true plane of the polygon due to numerical noise.  Then all
382   * the triangles would appear to be degenerate and we would incorrectly
383   * decompose the polygon as a fan (or simply not render it at all).
384   *
385   * We use a sum-of-triangles normal algorithm rather than the more
386   * efficient sum-of-trapezoids method (used in CheckOrientation()
387   * in normal.c).  This lets us explicitly reverse the signed area
388   * of some triangles to get a reasonable normal in the self-intersecting
389   * case.
390   */
391  if( ! check ) {
392    norm[0] = norm[1] = norm[2] = 0.0;
393  }
394
395  vc = v0 + 1;
396  xc = vc->coords[0] - v0->coords[0];
397  yc = vc->coords[1] - v0->coords[1];
398  zc = vc->coords[2] - v0->coords[2];
399  while( ++vc < vn ) {
400    xp = xc; yp = yc; zp = zc;
401    xc = vc->coords[0] - v0->coords[0];
402    yc = vc->coords[1] - v0->coords[1];
403    zc = vc->coords[2] - v0->coords[2];
404
405    /* Compute (vp - v0) cross (vc - v0) */
406    n[0] = yp*zc - zp*yc;
407    n[1] = zp*xc - xp*zc;
408    n[2] = xp*yc - yp*xc;
409
410    dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
411    if( ! check ) {
412      /* Reverse the contribution of back-facing triangles to get
413       * a reasonable normal for self-intersecting polygons (see above)
414       */
415      if( dot >= 0 ) {
416	norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
417      } else {
418	norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
419      }
420    } else if( dot != 0 ) {
421      /* Check the new orientation for consistency with previous triangles */
422      if( dot > 0 ) {
423	if( sign < 0 ) return SIGN_INCONSISTENT;
424	sign = 1;
425      } else {
426	if( sign > 0 ) return SIGN_INCONSISTENT;
427	sign = -1;
428      }
429    }
430  }
431  return sign;
432}
433
434/* __gl_renderCache( tess ) takes a single contour and tries to render it
435 * as a triangle fan.  This handles convex polygons, as well as some
436 * non-convex polygons if we get lucky.
437 *
438 * Returns TRUE if the polygon was successfully rendered.  The rendering
439 * output is provided as callbacks (see the api).
440 */
441GLboolean __gl_renderCache( GLUtesselator *tess )
442{
443  CachedVertex *v0 = tess->cache;
444  CachedVertex *vn = v0 + tess->cacheCount;
445  CachedVertex *vc;
446  GLdouble norm[3];
447  int sign;
448
449  if( tess->cacheCount < 3 ) {
450    /* Degenerate contour -- no output */
451    return TRUE;
452  }
453
454  norm[0] = tess->normal[0];
455  norm[1] = tess->normal[1];
456  norm[2] = tess->normal[2];
457  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
458    ComputeNormal( tess, norm, FALSE );
459  }
460
461  sign = ComputeNormal( tess, norm, TRUE );
462  if( sign == SIGN_INCONSISTENT ) {
463    /* Fan triangles did not have a consistent orientation */
464    return FALSE;
465  }
466  if( sign == 0 ) {
467    /* All triangles were degenerate */
468    return TRUE;
469  }
470
471  /* Make sure we do the right thing for each winding rule */
472  switch( tess->windingRule ) {
473  case GLU_TESS_WINDING_ODD:
474  case GLU_TESS_WINDING_NONZERO:
475    break;
476  case GLU_TESS_WINDING_POSITIVE:
477    if( sign < 0 ) return TRUE;
478    break;
479  case GLU_TESS_WINDING_NEGATIVE:
480    if( sign > 0 ) return TRUE;
481    break;
482  case GLU_TESS_WINDING_ABS_GEQ_TWO:
483    return TRUE;
484  }
485
486  CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
487			  : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
488			  : GL_TRIANGLES );
489
490  CALL_VERTEX_OR_VERTEX_DATA( v0->data );
491  if( sign > 0 ) {
492    for( vc = v0+1; vc < vn; ++vc ) {
493      CALL_VERTEX_OR_VERTEX_DATA( vc->data );
494    }
495  } else {
496    for( vc = vn-1; vc > v0; --vc ) {
497      CALL_VERTEX_OR_VERTEX_DATA( vc->data );
498    }
499  }
500  CALL_END_OR_END_DATA();
501  return TRUE;
502}
503