1f220fa62Smrg/*
2f220fa62Smrg * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3f220fa62Smrg * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4f220fa62Smrg *
5f220fa62Smrg * Permission is hereby granted, free of charge, to any person obtaining a
6f220fa62Smrg * copy of this software and associated documentation files (the "Software"),
7f220fa62Smrg * to deal in the Software without restriction, including without limitation
8f220fa62Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9f220fa62Smrg * and/or sell copies of the Software, and to permit persons to whom the
10f220fa62Smrg * Software is furnished to do so, subject to the following conditions:
11f220fa62Smrg *
12f220fa62Smrg * The above copyright notice including the dates of first publication and
13f220fa62Smrg * either this permission notice or a reference to
14f220fa62Smrg * http://oss.sgi.com/projects/FreeB/
15f220fa62Smrg * shall be included in all copies or substantial portions of the Software.
16f220fa62Smrg *
17f220fa62Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18f220fa62Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19f220fa62Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20f220fa62Smrg * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21f220fa62Smrg * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22f220fa62Smrg * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23f220fa62Smrg * SOFTWARE.
24f220fa62Smrg *
25f220fa62Smrg * Except as contained in this notice, the name of Silicon Graphics, Inc.
26f220fa62Smrg * shall not be used in advertising or otherwise to promote the sale, use or
27f220fa62Smrg * other dealings in this Software without prior written authorization from
28f220fa62Smrg * Silicon Graphics, Inc.
29f220fa62Smrg */
30f220fa62Smrg/*
31f220fa62Smrg** Author: Eric Veach, July 1994.
32f220fa62Smrg**
33f220fa62Smrg*/
34f220fa62Smrg
35f220fa62Smrg#include "gluos.h"
36f220fa62Smrg#include <stdlib.h>
37f220fa62Smrg#include "geom.h"
38f220fa62Smrg#include "mesh.h"
39f220fa62Smrg#include "tessmono.h"
40f220fa62Smrg#include <assert.h>
41f220fa62Smrg
42f220fa62Smrg#define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
43f220fa62Smrg				 eDst->Sym->winding += eSrc->Sym->winding)
44f220fa62Smrg
45f220fa62Smrg/* __gl_meshTessellateMonoRegion( face ) tessellates a monotone region
46f220fa62Smrg * (what else would it do??)  The region must consist of a single
47f220fa62Smrg * loop of half-edges (see mesh.h) oriented CCW.  "Monotone" in this
48f220fa62Smrg * case means that any vertical line intersects the interior of the
49f220fa62Smrg * region in a single interval.
50f220fa62Smrg *
51f220fa62Smrg * Tessellation consists of adding interior edges (actually pairs of
52f220fa62Smrg * half-edges), to split the region into non-overlapping triangles.
53f220fa62Smrg *
54f220fa62Smrg * The basic idea is explained in Preparata and Shamos (which I don''t
55f220fa62Smrg * have handy right now), although their implementation is more
56f220fa62Smrg * complicated than this one.  The are two edge chains, an upper chain
57f220fa62Smrg * and a lower chain.  We process all vertices from both chains in order,
58f220fa62Smrg * from right to left.
59f220fa62Smrg *
60f220fa62Smrg * The algorithm ensures that the following invariant holds after each
61f220fa62Smrg * vertex is processed: the untessellated region consists of two
62f220fa62Smrg * chains, where one chain (say the upper) is a single edge, and
63f220fa62Smrg * the other chain is concave.  The left vertex of the single edge
64f220fa62Smrg * is always to the left of all vertices in the concave chain.
65f220fa62Smrg *
66f220fa62Smrg * Each step consists of adding the rightmost unprocessed vertex to one
67f220fa62Smrg * of the two chains, and forming a fan of triangles from the rightmost
68f220fa62Smrg * of two chain endpoints.  Determining whether we can add each triangle
69f220fa62Smrg * to the fan is a simple orientation test.  By making the fan as large
70f220fa62Smrg * as possible, we restore the invariant (check it yourself).
71f220fa62Smrg */
72f220fa62Smrgint __gl_meshTessellateMonoRegion( GLUface *face )
73f220fa62Smrg{
74f220fa62Smrg  GLUhalfEdge *up, *lo;
75f220fa62Smrg
76f220fa62Smrg  /* All edges are oriented CCW around the boundary of the region.
77f220fa62Smrg   * First, find the half-edge whose origin vertex is rightmost.
78f220fa62Smrg   * Since the sweep goes from left to right, face->anEdge should
79f220fa62Smrg   * be close to the edge we want.
80f220fa62Smrg   */
81f220fa62Smrg  up = face->anEdge;
82f220fa62Smrg  assert( up->Lnext != up && up->Lnext->Lnext != up );
83f220fa62Smrg
84f220fa62Smrg  for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
85f220fa62Smrg    ;
86f220fa62Smrg  for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
87f220fa62Smrg    ;
88f220fa62Smrg  lo = up->Lprev;
89f220fa62Smrg
90f220fa62Smrg  while( up->Lnext != lo ) {
91f220fa62Smrg    if( VertLeq( up->Dst, lo->Org )) {
92f220fa62Smrg      /* up->Dst is on the left.  It is safe to form triangles from lo->Org.
93f220fa62Smrg       * The EdgeGoesLeft test guarantees progress even when some triangles
94f220fa62Smrg       * are CW, given that the upper and lower chains are truly monotone.
95f220fa62Smrg       */
96f220fa62Smrg      while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
97f220fa62Smrg	     || EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
98f220fa62Smrg	GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
99f220fa62Smrg	if (tempHalfEdge == NULL) return 0;
100f220fa62Smrg	lo = tempHalfEdge->Sym;
101f220fa62Smrg      }
102f220fa62Smrg      lo = lo->Lprev;
103f220fa62Smrg    } else {
104f220fa62Smrg      /* lo->Org is on the left.  We can make CCW triangles from up->Dst. */
105f220fa62Smrg      while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
106f220fa62Smrg	     || EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
107f220fa62Smrg	GLUhalfEdge *tempHalfEdge= __gl_meshConnect( up, up->Lprev );
108f220fa62Smrg	if (tempHalfEdge == NULL) return 0;
109f220fa62Smrg	up = tempHalfEdge->Sym;
110f220fa62Smrg      }
111f220fa62Smrg      up = up->Lnext;
112f220fa62Smrg    }
113f220fa62Smrg  }
114f220fa62Smrg
115f220fa62Smrg  /* Now lo->Org == up->Dst == the leftmost vertex.  The remaining region
116f220fa62Smrg   * can be tessellated in a fan from this leftmost vertex.
117f220fa62Smrg   */
118f220fa62Smrg  assert( lo->Lnext != up );
119f220fa62Smrg  while( lo->Lnext->Lnext != up ) {
120f220fa62Smrg    GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
121f220fa62Smrg    if (tempHalfEdge == NULL) return 0;
122f220fa62Smrg    lo = tempHalfEdge->Sym;
123f220fa62Smrg  }
124f220fa62Smrg
125f220fa62Smrg  return 1;
126f220fa62Smrg}
127f220fa62Smrg
128f220fa62Smrg
129f220fa62Smrg/* __gl_meshTessellateInterior( mesh ) tessellates each region of
130f220fa62Smrg * the mesh which is marked "inside" the polygon.  Each such region
131f220fa62Smrg * must be monotone.
132f220fa62Smrg */
133f220fa62Smrgint __gl_meshTessellateInterior( GLUmesh *mesh )
134f220fa62Smrg{
135f220fa62Smrg  GLUface *f, *next;
136f220fa62Smrg
137f220fa62Smrg  /*LINTED*/
138f220fa62Smrg  for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
139f220fa62Smrg    /* Make sure we don''t try to tessellate the new triangles. */
140f220fa62Smrg    next = f->next;
141f220fa62Smrg    if( f->inside ) {
142f220fa62Smrg      if ( !__gl_meshTessellateMonoRegion( f ) ) return 0;
143f220fa62Smrg    }
144f220fa62Smrg  }
145f220fa62Smrg
146f220fa62Smrg  return 1;
147f220fa62Smrg}
148f220fa62Smrg
149f220fa62Smrg
150f220fa62Smrg/* __gl_meshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces
151f220fa62Smrg * which are not marked "inside" the polygon.  Since further mesh operations
152f220fa62Smrg * on NULL faces are not allowed, the main purpose is to clean up the
153f220fa62Smrg * mesh so that exterior loops are not represented in the data structure.
154f220fa62Smrg */
155f220fa62Smrgvoid __gl_meshDiscardExterior( GLUmesh *mesh )
156f220fa62Smrg{
157f220fa62Smrg  GLUface *f, *next;
158f220fa62Smrg
159f220fa62Smrg  /*LINTED*/
160f220fa62Smrg  for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
161f220fa62Smrg    /* Since f will be destroyed, save its next pointer. */
162f220fa62Smrg    next = f->next;
163f220fa62Smrg    if( ! f->inside ) {
164f220fa62Smrg      __gl_meshZapFace( f );
165f220fa62Smrg    }
166f220fa62Smrg  }
167f220fa62Smrg}
168f220fa62Smrg
169f220fa62Smrg#define MARKED_FOR_DELETION	0x7fffffff
170f220fa62Smrg
171f220fa62Smrg/* __gl_meshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the
172f220fa62Smrg * winding numbers on all edges so that regions marked "inside" the
173f220fa62Smrg * polygon have a winding number of "value", and regions outside
174f220fa62Smrg * have a winding number of 0.
175f220fa62Smrg *
176f220fa62Smrg * If keepOnlyBoundary is TRUE, it also deletes all edges which do not
177f220fa62Smrg * separate an interior region from an exterior one.
178f220fa62Smrg */
179f220fa62Smrgint __gl_meshSetWindingNumber( GLUmesh *mesh, int value,
180f220fa62Smrg			        GLboolean keepOnlyBoundary )
181f220fa62Smrg{
182f220fa62Smrg  GLUhalfEdge *e, *eNext;
183f220fa62Smrg
184f220fa62Smrg  for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
185f220fa62Smrg    eNext = e->next;
186f220fa62Smrg    if( e->Rface->inside != e->Lface->inside ) {
187f220fa62Smrg
188f220fa62Smrg      /* This is a boundary edge (one side is interior, one is exterior). */
189f220fa62Smrg      e->winding = (e->Lface->inside) ? value : -value;
190f220fa62Smrg    } else {
191f220fa62Smrg
192f220fa62Smrg      /* Both regions are interior, or both are exterior. */
193f220fa62Smrg      if( ! keepOnlyBoundary ) {
194f220fa62Smrg	e->winding = 0;
195f220fa62Smrg      } else {
196f220fa62Smrg	if ( !__gl_meshDelete( e ) ) return 0;
197f220fa62Smrg      }
198f220fa62Smrg    }
199f220fa62Smrg  }
200f220fa62Smrg  return 1;
201f220fa62Smrg}
202