1 2/* 3 * Code and supporting documentation (c) Copyright 1990 1991 Tektronix, Inc. 4 * All Rights Reserved 5 * 6 * This file is a component of an X Window System-specific implementation 7 * of Xcms based on the TekColor Color Management System. Permission is 8 * hereby granted to use, copy, modify, sell, and otherwise distribute this 9 * software and its documentation for any purpose and without fee, provided 10 * that this copyright, permission, and disclaimer notice is reproduced in 11 * all copies of this software and in supporting documentation. TekColor 12 * is a trademark of Tektronix, Inc. 13 * 14 * Tektronix makes no representation about the suitability of this software 15 * for any purpose. It is provided "as is" and with all faults. 16 * 17 * TEKTRONIX DISCLAIMS ALL WARRANTIES APPLICABLE TO THIS SOFTWARE, 18 * INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 19 * PARTICULAR PURPOSE. IN NO EVENT SHALL TEKTRONIX BE LIABLE FOR ANY 20 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER 21 * RESULTING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN AN ACTION OF 22 * CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 23 * CONNECTION WITH THE USE OR THE PERFORMANCE OF THIS SOFTWARE. 24 */ 25 26/* 27 * It should be pointed out that for simplicity's sake, the 28 * environment parameters are defined as floating point constants, 29 * rather than octal or hexadecimal initializations of allocated 30 * storage areas. This means that the range of allowed numbers 31 * may not exactly match the hardware's capabilities. For example, 32 * if the maximum positive double precision floating point number 33 * is EXACTLY 1.11...E100 and the constant "MAXDOUBLE is 34 * defined to be 1.11E100 then the numbers between 1.11E100 and 35 * 1.11...E100 are considered to be undefined. For most 36 * applications, this will cause no problems. 37 * 38 * An alternate method is to allocate a global static "double" variable, 39 * say "maxdouble", and use a union declaration and initialization 40 * to initialize it with the proper bits for the EXACT maximum value. 41 * This was not done because the only compilers available to the 42 * author did not fully support union initialization features. 43 * 44 */ 45 46#ifdef HAVE_CONFIG_H 47#include <config.h> 48#endif 49#include "Xcmsint.h" 50 51/* forward/static */ 52static double _XcmsModulo(double value, double base); 53static double _XcmsPolynomial( 54 register int order, 55 double const *coeffs, 56 double x); 57static double 58_XcmsModuloF( 59 double val, 60 register double *dp); 61 62/* 63 * DEFINES 64 */ 65#define XCMS_MAXERROR 0.000001 66#define XCMS_MAXITER 10000 67#define XCMS_PI 3.14159265358979323846264338327950 68#define XCMS_TWOPI 6.28318530717958620 69#define XCMS_HALFPI 1.57079632679489660 70#define XCMS_FOURTHPI 0.785398163397448280 71#define XCMS_SIXTHPI 0.523598775598298820 72#define XCMS_RADIANS(d) ((d) * XCMS_PI / 180.0) 73#define XCMS_DEGREES(r) ((r) * 180.0 / XCMS_PI) 74#ifdef __vax__ 75#define XCMS_X6_UNDERFLOWS (3.784659e-07) /* X**6 almost underflows*/ 76#else 77#define XCMS_X6_UNDERFLOWS (4.209340e-52) /* X**6 almost underflows */ 78#endif 79#define XCMS_X16_UNDERFLOWS (5.421010e-20) /* X**16 almost underflows*/ 80#define XCMS_CHAR_BIT 8 81#define XCMS_LONG_MAX 0x7FFFFFFF 82#define XCMS_DEXPLEN 11 83#define XCMS_NBITS(type) (XCMS_CHAR_BIT * (int)sizeof(type)) 84#define XCMS_FABS(x) ((x) < 0.0 ? -(x) : (x)) 85 86/* XCMS_DMAXPOWTWO - largest power of two exactly representable as a double */ 87#define XCMS_DMAXPOWTWO ((double)(XCMS_LONG_MAX) * \ 88 (1L << ((XCMS_NBITS(double)-XCMS_DEXPLEN) - XCMS_NBITS(int) + 1))) 89 90/* 91 * LOCAL VARIABLES 92 */ 93 94static double const cos_pcoeffs[] = { 95 0.12905394659037374438e7, 96 -0.37456703915723204710e6, 97 0.13432300986539084285e5, 98 -0.11231450823340933092e3 99}; 100 101static double const cos_qcoeffs[] = { 102 0.12905394659037373590e7, 103 0.23467773107245835052e5, 104 0.20969518196726306286e3, 105 1.0 106}; 107 108static double const sin_pcoeffs[] = { 109 0.20664343336995858240e7, 110 -0.18160398797407332550e6, 111 0.35999306949636188317e4, 112 -0.20107483294588615719e2 113}; 114 115static double const sin_qcoeffs[] = { 116 0.26310659102647698963e7, 117 0.39270242774649000308e5, 118 0.27811919481083844087e3, 119 1.0 120}; 121 122/* 123 * 124 * FUNCTION 125 * 126 * _XcmsCosine double precision cosine 127 * 128 * KEY WORDS 129 * 130 * cos 131 * machine independent routines 132 * trigonometric functions 133 * math libraries 134 * 135 * DESCRIPTION 136 * 137 * Returns double precision cosine of double precision 138 * floating point argument. 139 * 140 * USAGE 141 * 142 * double _XcmsCosine (x) 143 * double x; 144 * 145 * REFERENCES 146 * 147 * Computer Approximations, J.F. Hart et al, John Wiley & Sons, 148 * 1968, pp. 112-120. 149 * 150 * RESTRICTIONS 151 * 152 * The sin and cos routines are interactive in the sense that 153 * in the process of reducing the argument to the range -PI/4 154 * to PI/4, each may call the other. Ultimately one or the 155 * other uses a polynomial approximation on the reduced 156 * argument. The sin approximation has a maximum relative error 157 * of 10**(-17.59) and the cos approximation has a maximum 158 * relative error of 10**(-16.18). 159 * 160 * These error bounds assume exact arithmetic 161 * in the polynomial evaluation. Additional rounding and 162 * truncation errors may occur as the argument is reduced 163 * to the range over which the polynomial approximation 164 * is valid, and as the polynomial is evaluated using 165 * finite-precision arithmetic. 166 * 167 * PROGRAMMER 168 * 169 * Fred Fish 170 * 171 * INTERNALS 172 * 173 * Computes cos(x) from: 174 * 175 * (1) Reduce argument x to range -PI to PI. 176 * 177 * (2) If x > PI/2 then call cos recursively 178 * using relation cos(x) = -cos(x - PI). 179 * 180 * (3) If x < -PI/2 then call cos recursively 181 * using relation cos(x) = -cos(x + PI). 182 * 183 * (4) If x > PI/4 then call sin using 184 * relation cos(x) = sin(PI/2 - x). 185 * 186 * (5) If x < -PI/4 then call cos using 187 * relation cos(x) = sin(PI/2 + x). 188 * 189 * (6) If x would cause underflow in approx 190 * evaluation arithmetic then return 191 * sqrt(1.0 - x**2). 192 * 193 * (7) By now x has been reduced to range 194 * -PI/4 to PI/4 and the approximation 195 * from HART pg. 119 can be used: 196 * 197 * cos(x) = ( p(y) / q(y) ) 198 * Where: 199 * 200 * y = x * (4/PI) 201 * 202 * p(y) = SUM [ Pj * (y**(2*j)) ] 203 * over j = {0,1,2,3} 204 * 205 * q(y) = SUM [ Qj * (y**(2*j)) ] 206 * over j = {0,1,2,3} 207 * 208 * P0 = 0.12905394659037374438571854e+7 209 * P1 = -0.3745670391572320471032359e+6 210 * P2 = 0.134323009865390842853673e+5 211 * P3 = -0.112314508233409330923e+3 212 * Q0 = 0.12905394659037373590295914e+7 213 * Q1 = 0.234677731072458350524124e+5 214 * Q2 = 0.2096951819672630628621e+3 215 * Q3 = 1.0000... 216 * (coefficients from HART table #3843 pg 244) 217 * 218 * 219 * **** NOTE **** The range reduction relations used in 220 * this routine depend on the final approximation being valid 221 * over the negative argument range in addition to the positive 222 * argument range. The particular approximation chosen from 223 * HART satisfies this requirement, although not explicitly 224 * stated in the text. This may not be true of other 225 * approximations given in the reference. 226 * 227 */ 228 229double _XcmsCosine(double x) 230{ 231 auto double y; 232 auto double yt2; 233 double retval; 234 235 if (x < -XCMS_PI || x > XCMS_PI) { 236 x = _XcmsModulo (x, XCMS_TWOPI); 237 if (x > XCMS_PI) { 238 x = x - XCMS_TWOPI; 239 } else if (x < -XCMS_PI) { 240 x = x + XCMS_TWOPI; 241 } 242 } 243 if (x > XCMS_HALFPI) { 244 retval = -(_XcmsCosine (x - XCMS_PI)); 245 } else if (x < -XCMS_HALFPI) { 246 retval = -(_XcmsCosine (x + XCMS_PI)); 247 } else if (x > XCMS_FOURTHPI) { 248 retval = _XcmsSine (XCMS_HALFPI - x); 249 } else if (x < -XCMS_FOURTHPI) { 250 retval = _XcmsSine (XCMS_HALFPI + x); 251 } else if (x < XCMS_X6_UNDERFLOWS && x > -XCMS_X6_UNDERFLOWS) { 252 retval = _XcmsSquareRoot (1.0 - (x * x)); 253 } else { 254 y = x / XCMS_FOURTHPI; 255 yt2 = y * y; 256 retval = _XcmsPolynomial (3, cos_pcoeffs, yt2) / _XcmsPolynomial (3, cos_qcoeffs, yt2); 257 } 258 return (retval); 259} 260 261 262/* 263 * FUNCTION 264 * 265 * _XcmsModulo double precision modulo 266 * 267 * KEY WORDS 268 * 269 * _XcmsModulo 270 * machine independent routines 271 * math libraries 272 * 273 * DESCRIPTION 274 * 275 * Returns double precision modulo of two double 276 * precision arguments. 277 * 278 * USAGE 279 * 280 * double _XcmsModulo (value, base) 281 * double value; 282 * double base; 283 * 284 * PROGRAMMER 285 * 286 * Fred Fish 287 * 288 */ 289static double _XcmsModulo(double value, double base) 290{ 291 auto double intpart; 292 293 value /= base; 294 value = _XcmsModuloF (value, &intpart); 295 value *= base; 296 return(value); 297} 298 299 300/* 301 * frac = (double) _XcmsModuloF(double val, double *dp) 302 * return fractional part of 'val' 303 * set *dp to integer part of 'val' 304 * 305 * Note -> only compiled for the CA or KA. For the KB/MC, 306 * "math.c" instantiates a copy of the inline function 307 * defined in "math.h". 308 */ 309static double 310_XcmsModuloF( 311 double val, 312 register double *dp) 313{ 314 register double abs; 315 /* 316 * Don't use a register for this. The extra precision this results 317 * in on some systems causes problems. 318 */ 319 double ip; 320 321 /* should check for illegal values here - nan, inf, etc */ 322 abs = XCMS_FABS(val); 323 if (abs >= XCMS_DMAXPOWTWO) { 324 ip = val; 325 } else { 326 ip = abs + XCMS_DMAXPOWTWO; /* dump fraction */ 327 ip -= XCMS_DMAXPOWTWO; /* restore w/o frac */ 328 if (ip > abs) /* if it rounds up */ 329 ip -= 1.0; /* fix it */ 330 ip = XCMS_FABS(ip); 331 } 332 *dp = ip; 333 return (val - ip); /* signed fractional part */ 334} 335 336 337/* 338 * FUNCTION 339 * 340 * _XcmsPolynomial double precision polynomial evaluation 341 * 342 * KEY WORDS 343 * 344 * poly 345 * machine independent routines 346 * math libraries 347 * 348 * DESCRIPTION 349 * 350 * Evaluates a polynomial and returns double precision 351 * result. Is passed a the order of the polynomial, 352 * a pointer to an array of double precision polynomial 353 * coefficients (in ascending order), and the independent 354 * variable. 355 * 356 * USAGE 357 * 358 * double _XcmsPolynomial (order, coeffs, x) 359 * int order; 360 * double *coeffs; 361 * double x; 362 * 363 * PROGRAMMER 364 * 365 * Fred Fish 366 * 367 * INTERNALS 368 * 369 * Evalates the polynomial using recursion and the form: 370 * 371 * P(x) = P0 + x(P1 + x(P2 +...x(Pn))) 372 * 373 */ 374 375static double _XcmsPolynomial( 376 register int order, 377 double const *coeffs, 378 double x) 379{ 380 auto double rtn_value; 381 382 coeffs += order; 383 rtn_value = *coeffs--; 384 while(order-- > 0) 385 rtn_value = *coeffs-- + (x * rtn_value); 386 387 return(rtn_value); 388} 389 390 391/* 392 * FUNCTION 393 * 394 * _XcmsSine double precision sine 395 * 396 * KEY WORDS 397 * 398 * sin 399 * machine independent routines 400 * trigonometric functions 401 * math libraries 402 * 403 * DESCRIPTION 404 * 405 * Returns double precision sine of double precision 406 * floating point argument. 407 * 408 * USAGE 409 * 410 * double _XcmsSine (x) 411 * double x; 412 * 413 * REFERENCES 414 * 415 * Computer Approximations, J.F. Hart et al, John Wiley & Sons, 416 * 1968, pp. 112-120. 417 * 418 * RESTRICTIONS 419 * 420 * The sin and cos routines are interactive in the sense that 421 * in the process of reducing the argument to the range -PI/4 422 * to PI/4, each may call the other. Ultimately one or the 423 * other uses a polynomial approximation on the reduced 424 * argument. The sin approximation has a maximum relative error 425 * of 10**(-17.59) and the cos approximation has a maximum 426 * relative error of 10**(-16.18). 427 * 428 * These error bounds assume exact arithmetic 429 * in the polynomial evaluation. Additional rounding and 430 * truncation errors may occur as the argument is reduced 431 * to the range over which the polynomial approximation 432 * is valid, and as the polynomial is evaluated using 433 * finite-precision arithmetic. 434 * 435 * PROGRAMMER 436 * 437 * Fred Fish 438 * 439 * INTERNALS 440 * 441 * Computes sin(x) from: 442 * 443 * (1) Reduce argument x to range -PI to PI. 444 * 445 * (2) If x > PI/2 then call sin recursively 446 * using relation sin(x) = -sin(x - PI). 447 * 448 * (3) If x < -PI/2 then call sin recursively 449 * using relation sin(x) = -sin(x + PI). 450 * 451 * (4) If x > PI/4 then call cos using 452 * relation sin(x) = cos(PI/2 - x). 453 * 454 * (5) If x < -PI/4 then call cos using 455 * relation sin(x) = -cos(PI/2 + x). 456 * 457 * (6) If x is small enough that polynomial 458 * evaluation would cause underflow 459 * then return x, since sin(x) 460 * approaches x as x approaches zero. 461 * 462 * (7) By now x has been reduced to range 463 * -PI/4 to PI/4 and the approximation 464 * from HART pg. 118 can be used: 465 * 466 * sin(x) = y * ( p(y) / q(y) ) 467 * Where: 468 * 469 * y = x * (4/PI) 470 * 471 * p(y) = SUM [ Pj * (y**(2*j)) ] 472 * over j = {0,1,2,3} 473 * 474 * q(y) = SUM [ Qj * (y**(2*j)) ] 475 * over j = {0,1,2,3} 476 * 477 * P0 = 0.206643433369958582409167054e+7 478 * P1 = -0.18160398797407332550219213e+6 479 * P2 = 0.359993069496361883172836e+4 480 * P3 = -0.2010748329458861571949e+2 481 * Q0 = 0.263106591026476989637710307e+7 482 * Q1 = 0.3927024277464900030883986e+5 483 * Q2 = 0.27811919481083844087953e+3 484 * Q3 = 1.0000... 485 * (coefficients from HART table #3063 pg 234) 486 * 487 * 488 * **** NOTE **** The range reduction relations used in 489 * this routine depend on the final approximation being valid 490 * over the negative argument range in addition to the positive 491 * argument range. The particular approximation chosen from 492 * HART satisfies this requirement, although not explicitly 493 * stated in the text. This may not be true of other 494 * approximations given in the reference. 495 * 496 */ 497 498double 499_XcmsSine (double x) 500{ 501 double y; 502 double yt2; 503 double retval; 504 505 if (x < -XCMS_PI || x > XCMS_PI) { 506 x = _XcmsModulo (x, XCMS_TWOPI); 507 if (x > XCMS_PI) { 508 x = x - XCMS_TWOPI; 509 } else if (x < -XCMS_PI) { 510 x = x + XCMS_TWOPI; 511 } 512 } 513 if (x > XCMS_HALFPI) { 514 retval = -(_XcmsSine (x - XCMS_PI)); 515 } else if (x < -XCMS_HALFPI) { 516 retval = -(_XcmsSine (x + XCMS_PI)); 517 } else if (x > XCMS_FOURTHPI) { 518 retval = _XcmsCosine (XCMS_HALFPI - x); 519 } else if (x < -XCMS_FOURTHPI) { 520 retval = -(_XcmsCosine (XCMS_HALFPI + x)); 521 } else if (x < XCMS_X6_UNDERFLOWS && x > -XCMS_X6_UNDERFLOWS) { 522 retval = x; 523 } else { 524 y = x / XCMS_FOURTHPI; 525 yt2 = y * y; 526 retval = y * (_XcmsPolynomial (3, sin_pcoeffs, yt2) / _XcmsPolynomial(3, sin_qcoeffs, yt2)); 527 } 528 return(retval); 529} 530 531 532/* 533 * NAME 534 * _XcmsArcTangent 535 * 536 * SYNOPSIS 537 */ 538double 539_XcmsArcTangent(double x) 540/* 541 * DESCRIPTION 542 * Computes the arctangent. 543 * This is an implementation of the Gauss algorithm as 544 * described in: 545 * Forman S. Acton, Numerical Methods That Work, 546 * New York, NY, Harper & Row, 1970. 547 * 548 * RETURNS 549 * Returns the arctangent 550 */ 551{ 552 double ai, a1 = 0.0, bi, b1 = 0.0, l, d; 553 double maxerror; 554 int i; 555 556 if (x == 0.0) { 557 return (0.0); 558 } 559 if (x < 1.0) { 560 maxerror = x * XCMS_MAXERROR; 561 } else { 562 maxerror = XCMS_MAXERROR; 563 } 564 ai = _XcmsSquareRoot( 1.0 / (1.0 + (x * x)) ); 565 bi = 1.0; 566 for (i = 0; i < XCMS_MAXITER; i++) { 567 a1 = (ai + bi) / 2.0; 568 b1 = _XcmsSquareRoot((a1 * bi)); 569 if (a1 == b1) 570 break; 571 d = XCMS_FABS(a1 - b1); 572 if (d < maxerror) 573 break; 574 ai = a1; 575 bi = b1; 576 } 577 578 l = ((a1 > b1) ? b1 : a1); 579 580 a1 = _XcmsSquareRoot(1 + (x * x)); 581 return (x / (a1 * l)); 582} 583