intel_bufmgr_gem.c revision a884aba1
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#ifdef HAVE_CONFIG_H
38#include "config.h"
39#endif
40
41#include <xf86drm.h>
42#include <xf86atomic.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <assert.h>
49#include <pthread.h>
50#include <stddef.h>
51#include <sys/ioctl.h>
52#include <sys/stat.h>
53#include <sys/types.h>
54#include <stdbool.h>
55
56#include "errno.h"
57#ifndef ETIME
58#define ETIME ETIMEDOUT
59#endif
60#include "libdrm.h"
61#include "libdrm_lists.h"
62#include "intel_bufmgr.h"
63#include "intel_bufmgr_priv.h"
64#include "intel_chipset.h"
65#include "intel_aub.h"
66#include "string.h"
67
68#include "i915_drm.h"
69
70#ifdef HAVE_VALGRIND
71#include <valgrind.h>
72#include <memcheck.h>
73#define VG(x) x
74#else
75#define VG(x)
76#endif
77
78#define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
79
80#define DBG(...) do {					\
81	if (bufmgr_gem->bufmgr.debug)			\
82		fprintf(stderr, __VA_ARGS__);		\
83} while (0)
84
85#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86
87typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
88
89struct drm_intel_gem_bo_bucket {
90	drmMMListHead head;
91	unsigned long size;
92};
93
94typedef struct _drm_intel_bufmgr_gem {
95	drm_intel_bufmgr bufmgr;
96
97	atomic_t refcount;
98
99	int fd;
100
101	int max_relocs;
102
103	pthread_mutex_t lock;
104
105	struct drm_i915_gem_exec_object *exec_objects;
106	struct drm_i915_gem_exec_object2 *exec2_objects;
107	drm_intel_bo **exec_bos;
108	int exec_size;
109	int exec_count;
110
111	/** Array of lists of cached gem objects of power-of-two sizes */
112	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
113	int num_buckets;
114	time_t time;
115
116	drmMMListHead managers;
117
118	drmMMListHead named;
119	drmMMListHead vma_cache;
120	int vma_count, vma_open, vma_max;
121
122	uint64_t gtt_size;
123	int available_fences;
124	int pci_device;
125	int gen;
126	unsigned int has_bsd : 1;
127	unsigned int has_blt : 1;
128	unsigned int has_relaxed_fencing : 1;
129	unsigned int has_llc : 1;
130	unsigned int has_wait_timeout : 1;
131	unsigned int bo_reuse : 1;
132	unsigned int no_exec : 1;
133	unsigned int has_vebox : 1;
134	bool fenced_relocs;
135
136	char *aub_filename;
137	FILE *aub_file;
138	uint32_t aub_offset;
139} drm_intel_bufmgr_gem;
140
141#define DRM_INTEL_RELOC_FENCE (1<<0)
142
143typedef struct _drm_intel_reloc_target_info {
144	drm_intel_bo *bo;
145	int flags;
146} drm_intel_reloc_target;
147
148struct _drm_intel_bo_gem {
149	drm_intel_bo bo;
150
151	atomic_t refcount;
152	uint32_t gem_handle;
153	const char *name;
154
155	/**
156	 * Kenel-assigned global name for this object
157         *
158         * List contains both flink named and prime fd'd objects
159	 */
160	unsigned int global_name;
161	drmMMListHead name_list;
162
163	/**
164	 * Index of the buffer within the validation list while preparing a
165	 * batchbuffer execution.
166	 */
167	int validate_index;
168
169	/**
170	 * Current tiling mode
171	 */
172	uint32_t tiling_mode;
173	uint32_t swizzle_mode;
174	unsigned long stride;
175
176	time_t free_time;
177
178	/** Array passed to the DRM containing relocation information. */
179	struct drm_i915_gem_relocation_entry *relocs;
180	/**
181	 * Array of info structs corresponding to relocs[i].target_handle etc
182	 */
183	drm_intel_reloc_target *reloc_target_info;
184	/** Number of entries in relocs */
185	int reloc_count;
186	/** Mapped address for the buffer, saved across map/unmap cycles */
187	void *mem_virtual;
188	/** GTT virtual address for the buffer, saved across map/unmap cycles */
189	void *gtt_virtual;
190	/**
191	 * Virtual address of the buffer allocated by user, used for userptr
192	 * objects only.
193	 */
194	void *user_virtual;
195	int map_count;
196	drmMMListHead vma_list;
197
198	/** BO cache list */
199	drmMMListHead head;
200
201	/**
202	 * Boolean of whether this BO and its children have been included in
203	 * the current drm_intel_bufmgr_check_aperture_space() total.
204	 */
205	bool included_in_check_aperture;
206
207	/**
208	 * Boolean of whether this buffer has been used as a relocation
209	 * target and had its size accounted for, and thus can't have any
210	 * further relocations added to it.
211	 */
212	bool used_as_reloc_target;
213
214	/**
215	 * Boolean of whether we have encountered an error whilst building the relocation tree.
216	 */
217	bool has_error;
218
219	/**
220	 * Boolean of whether this buffer can be re-used
221	 */
222	bool reusable;
223
224	/**
225	 * Boolean of whether the GPU is definitely not accessing the buffer.
226	 *
227	 * This is only valid when reusable, since non-reusable
228	 * buffers are those that have been shared wth other
229	 * processes, so we don't know their state.
230	 */
231	bool idle;
232
233	/**
234	 * Boolean of whether this buffer was allocated with userptr
235	 */
236	bool is_userptr;
237
238	/**
239	 * Size in bytes of this buffer and its relocation descendents.
240	 *
241	 * Used to avoid costly tree walking in
242	 * drm_intel_bufmgr_check_aperture in the common case.
243	 */
244	int reloc_tree_size;
245
246	/**
247	 * Number of potential fence registers required by this buffer and its
248	 * relocations.
249	 */
250	int reloc_tree_fences;
251
252	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
253	bool mapped_cpu_write;
254
255	uint32_t aub_offset;
256
257	drm_intel_aub_annotation *aub_annotations;
258	unsigned aub_annotation_count;
259};
260
261static unsigned int
262drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
263
264static unsigned int
265drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
266
267static int
268drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
269			    uint32_t * swizzle_mode);
270
271static int
272drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
273				     uint32_t tiling_mode,
274				     uint32_t stride);
275
276static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
277						      time_t time);
278
279static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
280
281static void drm_intel_gem_bo_free(drm_intel_bo *bo);
282
283static unsigned long
284drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
285			   uint32_t *tiling_mode)
286{
287	unsigned long min_size, max_size;
288	unsigned long i;
289
290	if (*tiling_mode == I915_TILING_NONE)
291		return size;
292
293	/* 965+ just need multiples of page size for tiling */
294	if (bufmgr_gem->gen >= 4)
295		return ROUND_UP_TO(size, 4096);
296
297	/* Older chips need powers of two, of at least 512k or 1M */
298	if (bufmgr_gem->gen == 3) {
299		min_size = 1024*1024;
300		max_size = 128*1024*1024;
301	} else {
302		min_size = 512*1024;
303		max_size = 64*1024*1024;
304	}
305
306	if (size > max_size) {
307		*tiling_mode = I915_TILING_NONE;
308		return size;
309	}
310
311	/* Do we need to allocate every page for the fence? */
312	if (bufmgr_gem->has_relaxed_fencing)
313		return ROUND_UP_TO(size, 4096);
314
315	for (i = min_size; i < size; i <<= 1)
316		;
317
318	return i;
319}
320
321/*
322 * Round a given pitch up to the minimum required for X tiling on a
323 * given chip.  We use 512 as the minimum to allow for a later tiling
324 * change.
325 */
326static unsigned long
327drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
328			    unsigned long pitch, uint32_t *tiling_mode)
329{
330	unsigned long tile_width;
331	unsigned long i;
332
333	/* If untiled, then just align it so that we can do rendering
334	 * to it with the 3D engine.
335	 */
336	if (*tiling_mode == I915_TILING_NONE)
337		return ALIGN(pitch, 64);
338
339	if (*tiling_mode == I915_TILING_X
340			|| (IS_915(bufmgr_gem->pci_device)
341			    && *tiling_mode == I915_TILING_Y))
342		tile_width = 512;
343	else
344		tile_width = 128;
345
346	/* 965 is flexible */
347	if (bufmgr_gem->gen >= 4)
348		return ROUND_UP_TO(pitch, tile_width);
349
350	/* The older hardware has a maximum pitch of 8192 with tiled
351	 * surfaces, so fallback to untiled if it's too large.
352	 */
353	if (pitch > 8192) {
354		*tiling_mode = I915_TILING_NONE;
355		return ALIGN(pitch, 64);
356	}
357
358	/* Pre-965 needs power of two tile width */
359	for (i = tile_width; i < pitch; i <<= 1)
360		;
361
362	return i;
363}
364
365static struct drm_intel_gem_bo_bucket *
366drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
367				 unsigned long size)
368{
369	int i;
370
371	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
372		struct drm_intel_gem_bo_bucket *bucket =
373		    &bufmgr_gem->cache_bucket[i];
374		if (bucket->size >= size) {
375			return bucket;
376		}
377	}
378
379	return NULL;
380}
381
382static void
383drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
384{
385	int i, j;
386
387	for (i = 0; i < bufmgr_gem->exec_count; i++) {
388		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
389		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
390
391		if (bo_gem->relocs == NULL) {
392			DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
393			    bo_gem->name);
394			continue;
395		}
396
397		for (j = 0; j < bo_gem->reloc_count; j++) {
398			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
399			drm_intel_bo_gem *target_gem =
400			    (drm_intel_bo_gem *) target_bo;
401
402			DBG("%2d: %d (%s)@0x%08llx -> "
403			    "%d (%s)@0x%08llx + 0x%08x\n",
404			    i,
405			    bo_gem->gem_handle, bo_gem->name,
406			    (unsigned long long)bo_gem->relocs[j].offset,
407			    target_gem->gem_handle,
408			    target_gem->name,
409			    (unsigned long long)target_bo->offset64,
410			    bo_gem->relocs[j].delta);
411		}
412	}
413}
414
415static inline void
416drm_intel_gem_bo_reference(drm_intel_bo *bo)
417{
418	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
419
420	atomic_inc(&bo_gem->refcount);
421}
422
423/**
424 * Adds the given buffer to the list of buffers to be validated (moved into the
425 * appropriate memory type) with the next batch submission.
426 *
427 * If a buffer is validated multiple times in a batch submission, it ends up
428 * with the intersection of the memory type flags and the union of the
429 * access flags.
430 */
431static void
432drm_intel_add_validate_buffer(drm_intel_bo *bo)
433{
434	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
435	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
436	int index;
437
438	if (bo_gem->validate_index != -1)
439		return;
440
441	/* Extend the array of validation entries as necessary. */
442	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
443		int new_size = bufmgr_gem->exec_size * 2;
444
445		if (new_size == 0)
446			new_size = 5;
447
448		bufmgr_gem->exec_objects =
449		    realloc(bufmgr_gem->exec_objects,
450			    sizeof(*bufmgr_gem->exec_objects) * new_size);
451		bufmgr_gem->exec_bos =
452		    realloc(bufmgr_gem->exec_bos,
453			    sizeof(*bufmgr_gem->exec_bos) * new_size);
454		bufmgr_gem->exec_size = new_size;
455	}
456
457	index = bufmgr_gem->exec_count;
458	bo_gem->validate_index = index;
459	/* Fill in array entry */
460	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
461	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
462	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
463	bufmgr_gem->exec_objects[index].alignment = 0;
464	bufmgr_gem->exec_objects[index].offset = 0;
465	bufmgr_gem->exec_bos[index] = bo;
466	bufmgr_gem->exec_count++;
467}
468
469static void
470drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
471{
472	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
473	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
474	int index;
475
476	if (bo_gem->validate_index != -1) {
477		if (need_fence)
478			bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
479				EXEC_OBJECT_NEEDS_FENCE;
480		return;
481	}
482
483	/* Extend the array of validation entries as necessary. */
484	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
485		int new_size = bufmgr_gem->exec_size * 2;
486
487		if (new_size == 0)
488			new_size = 5;
489
490		bufmgr_gem->exec2_objects =
491			realloc(bufmgr_gem->exec2_objects,
492				sizeof(*bufmgr_gem->exec2_objects) * new_size);
493		bufmgr_gem->exec_bos =
494			realloc(bufmgr_gem->exec_bos,
495				sizeof(*bufmgr_gem->exec_bos) * new_size);
496		bufmgr_gem->exec_size = new_size;
497	}
498
499	index = bufmgr_gem->exec_count;
500	bo_gem->validate_index = index;
501	/* Fill in array entry */
502	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
503	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
504	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
505	bufmgr_gem->exec2_objects[index].alignment = 0;
506	bufmgr_gem->exec2_objects[index].offset = 0;
507	bufmgr_gem->exec_bos[index] = bo;
508	bufmgr_gem->exec2_objects[index].flags = 0;
509	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
510	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
511	if (need_fence) {
512		bufmgr_gem->exec2_objects[index].flags |=
513			EXEC_OBJECT_NEEDS_FENCE;
514	}
515	bufmgr_gem->exec_count++;
516}
517
518#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
519	sizeof(uint32_t))
520
521static void
522drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
523				      drm_intel_bo_gem *bo_gem)
524{
525	int size;
526
527	assert(!bo_gem->used_as_reloc_target);
528
529	/* The older chipsets are far-less flexible in terms of tiling,
530	 * and require tiled buffer to be size aligned in the aperture.
531	 * This means that in the worst possible case we will need a hole
532	 * twice as large as the object in order for it to fit into the
533	 * aperture. Optimal packing is for wimps.
534	 */
535	size = bo_gem->bo.size;
536	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
537		int min_size;
538
539		if (bufmgr_gem->has_relaxed_fencing) {
540			if (bufmgr_gem->gen == 3)
541				min_size = 1024*1024;
542			else
543				min_size = 512*1024;
544
545			while (min_size < size)
546				min_size *= 2;
547		} else
548			min_size = size;
549
550		/* Account for worst-case alignment. */
551		size = 2 * min_size;
552	}
553
554	bo_gem->reloc_tree_size = size;
555}
556
557static int
558drm_intel_setup_reloc_list(drm_intel_bo *bo)
559{
560	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
561	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
562	unsigned int max_relocs = bufmgr_gem->max_relocs;
563
564	if (bo->size / 4 < max_relocs)
565		max_relocs = bo->size / 4;
566
567	bo_gem->relocs = malloc(max_relocs *
568				sizeof(struct drm_i915_gem_relocation_entry));
569	bo_gem->reloc_target_info = malloc(max_relocs *
570					   sizeof(drm_intel_reloc_target));
571	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
572		bo_gem->has_error = true;
573
574		free (bo_gem->relocs);
575		bo_gem->relocs = NULL;
576
577		free (bo_gem->reloc_target_info);
578		bo_gem->reloc_target_info = NULL;
579
580		return 1;
581	}
582
583	return 0;
584}
585
586static int
587drm_intel_gem_bo_busy(drm_intel_bo *bo)
588{
589	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
590	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
591	struct drm_i915_gem_busy busy;
592	int ret;
593
594	if (bo_gem->reusable && bo_gem->idle)
595		return false;
596
597	VG_CLEAR(busy);
598	busy.handle = bo_gem->gem_handle;
599
600	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
601	if (ret == 0) {
602		bo_gem->idle = !busy.busy;
603		return busy.busy;
604	} else {
605		return false;
606	}
607	return (ret == 0 && busy.busy);
608}
609
610static int
611drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
612				  drm_intel_bo_gem *bo_gem, int state)
613{
614	struct drm_i915_gem_madvise madv;
615
616	VG_CLEAR(madv);
617	madv.handle = bo_gem->gem_handle;
618	madv.madv = state;
619	madv.retained = 1;
620	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
621
622	return madv.retained;
623}
624
625static int
626drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
627{
628	return drm_intel_gem_bo_madvise_internal
629		((drm_intel_bufmgr_gem *) bo->bufmgr,
630		 (drm_intel_bo_gem *) bo,
631		 madv);
632}
633
634/* drop the oldest entries that have been purged by the kernel */
635static void
636drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
637				    struct drm_intel_gem_bo_bucket *bucket)
638{
639	while (!DRMLISTEMPTY(&bucket->head)) {
640		drm_intel_bo_gem *bo_gem;
641
642		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
643				      bucket->head.next, head);
644		if (drm_intel_gem_bo_madvise_internal
645		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
646			break;
647
648		DRMLISTDEL(&bo_gem->head);
649		drm_intel_gem_bo_free(&bo_gem->bo);
650	}
651}
652
653static drm_intel_bo *
654drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
655				const char *name,
656				unsigned long size,
657				unsigned long flags,
658				uint32_t tiling_mode,
659				unsigned long stride)
660{
661	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
662	drm_intel_bo_gem *bo_gem;
663	unsigned int page_size = getpagesize();
664	int ret;
665	struct drm_intel_gem_bo_bucket *bucket;
666	bool alloc_from_cache;
667	unsigned long bo_size;
668	bool for_render = false;
669
670	if (flags & BO_ALLOC_FOR_RENDER)
671		for_render = true;
672
673	/* Round the allocated size up to a power of two number of pages. */
674	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
675
676	/* If we don't have caching at this size, don't actually round the
677	 * allocation up.
678	 */
679	if (bucket == NULL) {
680		bo_size = size;
681		if (bo_size < page_size)
682			bo_size = page_size;
683	} else {
684		bo_size = bucket->size;
685	}
686
687	pthread_mutex_lock(&bufmgr_gem->lock);
688	/* Get a buffer out of the cache if available */
689retry:
690	alloc_from_cache = false;
691	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
692		if (for_render) {
693			/* Allocate new render-target BOs from the tail (MRU)
694			 * of the list, as it will likely be hot in the GPU
695			 * cache and in the aperture for us.
696			 */
697			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
698					      bucket->head.prev, head);
699			DRMLISTDEL(&bo_gem->head);
700			alloc_from_cache = true;
701		} else {
702			/* For non-render-target BOs (where we're probably
703			 * going to map it first thing in order to fill it
704			 * with data), check if the last BO in the cache is
705			 * unbusy, and only reuse in that case. Otherwise,
706			 * allocating a new buffer is probably faster than
707			 * waiting for the GPU to finish.
708			 */
709			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
710					      bucket->head.next, head);
711			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
712				alloc_from_cache = true;
713				DRMLISTDEL(&bo_gem->head);
714			}
715		}
716
717		if (alloc_from_cache) {
718			if (!drm_intel_gem_bo_madvise_internal
719			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
720				drm_intel_gem_bo_free(&bo_gem->bo);
721				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
722								    bucket);
723				goto retry;
724			}
725
726			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
727								 tiling_mode,
728								 stride)) {
729				drm_intel_gem_bo_free(&bo_gem->bo);
730				goto retry;
731			}
732		}
733	}
734	pthread_mutex_unlock(&bufmgr_gem->lock);
735
736	if (!alloc_from_cache) {
737		struct drm_i915_gem_create create;
738
739		bo_gem = calloc(1, sizeof(*bo_gem));
740		if (!bo_gem)
741			return NULL;
742
743		bo_gem->bo.size = bo_size;
744
745		VG_CLEAR(create);
746		create.size = bo_size;
747
748		ret = drmIoctl(bufmgr_gem->fd,
749			       DRM_IOCTL_I915_GEM_CREATE,
750			       &create);
751		bo_gem->gem_handle = create.handle;
752		bo_gem->bo.handle = bo_gem->gem_handle;
753		if (ret != 0) {
754			free(bo_gem);
755			return NULL;
756		}
757		bo_gem->bo.bufmgr = bufmgr;
758
759		bo_gem->tiling_mode = I915_TILING_NONE;
760		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
761		bo_gem->stride = 0;
762
763		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
764							 tiling_mode,
765							 stride)) {
766		    drm_intel_gem_bo_free(&bo_gem->bo);
767		    return NULL;
768		}
769
770		DRMINITLISTHEAD(&bo_gem->name_list);
771		DRMINITLISTHEAD(&bo_gem->vma_list);
772	}
773
774	bo_gem->name = name;
775	atomic_set(&bo_gem->refcount, 1);
776	bo_gem->validate_index = -1;
777	bo_gem->reloc_tree_fences = 0;
778	bo_gem->used_as_reloc_target = false;
779	bo_gem->has_error = false;
780	bo_gem->reusable = true;
781	bo_gem->aub_annotations = NULL;
782	bo_gem->aub_annotation_count = 0;
783
784	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
785
786	DBG("bo_create: buf %d (%s) %ldb\n",
787	    bo_gem->gem_handle, bo_gem->name, size);
788
789	return &bo_gem->bo;
790}
791
792static drm_intel_bo *
793drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
794				  const char *name,
795				  unsigned long size,
796				  unsigned int alignment)
797{
798	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
799					       BO_ALLOC_FOR_RENDER,
800					       I915_TILING_NONE, 0);
801}
802
803static drm_intel_bo *
804drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
805		       const char *name,
806		       unsigned long size,
807		       unsigned int alignment)
808{
809	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
810					       I915_TILING_NONE, 0);
811}
812
813static drm_intel_bo *
814drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
815			     int x, int y, int cpp, uint32_t *tiling_mode,
816			     unsigned long *pitch, unsigned long flags)
817{
818	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
819	unsigned long size, stride;
820	uint32_t tiling;
821
822	do {
823		unsigned long aligned_y, height_alignment;
824
825		tiling = *tiling_mode;
826
827		/* If we're tiled, our allocations are in 8 or 32-row blocks,
828		 * so failure to align our height means that we won't allocate
829		 * enough pages.
830		 *
831		 * If we're untiled, we still have to align to 2 rows high
832		 * because the data port accesses 2x2 blocks even if the
833		 * bottom row isn't to be rendered, so failure to align means
834		 * we could walk off the end of the GTT and fault.  This is
835		 * documented on 965, and may be the case on older chipsets
836		 * too so we try to be careful.
837		 */
838		aligned_y = y;
839		height_alignment = 2;
840
841		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
842			height_alignment = 16;
843		else if (tiling == I915_TILING_X
844			|| (IS_915(bufmgr_gem->pci_device)
845			    && tiling == I915_TILING_Y))
846			height_alignment = 8;
847		else if (tiling == I915_TILING_Y)
848			height_alignment = 32;
849		aligned_y = ALIGN(y, height_alignment);
850
851		stride = x * cpp;
852		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
853		size = stride * aligned_y;
854		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
855	} while (*tiling_mode != tiling);
856	*pitch = stride;
857
858	if (tiling == I915_TILING_NONE)
859		stride = 0;
860
861	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
862					       tiling, stride);
863}
864
865static drm_intel_bo *
866drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
867				const char *name,
868				void *addr,
869				uint32_t tiling_mode,
870				uint32_t stride,
871				unsigned long size,
872				unsigned long flags)
873{
874	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
875	drm_intel_bo_gem *bo_gem;
876	int ret;
877	struct drm_i915_gem_userptr userptr;
878
879	/* Tiling with userptr surfaces is not supported
880	 * on all hardware so refuse it for time being.
881	 */
882	if (tiling_mode != I915_TILING_NONE)
883		return NULL;
884
885	bo_gem = calloc(1, sizeof(*bo_gem));
886	if (!bo_gem)
887		return NULL;
888
889	bo_gem->bo.size = size;
890
891	VG_CLEAR(userptr);
892	userptr.user_ptr = (__u64)((unsigned long)addr);
893	userptr.user_size = size;
894	userptr.flags = flags;
895
896	ret = drmIoctl(bufmgr_gem->fd,
897			DRM_IOCTL_I915_GEM_USERPTR,
898			&userptr);
899	if (ret != 0) {
900		DBG("bo_create_userptr: "
901		    "ioctl failed with user ptr %p size 0x%lx, "
902		    "user flags 0x%lx\n", addr, size, flags);
903		free(bo_gem);
904		return NULL;
905	}
906
907	bo_gem->gem_handle = userptr.handle;
908	bo_gem->bo.handle = bo_gem->gem_handle;
909	bo_gem->bo.bufmgr    = bufmgr;
910	bo_gem->is_userptr   = true;
911	bo_gem->bo.virtual   = addr;
912	/* Save the address provided by user */
913	bo_gem->user_virtual = addr;
914	bo_gem->tiling_mode  = I915_TILING_NONE;
915	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
916	bo_gem->stride       = 0;
917
918	DRMINITLISTHEAD(&bo_gem->name_list);
919	DRMINITLISTHEAD(&bo_gem->vma_list);
920
921	bo_gem->name = name;
922	atomic_set(&bo_gem->refcount, 1);
923	bo_gem->validate_index = -1;
924	bo_gem->reloc_tree_fences = 0;
925	bo_gem->used_as_reloc_target = false;
926	bo_gem->has_error = false;
927	bo_gem->reusable = false;
928
929	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
930
931	DBG("bo_create_userptr: "
932	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
933		addr, bo_gem->gem_handle, bo_gem->name,
934		size, stride, tiling_mode);
935
936	return &bo_gem->bo;
937}
938
939/**
940 * Returns a drm_intel_bo wrapping the given buffer object handle.
941 *
942 * This can be used when one application needs to pass a buffer object
943 * to another.
944 */
945drm_public drm_intel_bo *
946drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
947				  const char *name,
948				  unsigned int handle)
949{
950	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
951	drm_intel_bo_gem *bo_gem;
952	int ret;
953	struct drm_gem_open open_arg;
954	struct drm_i915_gem_get_tiling get_tiling;
955	drmMMListHead *list;
956
957	/* At the moment most applications only have a few named bo.
958	 * For instance, in a DRI client only the render buffers passed
959	 * between X and the client are named. And since X returns the
960	 * alternating names for the front/back buffer a linear search
961	 * provides a sufficiently fast match.
962	 */
963	pthread_mutex_lock(&bufmgr_gem->lock);
964	for (list = bufmgr_gem->named.next;
965	     list != &bufmgr_gem->named;
966	     list = list->next) {
967		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
968		if (bo_gem->global_name == handle) {
969			drm_intel_gem_bo_reference(&bo_gem->bo);
970			pthread_mutex_unlock(&bufmgr_gem->lock);
971			return &bo_gem->bo;
972		}
973	}
974
975	VG_CLEAR(open_arg);
976	open_arg.name = handle;
977	ret = drmIoctl(bufmgr_gem->fd,
978		       DRM_IOCTL_GEM_OPEN,
979		       &open_arg);
980	if (ret != 0) {
981		DBG("Couldn't reference %s handle 0x%08x: %s\n",
982		    name, handle, strerror(errno));
983		pthread_mutex_unlock(&bufmgr_gem->lock);
984		return NULL;
985	}
986        /* Now see if someone has used a prime handle to get this
987         * object from the kernel before by looking through the list
988         * again for a matching gem_handle
989         */
990	for (list = bufmgr_gem->named.next;
991	     list != &bufmgr_gem->named;
992	     list = list->next) {
993		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
994		if (bo_gem->gem_handle == open_arg.handle) {
995			drm_intel_gem_bo_reference(&bo_gem->bo);
996			pthread_mutex_unlock(&bufmgr_gem->lock);
997			return &bo_gem->bo;
998		}
999	}
1000
1001	bo_gem = calloc(1, sizeof(*bo_gem));
1002	if (!bo_gem) {
1003		pthread_mutex_unlock(&bufmgr_gem->lock);
1004		return NULL;
1005	}
1006
1007	bo_gem->bo.size = open_arg.size;
1008	bo_gem->bo.offset = 0;
1009	bo_gem->bo.offset64 = 0;
1010	bo_gem->bo.virtual = NULL;
1011	bo_gem->bo.bufmgr = bufmgr;
1012	bo_gem->name = name;
1013	atomic_set(&bo_gem->refcount, 1);
1014	bo_gem->validate_index = -1;
1015	bo_gem->gem_handle = open_arg.handle;
1016	bo_gem->bo.handle = open_arg.handle;
1017	bo_gem->global_name = handle;
1018	bo_gem->reusable = false;
1019
1020	VG_CLEAR(get_tiling);
1021	get_tiling.handle = bo_gem->gem_handle;
1022	ret = drmIoctl(bufmgr_gem->fd,
1023		       DRM_IOCTL_I915_GEM_GET_TILING,
1024		       &get_tiling);
1025	if (ret != 0) {
1026		drm_intel_gem_bo_unreference(&bo_gem->bo);
1027		pthread_mutex_unlock(&bufmgr_gem->lock);
1028		return NULL;
1029	}
1030	bo_gem->tiling_mode = get_tiling.tiling_mode;
1031	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1032	/* XXX stride is unknown */
1033	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
1034
1035	DRMINITLISTHEAD(&bo_gem->vma_list);
1036	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1037	pthread_mutex_unlock(&bufmgr_gem->lock);
1038	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1039
1040	return &bo_gem->bo;
1041}
1042
1043static void
1044drm_intel_gem_bo_free(drm_intel_bo *bo)
1045{
1046	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1047	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1048	struct drm_gem_close close;
1049	int ret;
1050
1051	DRMLISTDEL(&bo_gem->vma_list);
1052	if (bo_gem->mem_virtual) {
1053		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1054		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1055		bufmgr_gem->vma_count--;
1056	}
1057	if (bo_gem->gtt_virtual) {
1058		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1059		bufmgr_gem->vma_count--;
1060	}
1061
1062	/* Close this object */
1063	VG_CLEAR(close);
1064	close.handle = bo_gem->gem_handle;
1065	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1066	if (ret != 0) {
1067		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1068		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1069	}
1070	free(bo_gem->aub_annotations);
1071	free(bo);
1072}
1073
1074static void
1075drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1076{
1077#if HAVE_VALGRIND
1078	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1079
1080	if (bo_gem->mem_virtual)
1081		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1082
1083	if (bo_gem->gtt_virtual)
1084		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1085#endif
1086}
1087
1088/** Frees all cached buffers significantly older than @time. */
1089static void
1090drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1091{
1092	int i;
1093
1094	if (bufmgr_gem->time == time)
1095		return;
1096
1097	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1098		struct drm_intel_gem_bo_bucket *bucket =
1099		    &bufmgr_gem->cache_bucket[i];
1100
1101		while (!DRMLISTEMPTY(&bucket->head)) {
1102			drm_intel_bo_gem *bo_gem;
1103
1104			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1105					      bucket->head.next, head);
1106			if (time - bo_gem->free_time <= 1)
1107				break;
1108
1109			DRMLISTDEL(&bo_gem->head);
1110
1111			drm_intel_gem_bo_free(&bo_gem->bo);
1112		}
1113	}
1114
1115	bufmgr_gem->time = time;
1116}
1117
1118static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1119{
1120	int limit;
1121
1122	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1123	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1124
1125	if (bufmgr_gem->vma_max < 0)
1126		return;
1127
1128	/* We may need to evict a few entries in order to create new mmaps */
1129	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1130	if (limit < 0)
1131		limit = 0;
1132
1133	while (bufmgr_gem->vma_count > limit) {
1134		drm_intel_bo_gem *bo_gem;
1135
1136		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1137				      bufmgr_gem->vma_cache.next,
1138				      vma_list);
1139		assert(bo_gem->map_count == 0);
1140		DRMLISTDELINIT(&bo_gem->vma_list);
1141
1142		if (bo_gem->mem_virtual) {
1143			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1144			bo_gem->mem_virtual = NULL;
1145			bufmgr_gem->vma_count--;
1146		}
1147		if (bo_gem->gtt_virtual) {
1148			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1149			bo_gem->gtt_virtual = NULL;
1150			bufmgr_gem->vma_count--;
1151		}
1152	}
1153}
1154
1155static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1156				       drm_intel_bo_gem *bo_gem)
1157{
1158	bufmgr_gem->vma_open--;
1159	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1160	if (bo_gem->mem_virtual)
1161		bufmgr_gem->vma_count++;
1162	if (bo_gem->gtt_virtual)
1163		bufmgr_gem->vma_count++;
1164	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1165}
1166
1167static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1168				      drm_intel_bo_gem *bo_gem)
1169{
1170	bufmgr_gem->vma_open++;
1171	DRMLISTDEL(&bo_gem->vma_list);
1172	if (bo_gem->mem_virtual)
1173		bufmgr_gem->vma_count--;
1174	if (bo_gem->gtt_virtual)
1175		bufmgr_gem->vma_count--;
1176	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1177}
1178
1179static void
1180drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1181{
1182	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1183	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1184	struct drm_intel_gem_bo_bucket *bucket;
1185	int i;
1186
1187	/* Unreference all the target buffers */
1188	for (i = 0; i < bo_gem->reloc_count; i++) {
1189		if (bo_gem->reloc_target_info[i].bo != bo) {
1190			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1191								  reloc_target_info[i].bo,
1192								  time);
1193		}
1194	}
1195	bo_gem->reloc_count = 0;
1196	bo_gem->used_as_reloc_target = false;
1197
1198	DBG("bo_unreference final: %d (%s)\n",
1199	    bo_gem->gem_handle, bo_gem->name);
1200
1201	/* release memory associated with this object */
1202	if (bo_gem->reloc_target_info) {
1203		free(bo_gem->reloc_target_info);
1204		bo_gem->reloc_target_info = NULL;
1205	}
1206	if (bo_gem->relocs) {
1207		free(bo_gem->relocs);
1208		bo_gem->relocs = NULL;
1209	}
1210
1211	/* Clear any left-over mappings */
1212	if (bo_gem->map_count) {
1213		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1214		bo_gem->map_count = 0;
1215		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1216		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1217	}
1218
1219	DRMLISTDEL(&bo_gem->name_list);
1220
1221	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1222	/* Put the buffer into our internal cache for reuse if we can. */
1223	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1224	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1225					      I915_MADV_DONTNEED)) {
1226		bo_gem->free_time = time;
1227
1228		bo_gem->name = NULL;
1229		bo_gem->validate_index = -1;
1230
1231		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1232	} else {
1233		drm_intel_gem_bo_free(bo);
1234	}
1235}
1236
1237static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1238						      time_t time)
1239{
1240	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1241
1242	assert(atomic_read(&bo_gem->refcount) > 0);
1243	if (atomic_dec_and_test(&bo_gem->refcount))
1244		drm_intel_gem_bo_unreference_final(bo, time);
1245}
1246
1247static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1248{
1249	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1250
1251	assert(atomic_read(&bo_gem->refcount) > 0);
1252
1253	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1254		drm_intel_bufmgr_gem *bufmgr_gem =
1255		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1256		struct timespec time;
1257
1258		clock_gettime(CLOCK_MONOTONIC, &time);
1259
1260		pthread_mutex_lock(&bufmgr_gem->lock);
1261
1262		if (atomic_dec_and_test(&bo_gem->refcount)) {
1263			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1264			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1265		}
1266
1267		pthread_mutex_unlock(&bufmgr_gem->lock);
1268	}
1269}
1270
1271static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1272{
1273	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1274	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1275	struct drm_i915_gem_set_domain set_domain;
1276	int ret;
1277
1278	if (bo_gem->is_userptr) {
1279		/* Return the same user ptr */
1280		bo->virtual = bo_gem->user_virtual;
1281		return 0;
1282	}
1283
1284	pthread_mutex_lock(&bufmgr_gem->lock);
1285
1286	if (bo_gem->map_count++ == 0)
1287		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1288
1289	if (!bo_gem->mem_virtual) {
1290		struct drm_i915_gem_mmap mmap_arg;
1291
1292		DBG("bo_map: %d (%s), map_count=%d\n",
1293		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1294
1295		VG_CLEAR(mmap_arg);
1296		mmap_arg.handle = bo_gem->gem_handle;
1297		mmap_arg.offset = 0;
1298		mmap_arg.size = bo->size;
1299		ret = drmIoctl(bufmgr_gem->fd,
1300			       DRM_IOCTL_I915_GEM_MMAP,
1301			       &mmap_arg);
1302		if (ret != 0) {
1303			ret = -errno;
1304			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1305			    __FILE__, __LINE__, bo_gem->gem_handle,
1306			    bo_gem->name, strerror(errno));
1307			if (--bo_gem->map_count == 0)
1308				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1309			pthread_mutex_unlock(&bufmgr_gem->lock);
1310			return ret;
1311		}
1312		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1313		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1314	}
1315	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1316	    bo_gem->mem_virtual);
1317	bo->virtual = bo_gem->mem_virtual;
1318
1319	VG_CLEAR(set_domain);
1320	set_domain.handle = bo_gem->gem_handle;
1321	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1322	if (write_enable)
1323		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1324	else
1325		set_domain.write_domain = 0;
1326	ret = drmIoctl(bufmgr_gem->fd,
1327		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1328		       &set_domain);
1329	if (ret != 0) {
1330		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1331		    __FILE__, __LINE__, bo_gem->gem_handle,
1332		    strerror(errno));
1333	}
1334
1335	if (write_enable)
1336		bo_gem->mapped_cpu_write = true;
1337
1338	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1339	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1340	pthread_mutex_unlock(&bufmgr_gem->lock);
1341
1342	return 0;
1343}
1344
1345static int
1346map_gtt(drm_intel_bo *bo)
1347{
1348	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1349	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1350	int ret;
1351
1352	if (bo_gem->is_userptr)
1353		return -EINVAL;
1354
1355	if (bo_gem->map_count++ == 0)
1356		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1357
1358	/* Get a mapping of the buffer if we haven't before. */
1359	if (bo_gem->gtt_virtual == NULL) {
1360		struct drm_i915_gem_mmap_gtt mmap_arg;
1361
1362		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1363		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1364
1365		VG_CLEAR(mmap_arg);
1366		mmap_arg.handle = bo_gem->gem_handle;
1367
1368		/* Get the fake offset back... */
1369		ret = drmIoctl(bufmgr_gem->fd,
1370			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1371			       &mmap_arg);
1372		if (ret != 0) {
1373			ret = -errno;
1374			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1375			    __FILE__, __LINE__,
1376			    bo_gem->gem_handle, bo_gem->name,
1377			    strerror(errno));
1378			if (--bo_gem->map_count == 0)
1379				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1380			return ret;
1381		}
1382
1383		/* and mmap it */
1384		ret = drmMap(bufmgr_gem->fd, mmap_arg.offset, bo->size,
1385		    &bo_gem->gtt_virtual);
1386		if (ret) {
1387			bo_gem->gtt_virtual = NULL;
1388			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1389			    __FILE__, __LINE__,
1390			    bo_gem->gem_handle, bo_gem->name,
1391			    strerror(errno));
1392			if (--bo_gem->map_count == 0)
1393				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1394			return ret;
1395		}
1396	}
1397
1398	bo->virtual = bo_gem->gtt_virtual;
1399
1400	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1401	    bo_gem->gtt_virtual);
1402
1403	return 0;
1404}
1405
1406drm_public int
1407drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1408{
1409	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1410	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1411	struct drm_i915_gem_set_domain set_domain;
1412	int ret;
1413
1414	pthread_mutex_lock(&bufmgr_gem->lock);
1415
1416	ret = map_gtt(bo);
1417	if (ret) {
1418		pthread_mutex_unlock(&bufmgr_gem->lock);
1419		return ret;
1420	}
1421
1422	/* Now move it to the GTT domain so that the GPU and CPU
1423	 * caches are flushed and the GPU isn't actively using the
1424	 * buffer.
1425	 *
1426	 * The pagefault handler does this domain change for us when
1427	 * it has unbound the BO from the GTT, but it's up to us to
1428	 * tell it when we're about to use things if we had done
1429	 * rendering and it still happens to be bound to the GTT.
1430	 */
1431	VG_CLEAR(set_domain);
1432	set_domain.handle = bo_gem->gem_handle;
1433	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1434	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1435	ret = drmIoctl(bufmgr_gem->fd,
1436		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1437		       &set_domain);
1438	if (ret != 0) {
1439		DBG("%s:%d: Error setting domain %d: %s\n",
1440		    __FILE__, __LINE__, bo_gem->gem_handle,
1441		    strerror(errno));
1442	}
1443
1444	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1445	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1446	pthread_mutex_unlock(&bufmgr_gem->lock);
1447
1448	return 0;
1449}
1450
1451/**
1452 * Performs a mapping of the buffer object like the normal GTT
1453 * mapping, but avoids waiting for the GPU to be done reading from or
1454 * rendering to the buffer.
1455 *
1456 * This is used in the implementation of GL_ARB_map_buffer_range: The
1457 * user asks to create a buffer, then does a mapping, fills some
1458 * space, runs a drawing command, then asks to map it again without
1459 * synchronizing because it guarantees that it won't write over the
1460 * data that the GPU is busy using (or, more specifically, that if it
1461 * does write over the data, it acknowledges that rendering is
1462 * undefined).
1463 */
1464
1465drm_public int
1466drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1467{
1468	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1469#ifdef HAVE_VALGRIND
1470	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1471#endif
1472	int ret;
1473
1474	/* If the CPU cache isn't coherent with the GTT, then use a
1475	 * regular synchronized mapping.  The problem is that we don't
1476	 * track where the buffer was last used on the CPU side in
1477	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1478	 * we would potentially corrupt the buffer even when the user
1479	 * does reasonable things.
1480	 */
1481	if (!bufmgr_gem->has_llc)
1482		return drm_intel_gem_bo_map_gtt(bo);
1483
1484	pthread_mutex_lock(&bufmgr_gem->lock);
1485
1486	ret = map_gtt(bo);
1487	if (ret == 0) {
1488		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1489		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1490	}
1491
1492	pthread_mutex_unlock(&bufmgr_gem->lock);
1493
1494	return ret;
1495}
1496
1497static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1498{
1499	drm_intel_bufmgr_gem *bufmgr_gem;
1500	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1501	int ret = 0;
1502
1503	if (bo == NULL)
1504		return 0;
1505
1506	if (bo_gem->is_userptr)
1507		return 0;
1508
1509	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1510
1511	pthread_mutex_lock(&bufmgr_gem->lock);
1512
1513	if (bo_gem->map_count <= 0) {
1514		DBG("attempted to unmap an unmapped bo\n");
1515		pthread_mutex_unlock(&bufmgr_gem->lock);
1516		/* Preserve the old behaviour of just treating this as a
1517		 * no-op rather than reporting the error.
1518		 */
1519		return 0;
1520	}
1521
1522	if (bo_gem->mapped_cpu_write) {
1523		struct drm_i915_gem_sw_finish sw_finish;
1524
1525		/* Cause a flush to happen if the buffer's pinned for
1526		 * scanout, so the results show up in a timely manner.
1527		 * Unlike GTT set domains, this only does work if the
1528		 * buffer should be scanout-related.
1529		 */
1530		VG_CLEAR(sw_finish);
1531		sw_finish.handle = bo_gem->gem_handle;
1532		ret = drmIoctl(bufmgr_gem->fd,
1533			       DRM_IOCTL_I915_GEM_SW_FINISH,
1534			       &sw_finish);
1535		ret = ret == -1 ? -errno : 0;
1536
1537		bo_gem->mapped_cpu_write = false;
1538	}
1539
1540	/* We need to unmap after every innovation as we cannot track
1541	 * an open vma for every bo as that will exhaasut the system
1542	 * limits and cause later failures.
1543	 */
1544	if (--bo_gem->map_count == 0) {
1545		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1546		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1547		bo->virtual = NULL;
1548	}
1549	pthread_mutex_unlock(&bufmgr_gem->lock);
1550
1551	return ret;
1552}
1553
1554drm_public int
1555drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1556{
1557	return drm_intel_gem_bo_unmap(bo);
1558}
1559
1560static int
1561drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1562			 unsigned long size, const void *data)
1563{
1564	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1565	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1566	struct drm_i915_gem_pwrite pwrite;
1567	int ret;
1568
1569	if (bo_gem->is_userptr)
1570		return -EINVAL;
1571
1572	VG_CLEAR(pwrite);
1573	pwrite.handle = bo_gem->gem_handle;
1574	pwrite.offset = offset;
1575	pwrite.size = size;
1576	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1577	ret = drmIoctl(bufmgr_gem->fd,
1578		       DRM_IOCTL_I915_GEM_PWRITE,
1579		       &pwrite);
1580	if (ret != 0) {
1581		ret = -errno;
1582		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1583		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1584		    (int)size, strerror(errno));
1585	}
1586
1587	return ret;
1588}
1589
1590static int
1591drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1592{
1593	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1594	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1595	int ret;
1596
1597	VG_CLEAR(get_pipe_from_crtc_id);
1598	get_pipe_from_crtc_id.crtc_id = crtc_id;
1599	ret = drmIoctl(bufmgr_gem->fd,
1600		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1601		       &get_pipe_from_crtc_id);
1602	if (ret != 0) {
1603		/* We return -1 here to signal that we don't
1604		 * know which pipe is associated with this crtc.
1605		 * This lets the caller know that this information
1606		 * isn't available; using the wrong pipe for
1607		 * vblank waiting can cause the chipset to lock up
1608		 */
1609		return -1;
1610	}
1611
1612	return get_pipe_from_crtc_id.pipe;
1613}
1614
1615static int
1616drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1617			     unsigned long size, void *data)
1618{
1619	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1620	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1621	struct drm_i915_gem_pread pread;
1622	int ret;
1623
1624	if (bo_gem->is_userptr)
1625		return -EINVAL;
1626
1627	VG_CLEAR(pread);
1628	pread.handle = bo_gem->gem_handle;
1629	pread.offset = offset;
1630	pread.size = size;
1631	pread.data_ptr = (uint64_t) (uintptr_t) data;
1632	ret = drmIoctl(bufmgr_gem->fd,
1633		       DRM_IOCTL_I915_GEM_PREAD,
1634		       &pread);
1635	if (ret != 0) {
1636		ret = -errno;
1637		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1638		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1639		    (int)size, strerror(errno));
1640	}
1641
1642	return ret;
1643}
1644
1645/** Waits for all GPU rendering with the object to have completed. */
1646static void
1647drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1648{
1649	drm_intel_gem_bo_start_gtt_access(bo, 1);
1650}
1651
1652/**
1653 * Waits on a BO for the given amount of time.
1654 *
1655 * @bo: buffer object to wait for
1656 * @timeout_ns: amount of time to wait in nanoseconds.
1657 *   If value is less than 0, an infinite wait will occur.
1658 *
1659 * Returns 0 if the wait was successful ie. the last batch referencing the
1660 * object has completed within the allotted time. Otherwise some negative return
1661 * value describes the error. Of particular interest is -ETIME when the wait has
1662 * failed to yield the desired result.
1663 *
1664 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1665 * the operation to give up after a certain amount of time. Another subtle
1666 * difference is the internal locking semantics are different (this variant does
1667 * not hold the lock for the duration of the wait). This makes the wait subject
1668 * to a larger userspace race window.
1669 *
1670 * The implementation shall wait until the object is no longer actively
1671 * referenced within a batch buffer at the time of the call. The wait will
1672 * not guarantee that the buffer is re-issued via another thread, or an flinked
1673 * handle. Userspace must make sure this race does not occur if such precision
1674 * is important.
1675 */
1676drm_public int
1677drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1678{
1679	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1680	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1681	struct drm_i915_gem_wait wait;
1682	int ret;
1683
1684	if (!bufmgr_gem->has_wait_timeout) {
1685		DBG("%s:%d: Timed wait is not supported. Falling back to "
1686		    "infinite wait\n", __FILE__, __LINE__);
1687		if (timeout_ns) {
1688			drm_intel_gem_bo_wait_rendering(bo);
1689			return 0;
1690		} else {
1691			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1692		}
1693	}
1694
1695	wait.bo_handle = bo_gem->gem_handle;
1696	wait.timeout_ns = timeout_ns;
1697	wait.flags = 0;
1698	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1699	if (ret == -1)
1700		return -errno;
1701
1702	return ret;
1703}
1704
1705/**
1706 * Sets the object to the GTT read and possibly write domain, used by the X
1707 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1708 *
1709 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1710 * can do tiled pixmaps this way.
1711 */
1712drm_public void
1713drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1714{
1715	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1716	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1717	struct drm_i915_gem_set_domain set_domain;
1718	int ret;
1719
1720	VG_CLEAR(set_domain);
1721	set_domain.handle = bo_gem->gem_handle;
1722	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1723	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1724	ret = drmIoctl(bufmgr_gem->fd,
1725		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1726		       &set_domain);
1727	if (ret != 0) {
1728		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1729		    __FILE__, __LINE__, bo_gem->gem_handle,
1730		    set_domain.read_domains, set_domain.write_domain,
1731		    strerror(errno));
1732	}
1733}
1734
1735static void
1736drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1737{
1738	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1739	int i;
1740
1741	free(bufmgr_gem->exec2_objects);
1742	free(bufmgr_gem->exec_objects);
1743	free(bufmgr_gem->exec_bos);
1744	free(bufmgr_gem->aub_filename);
1745
1746	pthread_mutex_destroy(&bufmgr_gem->lock);
1747
1748	/* Free any cached buffer objects we were going to reuse */
1749	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1750		struct drm_intel_gem_bo_bucket *bucket =
1751		    &bufmgr_gem->cache_bucket[i];
1752		drm_intel_bo_gem *bo_gem;
1753
1754		while (!DRMLISTEMPTY(&bucket->head)) {
1755			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1756					      bucket->head.next, head);
1757			DRMLISTDEL(&bo_gem->head);
1758
1759			drm_intel_gem_bo_free(&bo_gem->bo);
1760		}
1761	}
1762
1763	free(bufmgr);
1764}
1765
1766/**
1767 * Adds the target buffer to the validation list and adds the relocation
1768 * to the reloc_buffer's relocation list.
1769 *
1770 * The relocation entry at the given offset must already contain the
1771 * precomputed relocation value, because the kernel will optimize out
1772 * the relocation entry write when the buffer hasn't moved from the
1773 * last known offset in target_bo.
1774 */
1775static int
1776do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1777		 drm_intel_bo *target_bo, uint32_t target_offset,
1778		 uint32_t read_domains, uint32_t write_domain,
1779		 bool need_fence)
1780{
1781	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1782	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1783	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1784	bool fenced_command;
1785
1786	if (bo_gem->has_error)
1787		return -ENOMEM;
1788
1789	if (target_bo_gem->has_error) {
1790		bo_gem->has_error = true;
1791		return -ENOMEM;
1792	}
1793
1794	/* We never use HW fences for rendering on 965+ */
1795	if (bufmgr_gem->gen >= 4)
1796		need_fence = false;
1797
1798	fenced_command = need_fence;
1799	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1800		need_fence = false;
1801
1802	/* Create a new relocation list if needed */
1803	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1804		return -ENOMEM;
1805
1806	/* Check overflow */
1807	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1808
1809	/* Check args */
1810	assert(offset <= bo->size - 4);
1811	assert((write_domain & (write_domain - 1)) == 0);
1812
1813	/* Make sure that we're not adding a reloc to something whose size has
1814	 * already been accounted for.
1815	 */
1816	assert(!bo_gem->used_as_reloc_target);
1817	if (target_bo_gem != bo_gem) {
1818		target_bo_gem->used_as_reloc_target = true;
1819		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1820	}
1821	/* An object needing a fence is a tiled buffer, so it won't have
1822	 * relocs to other buffers.
1823	 */
1824	if (need_fence)
1825		target_bo_gem->reloc_tree_fences = 1;
1826	bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1827
1828	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1829	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1830	bo_gem->relocs[bo_gem->reloc_count].target_handle =
1831	    target_bo_gem->gem_handle;
1832	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1833	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1834	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
1835
1836	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1837	if (target_bo != bo)
1838		drm_intel_gem_bo_reference(target_bo);
1839	if (fenced_command)
1840		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1841			DRM_INTEL_RELOC_FENCE;
1842	else
1843		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1844
1845	bo_gem->reloc_count++;
1846
1847	return 0;
1848}
1849
1850static int
1851drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1852			    drm_intel_bo *target_bo, uint32_t target_offset,
1853			    uint32_t read_domains, uint32_t write_domain)
1854{
1855	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1856
1857	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1858				read_domains, write_domain,
1859				!bufmgr_gem->fenced_relocs);
1860}
1861
1862static int
1863drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1864				  drm_intel_bo *target_bo,
1865				  uint32_t target_offset,
1866				  uint32_t read_domains, uint32_t write_domain)
1867{
1868	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1869				read_domains, write_domain, true);
1870}
1871
1872drm_public int
1873drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1874{
1875	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1876
1877	return bo_gem->reloc_count;
1878}
1879
1880/**
1881 * Removes existing relocation entries in the BO after "start".
1882 *
1883 * This allows a user to avoid a two-step process for state setup with
1884 * counting up all the buffer objects and doing a
1885 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1886 * relocations for the state setup.  Instead, save the state of the
1887 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1888 * state, and then check if it still fits in the aperture.
1889 *
1890 * Any further drm_intel_bufmgr_check_aperture_space() queries
1891 * involving this buffer in the tree are undefined after this call.
1892 */
1893drm_public void
1894drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1895{
1896	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1897	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1898	int i;
1899	struct timespec time;
1900
1901	clock_gettime(CLOCK_MONOTONIC, &time);
1902
1903	assert(bo_gem->reloc_count >= start);
1904
1905	/* Unreference the cleared target buffers */
1906	pthread_mutex_lock(&bufmgr_gem->lock);
1907
1908	for (i = start; i < bo_gem->reloc_count; i++) {
1909		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
1910		if (&target_bo_gem->bo != bo) {
1911			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
1912			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
1913								  time.tv_sec);
1914		}
1915	}
1916	bo_gem->reloc_count = start;
1917
1918	pthread_mutex_unlock(&bufmgr_gem->lock);
1919
1920}
1921
1922/**
1923 * Walk the tree of relocations rooted at BO and accumulate the list of
1924 * validations to be performed and update the relocation buffers with
1925 * index values into the validation list.
1926 */
1927static void
1928drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
1929{
1930	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1931	int i;
1932
1933	if (bo_gem->relocs == NULL)
1934		return;
1935
1936	for (i = 0; i < bo_gem->reloc_count; i++) {
1937		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1938
1939		if (target_bo == bo)
1940			continue;
1941
1942		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1943
1944		/* Continue walking the tree depth-first. */
1945		drm_intel_gem_bo_process_reloc(target_bo);
1946
1947		/* Add the target to the validate list */
1948		drm_intel_add_validate_buffer(target_bo);
1949	}
1950}
1951
1952static void
1953drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
1954{
1955	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1956	int i;
1957
1958	if (bo_gem->relocs == NULL)
1959		return;
1960
1961	for (i = 0; i < bo_gem->reloc_count; i++) {
1962		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1963		int need_fence;
1964
1965		if (target_bo == bo)
1966			continue;
1967
1968		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1969
1970		/* Continue walking the tree depth-first. */
1971		drm_intel_gem_bo_process_reloc2(target_bo);
1972
1973		need_fence = (bo_gem->reloc_target_info[i].flags &
1974			      DRM_INTEL_RELOC_FENCE);
1975
1976		/* Add the target to the validate list */
1977		drm_intel_add_validate_buffer2(target_bo, need_fence);
1978	}
1979}
1980
1981
1982static void
1983drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
1984{
1985	int i;
1986
1987	for (i = 0; i < bufmgr_gem->exec_count; i++) {
1988		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1989		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1990
1991		/* Update the buffer offset */
1992		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
1993			DBG("BO %d (%s) migrated: 0x%08llx -> 0x%08llx\n",
1994			    bo_gem->gem_handle, bo_gem->name,
1995			    (unsigned long long)bo->offset64,
1996			    (unsigned long long)bufmgr_gem->exec_objects[i].
1997			    offset);
1998			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
1999			bo->offset = bufmgr_gem->exec_objects[i].offset;
2000		}
2001	}
2002}
2003
2004static void
2005drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2006{
2007	int i;
2008
2009	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2010		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2011		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2012
2013		/* Update the buffer offset */
2014		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2015			DBG("BO %d (%s) migrated: 0x%08llx -> 0x%08llx\n",
2016			    bo_gem->gem_handle, bo_gem->name,
2017			    (unsigned long long)bo->offset64,
2018			    (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
2019			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2020			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2021		}
2022	}
2023}
2024
2025static void
2026aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
2027{
2028	fwrite(&data, 1, 4, bufmgr_gem->aub_file);
2029}
2030
2031static void
2032aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
2033{
2034	fwrite(data, 1, size, bufmgr_gem->aub_file);
2035}
2036
2037static void
2038aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
2039{
2040	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2041	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2042	uint32_t *data;
2043	unsigned int i;
2044
2045	data = malloc(bo->size);
2046	drm_intel_bo_get_subdata(bo, offset, size, data);
2047
2048	/* Easy mode: write out bo with no relocations */
2049	if (!bo_gem->reloc_count) {
2050		aub_out_data(bufmgr_gem, data, size);
2051		free(data);
2052		return;
2053	}
2054
2055	/* Otherwise, handle the relocations while writing. */
2056	for (i = 0; i < size / 4; i++) {
2057		int r;
2058		for (r = 0; r < bo_gem->reloc_count; r++) {
2059			struct drm_i915_gem_relocation_entry *reloc;
2060			drm_intel_reloc_target *info;
2061
2062			reloc = &bo_gem->relocs[r];
2063			info = &bo_gem->reloc_target_info[r];
2064
2065			if (reloc->offset == offset + i * 4) {
2066				drm_intel_bo_gem *target_gem;
2067				uint32_t val;
2068
2069				target_gem = (drm_intel_bo_gem *)info->bo;
2070
2071				val = reloc->delta;
2072				val += target_gem->aub_offset;
2073
2074				aub_out(bufmgr_gem, val);
2075				data[i] = val;
2076				break;
2077			}
2078		}
2079		if (r == bo_gem->reloc_count) {
2080			/* no relocation, just the data */
2081			aub_out(bufmgr_gem, data[i]);
2082		}
2083	}
2084
2085	free(data);
2086}
2087
2088static void
2089aub_bo_get_address(drm_intel_bo *bo)
2090{
2091	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2092	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2093
2094	/* Give the object a graphics address in the AUB file.  We
2095	 * don't just use the GEM object address because we do AUB
2096	 * dumping before execution -- we want to successfully log
2097	 * when the hardware might hang, and we might even want to aub
2098	 * capture for a driver trying to execute on a different
2099	 * generation of hardware by disabling the actual kernel exec
2100	 * call.
2101	 */
2102	bo_gem->aub_offset = bufmgr_gem->aub_offset;
2103	bufmgr_gem->aub_offset += bo->size;
2104	/* XXX: Handle aperture overflow. */
2105	assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
2106}
2107
2108static void
2109aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2110		      uint32_t offset, uint32_t size)
2111{
2112	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2113	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2114
2115	aub_out(bufmgr_gem,
2116		CMD_AUB_TRACE_HEADER_BLOCK |
2117		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2118	aub_out(bufmgr_gem,
2119		AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
2120	aub_out(bufmgr_gem, subtype);
2121	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2122	aub_out(bufmgr_gem, size);
2123	if (bufmgr_gem->gen >= 8)
2124		aub_out(bufmgr_gem, 0);
2125	aub_write_bo_data(bo, offset, size);
2126}
2127
2128/**
2129 * Break up large objects into multiple writes.  Otherwise a 128kb VBO
2130 * would overflow the 16 bits of size field in the packet header and
2131 * everything goes badly after that.
2132 */
2133static void
2134aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2135			    uint32_t offset, uint32_t size)
2136{
2137	uint32_t block_size;
2138	uint32_t sub_offset;
2139
2140	for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
2141		block_size = size - sub_offset;
2142
2143		if (block_size > 8 * 4096)
2144			block_size = 8 * 4096;
2145
2146		aub_write_trace_block(bo, type, subtype, offset + sub_offset,
2147				      block_size);
2148	}
2149}
2150
2151static void
2152aub_write_bo(drm_intel_bo *bo)
2153{
2154	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2155	uint32_t offset = 0;
2156	unsigned i;
2157
2158	aub_bo_get_address(bo);
2159
2160	/* Write out each annotated section separately. */
2161	for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
2162		drm_intel_aub_annotation *annotation =
2163			&bo_gem->aub_annotations[i];
2164		uint32_t ending_offset = annotation->ending_offset;
2165		if (ending_offset > bo->size)
2166			ending_offset = bo->size;
2167		if (ending_offset > offset) {
2168			aub_write_large_trace_block(bo, annotation->type,
2169						    annotation->subtype,
2170						    offset,
2171						    ending_offset - offset);
2172			offset = ending_offset;
2173		}
2174	}
2175
2176	/* Write out any remaining unannotated data */
2177	if (offset < bo->size) {
2178		aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
2179					    offset, bo->size - offset);
2180	}
2181}
2182
2183/*
2184 * Make a ringbuffer on fly and dump it
2185 */
2186static void
2187aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2188			  uint32_t batch_buffer, int ring_flag)
2189{
2190	uint32_t ringbuffer[4096];
2191	int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2192	int ring_count = 0;
2193
2194	if (ring_flag == I915_EXEC_BSD)
2195		ring = AUB_TRACE_TYPE_RING_PRB1;
2196	else if (ring_flag == I915_EXEC_BLT)
2197		ring = AUB_TRACE_TYPE_RING_PRB2;
2198
2199	/* Make a ring buffer to execute our batchbuffer. */
2200	memset(ringbuffer, 0, sizeof(ringbuffer));
2201	if (bufmgr_gem->gen >= 8) {
2202		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
2203		ringbuffer[ring_count++] = batch_buffer;
2204		ringbuffer[ring_count++] = 0;
2205	} else {
2206		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2207		ringbuffer[ring_count++] = batch_buffer;
2208	}
2209
2210	/* Write out the ring.  This appears to trigger execution of
2211	 * the ring in the simulator.
2212	 */
2213	aub_out(bufmgr_gem,
2214		CMD_AUB_TRACE_HEADER_BLOCK |
2215		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2216	aub_out(bufmgr_gem,
2217		AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2218	aub_out(bufmgr_gem, 0); /* general/surface subtype */
2219	aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2220	aub_out(bufmgr_gem, ring_count * 4);
2221	if (bufmgr_gem->gen >= 8)
2222		aub_out(bufmgr_gem, 0);
2223
2224	/* FIXME: Need some flush operations here? */
2225	aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2226
2227	/* Update offset pointer */
2228	bufmgr_gem->aub_offset += 4096;
2229}
2230
2231drm_public void
2232drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2233			      int x1, int y1, int width, int height,
2234			      enum aub_dump_bmp_format format,
2235			      int pitch, int offset)
2236{
2237	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2238	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2239	uint32_t cpp;
2240
2241	switch (format) {
2242	case AUB_DUMP_BMP_FORMAT_8BIT:
2243		cpp = 1;
2244		break;
2245	case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2246		cpp = 2;
2247		break;
2248	case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2249	case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2250		cpp = 4;
2251		break;
2252	default:
2253		printf("Unknown AUB dump format %d\n", format);
2254		return;
2255	}
2256
2257	if (!bufmgr_gem->aub_file)
2258		return;
2259
2260	aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2261	aub_out(bufmgr_gem, (y1 << 16) | x1);
2262	aub_out(bufmgr_gem,
2263		(format << 24) |
2264		(cpp << 19) |
2265		pitch / 4);
2266	aub_out(bufmgr_gem, (height << 16) | width);
2267	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2268	aub_out(bufmgr_gem,
2269		((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2270		((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2271}
2272
2273static void
2274aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2275{
2276	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2277	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2278	int i;
2279	bool batch_buffer_needs_annotations;
2280
2281	if (!bufmgr_gem->aub_file)
2282		return;
2283
2284	/* If batch buffer is not annotated, annotate it the best we
2285	 * can.
2286	 */
2287	batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2288	if (batch_buffer_needs_annotations) {
2289		drm_intel_aub_annotation annotations[2] = {
2290			{ AUB_TRACE_TYPE_BATCH, 0, used },
2291			{ AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2292		};
2293		drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2294	}
2295
2296	/* Write out all buffers to AUB memory */
2297	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2298		aub_write_bo(bufmgr_gem->exec_bos[i]);
2299	}
2300
2301	/* Remove any annotations we added */
2302	if (batch_buffer_needs_annotations)
2303		drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2304
2305	/* Dump ring buffer */
2306	aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2307
2308	fflush(bufmgr_gem->aub_file);
2309
2310	/*
2311	 * One frame has been dumped. So reset the aub_offset for the next frame.
2312	 *
2313	 * FIXME: Can we do this?
2314	 */
2315	bufmgr_gem->aub_offset = 0x10000;
2316}
2317
2318static int
2319drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2320		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2321{
2322	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2323	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2324	struct drm_i915_gem_execbuffer execbuf;
2325	int ret, i;
2326
2327	if (bo_gem->has_error)
2328		return -ENOMEM;
2329
2330	pthread_mutex_lock(&bufmgr_gem->lock);
2331	/* Update indices and set up the validate list. */
2332	drm_intel_gem_bo_process_reloc(bo);
2333
2334	/* Add the batch buffer to the validation list.  There are no
2335	 * relocations pointing to it.
2336	 */
2337	drm_intel_add_validate_buffer(bo);
2338
2339	VG_CLEAR(execbuf);
2340	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2341	execbuf.buffer_count = bufmgr_gem->exec_count;
2342	execbuf.batch_start_offset = 0;
2343	execbuf.batch_len = used;
2344	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2345	execbuf.num_cliprects = num_cliprects;
2346	execbuf.DR1 = 0;
2347	execbuf.DR4 = DR4;
2348
2349	ret = drmIoctl(bufmgr_gem->fd,
2350		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2351		       &execbuf);
2352	if (ret != 0) {
2353		ret = -errno;
2354		if (errno == ENOSPC) {
2355			DBG("Execbuffer fails to pin. "
2356			    "Estimate: %u. Actual: %u. Available: %u\n",
2357			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2358							       bufmgr_gem->
2359							       exec_count),
2360			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2361							      bufmgr_gem->
2362							      exec_count),
2363			    (unsigned int)bufmgr_gem->gtt_size);
2364		}
2365	}
2366	drm_intel_update_buffer_offsets(bufmgr_gem);
2367
2368	if (bufmgr_gem->bufmgr.debug)
2369		drm_intel_gem_dump_validation_list(bufmgr_gem);
2370
2371	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2372		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2373		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2374
2375		bo_gem->idle = false;
2376
2377		/* Disconnect the buffer from the validate list */
2378		bo_gem->validate_index = -1;
2379		bufmgr_gem->exec_bos[i] = NULL;
2380	}
2381	bufmgr_gem->exec_count = 0;
2382	pthread_mutex_unlock(&bufmgr_gem->lock);
2383
2384	return ret;
2385}
2386
2387static int
2388do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2389	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2390	 unsigned int flags)
2391{
2392	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2393	struct drm_i915_gem_execbuffer2 execbuf;
2394	int ret = 0;
2395	int i;
2396
2397	switch (flags & 0x7) {
2398	default:
2399		return -EINVAL;
2400	case I915_EXEC_BLT:
2401		if (!bufmgr_gem->has_blt)
2402			return -EINVAL;
2403		break;
2404	case I915_EXEC_BSD:
2405		if (!bufmgr_gem->has_bsd)
2406			return -EINVAL;
2407		break;
2408	case I915_EXEC_VEBOX:
2409		if (!bufmgr_gem->has_vebox)
2410			return -EINVAL;
2411		break;
2412	case I915_EXEC_RENDER:
2413	case I915_EXEC_DEFAULT:
2414		break;
2415	}
2416
2417	pthread_mutex_lock(&bufmgr_gem->lock);
2418	/* Update indices and set up the validate list. */
2419	drm_intel_gem_bo_process_reloc2(bo);
2420
2421	/* Add the batch buffer to the validation list.  There are no relocations
2422	 * pointing to it.
2423	 */
2424	drm_intel_add_validate_buffer2(bo, 0);
2425
2426	VG_CLEAR(execbuf);
2427	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2428	execbuf.buffer_count = bufmgr_gem->exec_count;
2429	execbuf.batch_start_offset = 0;
2430	execbuf.batch_len = used;
2431	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2432	execbuf.num_cliprects = num_cliprects;
2433	execbuf.DR1 = 0;
2434	execbuf.DR4 = DR4;
2435	execbuf.flags = flags;
2436	if (ctx == NULL)
2437		i915_execbuffer2_set_context_id(execbuf, 0);
2438	else
2439		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2440	execbuf.rsvd2 = 0;
2441
2442	aub_exec(bo, flags, used);
2443
2444	if (bufmgr_gem->no_exec)
2445		goto skip_execution;
2446
2447	ret = drmIoctl(bufmgr_gem->fd,
2448		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2449		       &execbuf);
2450	if (ret != 0) {
2451		ret = -errno;
2452		if (ret == -ENOSPC) {
2453			DBG("Execbuffer fails to pin. "
2454			    "Estimate: %u. Actual: %u. Available: %u\n",
2455			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2456							       bufmgr_gem->exec_count),
2457			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2458							      bufmgr_gem->exec_count),
2459			    (unsigned int) bufmgr_gem->gtt_size);
2460		}
2461	}
2462	drm_intel_update_buffer_offsets2(bufmgr_gem);
2463
2464skip_execution:
2465	if (bufmgr_gem->bufmgr.debug)
2466		drm_intel_gem_dump_validation_list(bufmgr_gem);
2467
2468	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2469		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2470		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2471
2472		bo_gem->idle = false;
2473
2474		/* Disconnect the buffer from the validate list */
2475		bo_gem->validate_index = -1;
2476		bufmgr_gem->exec_bos[i] = NULL;
2477	}
2478	bufmgr_gem->exec_count = 0;
2479	pthread_mutex_unlock(&bufmgr_gem->lock);
2480
2481	return ret;
2482}
2483
2484static int
2485drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2486		       drm_clip_rect_t *cliprects, int num_cliprects,
2487		       int DR4)
2488{
2489	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2490			I915_EXEC_RENDER);
2491}
2492
2493static int
2494drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2495			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2496			unsigned int flags)
2497{
2498	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2499			flags);
2500}
2501
2502drm_public int
2503drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2504			      int used, unsigned int flags)
2505{
2506	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2507}
2508
2509static int
2510drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2511{
2512	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2513	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2514	struct drm_i915_gem_pin pin;
2515	int ret;
2516
2517	VG_CLEAR(pin);
2518	pin.handle = bo_gem->gem_handle;
2519	pin.alignment = alignment;
2520
2521	ret = drmIoctl(bufmgr_gem->fd,
2522		       DRM_IOCTL_I915_GEM_PIN,
2523		       &pin);
2524	if (ret != 0)
2525		return -errno;
2526
2527	bo->offset64 = pin.offset;
2528	bo->offset = pin.offset;
2529	return 0;
2530}
2531
2532static int
2533drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2534{
2535	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2536	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2537	struct drm_i915_gem_unpin unpin;
2538	int ret;
2539
2540	VG_CLEAR(unpin);
2541	unpin.handle = bo_gem->gem_handle;
2542
2543	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2544	if (ret != 0)
2545		return -errno;
2546
2547	return 0;
2548}
2549
2550static int
2551drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2552				     uint32_t tiling_mode,
2553				     uint32_t stride)
2554{
2555	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2556	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2557	struct drm_i915_gem_set_tiling set_tiling;
2558	int ret;
2559
2560	if (bo_gem->global_name == 0 &&
2561	    tiling_mode == bo_gem->tiling_mode &&
2562	    stride == bo_gem->stride)
2563		return 0;
2564
2565	memset(&set_tiling, 0, sizeof(set_tiling));
2566	do {
2567		/* set_tiling is slightly broken and overwrites the
2568		 * input on the error path, so we have to open code
2569		 * rmIoctl.
2570		 */
2571		set_tiling.handle = bo_gem->gem_handle;
2572		set_tiling.tiling_mode = tiling_mode;
2573		set_tiling.stride = stride;
2574
2575		ret = ioctl(bufmgr_gem->fd,
2576			    DRM_IOCTL_I915_GEM_SET_TILING,
2577			    &set_tiling);
2578	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2579	if (ret == -1)
2580		return -errno;
2581
2582	bo_gem->tiling_mode = set_tiling.tiling_mode;
2583	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2584	bo_gem->stride = set_tiling.stride;
2585	return 0;
2586}
2587
2588static int
2589drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2590			    uint32_t stride)
2591{
2592	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2593	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2594	int ret;
2595
2596	/* Tiling with userptr surfaces is not supported
2597	 * on all hardware so refuse it for time being.
2598	 */
2599	if (bo_gem->is_userptr)
2600		return -EINVAL;
2601
2602	/* Linear buffers have no stride. By ensuring that we only ever use
2603	 * stride 0 with linear buffers, we simplify our code.
2604	 */
2605	if (*tiling_mode == I915_TILING_NONE)
2606		stride = 0;
2607
2608	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2609	if (ret == 0)
2610		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2611
2612	*tiling_mode = bo_gem->tiling_mode;
2613	return ret;
2614}
2615
2616static int
2617drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2618			    uint32_t * swizzle_mode)
2619{
2620	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2621
2622	*tiling_mode = bo_gem->tiling_mode;
2623	*swizzle_mode = bo_gem->swizzle_mode;
2624	return 0;
2625}
2626
2627drm_public drm_intel_bo *
2628drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2629{
2630	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2631	int ret;
2632	uint32_t handle;
2633	drm_intel_bo_gem *bo_gem;
2634	struct drm_i915_gem_get_tiling get_tiling;
2635	drmMMListHead *list;
2636
2637	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2638
2639	/*
2640	 * See if the kernel has already returned this buffer to us. Just as
2641	 * for named buffers, we must not create two bo's pointing at the same
2642	 * kernel object
2643	 */
2644	pthread_mutex_lock(&bufmgr_gem->lock);
2645	for (list = bufmgr_gem->named.next;
2646	     list != &bufmgr_gem->named;
2647	     list = list->next) {
2648		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2649		if (bo_gem->gem_handle == handle) {
2650			drm_intel_gem_bo_reference(&bo_gem->bo);
2651			pthread_mutex_unlock(&bufmgr_gem->lock);
2652			return &bo_gem->bo;
2653		}
2654	}
2655
2656	if (ret) {
2657	  fprintf(stderr,"ret is %d %d\n", ret, errno);
2658	  pthread_mutex_unlock(&bufmgr_gem->lock);
2659		return NULL;
2660	}
2661
2662	bo_gem = calloc(1, sizeof(*bo_gem));
2663	if (!bo_gem) {
2664		pthread_mutex_unlock(&bufmgr_gem->lock);
2665		return NULL;
2666	}
2667	/* Determine size of bo.  The fd-to-handle ioctl really should
2668	 * return the size, but it doesn't.  If we have kernel 3.12 or
2669	 * later, we can lseek on the prime fd to get the size.  Older
2670	 * kernels will just fail, in which case we fall back to the
2671	 * provided (estimated or guess size). */
2672	ret = lseek(prime_fd, 0, SEEK_END);
2673	if (ret != -1)
2674		bo_gem->bo.size = ret;
2675	else
2676		bo_gem->bo.size = size;
2677
2678	bo_gem->bo.handle = handle;
2679	bo_gem->bo.bufmgr = bufmgr;
2680
2681	bo_gem->gem_handle = handle;
2682
2683	atomic_set(&bo_gem->refcount, 1);
2684
2685	bo_gem->name = "prime";
2686	bo_gem->validate_index = -1;
2687	bo_gem->reloc_tree_fences = 0;
2688	bo_gem->used_as_reloc_target = false;
2689	bo_gem->has_error = false;
2690	bo_gem->reusable = false;
2691
2692	DRMINITLISTHEAD(&bo_gem->vma_list);
2693	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2694	pthread_mutex_unlock(&bufmgr_gem->lock);
2695
2696	VG_CLEAR(get_tiling);
2697	get_tiling.handle = bo_gem->gem_handle;
2698	ret = drmIoctl(bufmgr_gem->fd,
2699		       DRM_IOCTL_I915_GEM_GET_TILING,
2700		       &get_tiling);
2701	if (ret != 0) {
2702		drm_intel_gem_bo_unreference(&bo_gem->bo);
2703		return NULL;
2704	}
2705	bo_gem->tiling_mode = get_tiling.tiling_mode;
2706	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2707	/* XXX stride is unknown */
2708	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2709
2710	return &bo_gem->bo;
2711}
2712
2713drm_public int
2714drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2715{
2716	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2717	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2718
2719	pthread_mutex_lock(&bufmgr_gem->lock);
2720        if (DRMLISTEMPTY(&bo_gem->name_list))
2721                DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2722	pthread_mutex_unlock(&bufmgr_gem->lock);
2723
2724	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2725			       DRM_CLOEXEC, prime_fd) != 0)
2726		return -errno;
2727
2728	bo_gem->reusable = false;
2729
2730	return 0;
2731}
2732
2733static int
2734drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2735{
2736	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2737	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2738	int ret;
2739
2740	if (!bo_gem->global_name) {
2741		struct drm_gem_flink flink;
2742
2743		VG_CLEAR(flink);
2744		flink.handle = bo_gem->gem_handle;
2745
2746		pthread_mutex_lock(&bufmgr_gem->lock);
2747
2748		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2749		if (ret != 0) {
2750			pthread_mutex_unlock(&bufmgr_gem->lock);
2751			return -errno;
2752		}
2753
2754		bo_gem->global_name = flink.name;
2755		bo_gem->reusable = false;
2756
2757                if (DRMLISTEMPTY(&bo_gem->name_list))
2758                        DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2759		pthread_mutex_unlock(&bufmgr_gem->lock);
2760	}
2761
2762	*name = bo_gem->global_name;
2763	return 0;
2764}
2765
2766/**
2767 * Enables unlimited caching of buffer objects for reuse.
2768 *
2769 * This is potentially very memory expensive, as the cache at each bucket
2770 * size is only bounded by how many buffers of that size we've managed to have
2771 * in flight at once.
2772 */
2773drm_public void
2774drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2775{
2776	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2777
2778	bufmgr_gem->bo_reuse = true;
2779}
2780
2781/**
2782 * Enable use of fenced reloc type.
2783 *
2784 * New code should enable this to avoid unnecessary fence register
2785 * allocation.  If this option is not enabled, all relocs will have fence
2786 * register allocated.
2787 */
2788drm_public void
2789drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2790{
2791	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2792
2793	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2794		bufmgr_gem->fenced_relocs = true;
2795}
2796
2797/**
2798 * Return the additional aperture space required by the tree of buffer objects
2799 * rooted at bo.
2800 */
2801static int
2802drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2803{
2804	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2805	int i;
2806	int total = 0;
2807
2808	if (bo == NULL || bo_gem->included_in_check_aperture)
2809		return 0;
2810
2811	total += bo->size;
2812	bo_gem->included_in_check_aperture = true;
2813
2814	for (i = 0; i < bo_gem->reloc_count; i++)
2815		total +=
2816		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2817							reloc_target_info[i].bo);
2818
2819	return total;
2820}
2821
2822/**
2823 * Count the number of buffers in this list that need a fence reg
2824 *
2825 * If the count is greater than the number of available regs, we'll have
2826 * to ask the caller to resubmit a batch with fewer tiled buffers.
2827 *
2828 * This function over-counts if the same buffer is used multiple times.
2829 */
2830static unsigned int
2831drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2832{
2833	int i;
2834	unsigned int total = 0;
2835
2836	for (i = 0; i < count; i++) {
2837		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2838
2839		if (bo_gem == NULL)
2840			continue;
2841
2842		total += bo_gem->reloc_tree_fences;
2843	}
2844	return total;
2845}
2846
2847/**
2848 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2849 * for the next drm_intel_bufmgr_check_aperture_space() call.
2850 */
2851static void
2852drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2853{
2854	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2855	int i;
2856
2857	if (bo == NULL || !bo_gem->included_in_check_aperture)
2858		return;
2859
2860	bo_gem->included_in_check_aperture = false;
2861
2862	for (i = 0; i < bo_gem->reloc_count; i++)
2863		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2864							   reloc_target_info[i].bo);
2865}
2866
2867/**
2868 * Return a conservative estimate for the amount of aperture required
2869 * for a collection of buffers. This may double-count some buffers.
2870 */
2871static unsigned int
2872drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2873{
2874	int i;
2875	unsigned int total = 0;
2876
2877	for (i = 0; i < count; i++) {
2878		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2879		if (bo_gem != NULL)
2880			total += bo_gem->reloc_tree_size;
2881	}
2882	return total;
2883}
2884
2885/**
2886 * Return the amount of aperture needed for a collection of buffers.
2887 * This avoids double counting any buffers, at the cost of looking
2888 * at every buffer in the set.
2889 */
2890static unsigned int
2891drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2892{
2893	int i;
2894	unsigned int total = 0;
2895
2896	for (i = 0; i < count; i++) {
2897		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2898		/* For the first buffer object in the array, we get an
2899		 * accurate count back for its reloc_tree size (since nothing
2900		 * had been flagged as being counted yet).  We can save that
2901		 * value out as a more conservative reloc_tree_size that
2902		 * avoids double-counting target buffers.  Since the first
2903		 * buffer happens to usually be the batch buffer in our
2904		 * callers, this can pull us back from doing the tree
2905		 * walk on every new batch emit.
2906		 */
2907		if (i == 0) {
2908			drm_intel_bo_gem *bo_gem =
2909			    (drm_intel_bo_gem *) bo_array[i];
2910			bo_gem->reloc_tree_size = total;
2911		}
2912	}
2913
2914	for (i = 0; i < count; i++)
2915		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2916	return total;
2917}
2918
2919/**
2920 * Return -1 if the batchbuffer should be flushed before attempting to
2921 * emit rendering referencing the buffers pointed to by bo_array.
2922 *
2923 * This is required because if we try to emit a batchbuffer with relocations
2924 * to a tree of buffers that won't simultaneously fit in the aperture,
2925 * the rendering will return an error at a point where the software is not
2926 * prepared to recover from it.
2927 *
2928 * However, we also want to emit the batchbuffer significantly before we reach
2929 * the limit, as a series of batchbuffers each of which references buffers
2930 * covering almost all of the aperture means that at each emit we end up
2931 * waiting to evict a buffer from the last rendering, and we get synchronous
2932 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2933 * get better parallelism.
2934 */
2935static int
2936drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2937{
2938	drm_intel_bufmgr_gem *bufmgr_gem =
2939	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2940	unsigned int total = 0;
2941	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2942	int total_fences;
2943
2944	/* Check for fence reg constraints if necessary */
2945	if (bufmgr_gem->available_fences) {
2946		total_fences = drm_intel_gem_total_fences(bo_array, count);
2947		if (total_fences > bufmgr_gem->available_fences)
2948			return -ENOSPC;
2949	}
2950
2951	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2952
2953	if (total > threshold)
2954		total = drm_intel_gem_compute_batch_space(bo_array, count);
2955
2956	if (total > threshold) {
2957		DBG("check_space: overflowed available aperture, "
2958		    "%dkb vs %dkb\n",
2959		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2960		return -ENOSPC;
2961	} else {
2962		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2963		    (int)bufmgr_gem->gtt_size / 1024);
2964		return 0;
2965	}
2966}
2967
2968/*
2969 * Disable buffer reuse for objects which are shared with the kernel
2970 * as scanout buffers
2971 */
2972static int
2973drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2974{
2975	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2976
2977	bo_gem->reusable = false;
2978	return 0;
2979}
2980
2981static int
2982drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2983{
2984	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2985
2986	return bo_gem->reusable;
2987}
2988
2989static int
2990_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2991{
2992	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2993	int i;
2994
2995	for (i = 0; i < bo_gem->reloc_count; i++) {
2996		if (bo_gem->reloc_target_info[i].bo == target_bo)
2997			return 1;
2998		if (bo == bo_gem->reloc_target_info[i].bo)
2999			continue;
3000		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3001						target_bo))
3002			return 1;
3003	}
3004
3005	return 0;
3006}
3007
3008/** Return true if target_bo is referenced by bo's relocation tree. */
3009static int
3010drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3011{
3012	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3013
3014	if (bo == NULL || target_bo == NULL)
3015		return 0;
3016	if (target_bo_gem->used_as_reloc_target)
3017		return _drm_intel_gem_bo_references(bo, target_bo);
3018	return 0;
3019}
3020
3021static void
3022add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3023{
3024	unsigned int i = bufmgr_gem->num_buckets;
3025
3026	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3027
3028	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3029	bufmgr_gem->cache_bucket[i].size = size;
3030	bufmgr_gem->num_buckets++;
3031}
3032
3033static void
3034init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3035{
3036	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3037
3038	/* OK, so power of two buckets was too wasteful of memory.
3039	 * Give 3 other sizes between each power of two, to hopefully
3040	 * cover things accurately enough.  (The alternative is
3041	 * probably to just go for exact matching of sizes, and assume
3042	 * that for things like composited window resize the tiled
3043	 * width/height alignment and rounding of sizes to pages will
3044	 * get us useful cache hit rates anyway)
3045	 */
3046	add_bucket(bufmgr_gem, 4096);
3047	add_bucket(bufmgr_gem, 4096 * 2);
3048	add_bucket(bufmgr_gem, 4096 * 3);
3049
3050	/* Initialize the linked lists for BO reuse cache. */
3051	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3052		add_bucket(bufmgr_gem, size);
3053
3054		add_bucket(bufmgr_gem, size + size * 1 / 4);
3055		add_bucket(bufmgr_gem, size + size * 2 / 4);
3056		add_bucket(bufmgr_gem, size + size * 3 / 4);
3057	}
3058}
3059
3060drm_public void
3061drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3062{
3063	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3064
3065	bufmgr_gem->vma_max = limit;
3066
3067	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3068}
3069
3070/**
3071 * Get the PCI ID for the device.  This can be overridden by setting the
3072 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3073 */
3074static int
3075get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3076{
3077	char *devid_override;
3078	int devid;
3079	int ret;
3080	drm_i915_getparam_t gp;
3081
3082	if (geteuid() == getuid()) {
3083		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3084		if (devid_override) {
3085			bufmgr_gem->no_exec = true;
3086			return strtod(devid_override, NULL);
3087		}
3088	}
3089
3090	VG_CLEAR(devid);
3091	VG_CLEAR(gp);
3092	gp.param = I915_PARAM_CHIPSET_ID;
3093	gp.value = &devid;
3094	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3095	if (ret) {
3096		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3097		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3098	}
3099	return devid;
3100}
3101
3102drm_public int
3103drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3104{
3105	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3106
3107	return bufmgr_gem->pci_device;
3108}
3109
3110/**
3111 * Sets the AUB filename.
3112 *
3113 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3114 * for it to have any effect.
3115 */
3116drm_public void
3117drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3118				      const char *filename)
3119{
3120	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3121
3122	free(bufmgr_gem->aub_filename);
3123	if (filename)
3124		bufmgr_gem->aub_filename = strdup(filename);
3125}
3126
3127/**
3128 * Sets up AUB dumping.
3129 *
3130 * This is a trace file format that can be used with the simulator.
3131 * Packets are emitted in a format somewhat like GPU command packets.
3132 * You can set up a GTT and upload your objects into the referenced
3133 * space, then send off batchbuffers and get BMPs out the other end.
3134 */
3135drm_public void
3136drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3137{
3138	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3139	int entry = 0x200003;
3140	int i;
3141	int gtt_size = 0x10000;
3142	const char *filename;
3143
3144	if (!enable) {
3145		if (bufmgr_gem->aub_file) {
3146			fclose(bufmgr_gem->aub_file);
3147			bufmgr_gem->aub_file = NULL;
3148		}
3149		return;
3150	}
3151
3152	if (geteuid() != getuid())
3153		return;
3154
3155	if (bufmgr_gem->aub_filename)
3156		filename = bufmgr_gem->aub_filename;
3157	else
3158		filename = "intel.aub";
3159	bufmgr_gem->aub_file = fopen(filename, "w+");
3160	if (!bufmgr_gem->aub_file)
3161		return;
3162
3163	/* Start allocating objects from just after the GTT. */
3164	bufmgr_gem->aub_offset = gtt_size;
3165
3166	/* Start with a (required) version packet. */
3167	aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
3168	aub_out(bufmgr_gem,
3169		(4 << AUB_HEADER_MAJOR_SHIFT) |
3170		(0 << AUB_HEADER_MINOR_SHIFT));
3171	for (i = 0; i < 8; i++) {
3172		aub_out(bufmgr_gem, 0); /* app name */
3173	}
3174	aub_out(bufmgr_gem, 0); /* timestamp */
3175	aub_out(bufmgr_gem, 0); /* timestamp */
3176	aub_out(bufmgr_gem, 0); /* comment len */
3177
3178	/* Set up the GTT. The max we can handle is 256M */
3179	aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
3180	aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE);
3181	aub_out(bufmgr_gem, 0); /* subtype */
3182	aub_out(bufmgr_gem, 0); /* offset */
3183	aub_out(bufmgr_gem, gtt_size); /* size */
3184	if (bufmgr_gem->gen >= 8)
3185		aub_out(bufmgr_gem, 0);
3186	for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
3187		aub_out(bufmgr_gem, entry);
3188	}
3189}
3190
3191drm_public drm_intel_context *
3192drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3193{
3194	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3195	struct drm_i915_gem_context_create create;
3196	drm_intel_context *context = NULL;
3197	int ret;
3198
3199	context = calloc(1, sizeof(*context));
3200	if (!context)
3201		return NULL;
3202
3203	VG_CLEAR(create);
3204	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3205	if (ret != 0) {
3206		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3207		    strerror(errno));
3208		free(context);
3209		return NULL;
3210	}
3211
3212	context->ctx_id = create.ctx_id;
3213	context->bufmgr = bufmgr;
3214
3215	return context;
3216}
3217
3218drm_public void
3219drm_intel_gem_context_destroy(drm_intel_context *ctx)
3220{
3221	drm_intel_bufmgr_gem *bufmgr_gem;
3222	struct drm_i915_gem_context_destroy destroy;
3223	int ret;
3224
3225	if (ctx == NULL)
3226		return;
3227
3228	VG_CLEAR(destroy);
3229
3230	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3231	destroy.ctx_id = ctx->ctx_id;
3232	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3233		       &destroy);
3234	if (ret != 0)
3235		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3236			strerror(errno));
3237
3238	free(ctx);
3239}
3240
3241drm_public int
3242drm_intel_get_reset_stats(drm_intel_context *ctx,
3243			  uint32_t *reset_count,
3244			  uint32_t *active,
3245			  uint32_t *pending)
3246{
3247	drm_intel_bufmgr_gem *bufmgr_gem;
3248	struct drm_i915_reset_stats stats;
3249	int ret;
3250
3251	if (ctx == NULL)
3252		return -EINVAL;
3253
3254	memset(&stats, 0, sizeof(stats));
3255
3256	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3257	stats.ctx_id = ctx->ctx_id;
3258	ret = drmIoctl(bufmgr_gem->fd,
3259		       DRM_IOCTL_I915_GET_RESET_STATS,
3260		       &stats);
3261	if (ret == 0) {
3262		if (reset_count != NULL)
3263			*reset_count = stats.reset_count;
3264
3265		if (active != NULL)
3266			*active = stats.batch_active;
3267
3268		if (pending != NULL)
3269			*pending = stats.batch_pending;
3270	}
3271
3272	return ret;
3273}
3274
3275drm_public int
3276drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3277		   uint32_t offset,
3278		   uint64_t *result)
3279{
3280	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3281	struct drm_i915_reg_read reg_read;
3282	int ret;
3283
3284	VG_CLEAR(reg_read);
3285	reg_read.offset = offset;
3286
3287	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3288
3289	*result = reg_read.val;
3290	return ret;
3291}
3292
3293
3294/**
3295 * Annotate the given bo for use in aub dumping.
3296 *
3297 * \param annotations is an array of drm_intel_aub_annotation objects
3298 * describing the type of data in various sections of the bo.  Each
3299 * element of the array specifies the type and subtype of a section of
3300 * the bo, and the past-the-end offset of that section.  The elements
3301 * of \c annotations must be sorted so that ending_offset is
3302 * increasing.
3303 *
3304 * \param count is the number of elements in the \c annotations array.
3305 * If \c count is zero, then \c annotations will not be dereferenced.
3306 *
3307 * Annotations are copied into a private data structure, so caller may
3308 * re-use the memory pointed to by \c annotations after the call
3309 * returns.
3310 *
3311 * Annotations are stored for the lifetime of the bo; to reset to the
3312 * default state (no annotations), call this function with a \c count
3313 * of zero.
3314 */
3315drm_public void
3316drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3317					 drm_intel_aub_annotation *annotations,
3318					 unsigned count)
3319{
3320	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3321	unsigned size = sizeof(*annotations) * count;
3322	drm_intel_aub_annotation *new_annotations =
3323		count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
3324	if (new_annotations == NULL) {
3325		free(bo_gem->aub_annotations);
3326		bo_gem->aub_annotations = NULL;
3327		bo_gem->aub_annotation_count = 0;
3328		return;
3329	}
3330	memcpy(new_annotations, annotations, size);
3331	bo_gem->aub_annotations = new_annotations;
3332	bo_gem->aub_annotation_count = count;
3333}
3334
3335static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3336static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3337
3338static drm_intel_bufmgr_gem *
3339drm_intel_bufmgr_gem_find(int fd)
3340{
3341	drm_intel_bufmgr_gem *bufmgr_gem;
3342
3343	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3344		if (bufmgr_gem->fd == fd) {
3345			atomic_inc(&bufmgr_gem->refcount);
3346			return bufmgr_gem;
3347		}
3348	}
3349
3350	return NULL;
3351}
3352
3353static void
3354drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3355{
3356	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3357
3358	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3359		pthread_mutex_lock(&bufmgr_list_mutex);
3360
3361		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3362			DRMLISTDEL(&bufmgr_gem->managers);
3363			drm_intel_bufmgr_gem_destroy(bufmgr);
3364		}
3365
3366		pthread_mutex_unlock(&bufmgr_list_mutex);
3367	}
3368}
3369
3370static bool
3371has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
3372{
3373	int ret;
3374	void *ptr;
3375	long pgsz;
3376	struct drm_i915_gem_userptr userptr;
3377	struct drm_gem_close close_bo;
3378
3379	pgsz = sysconf(_SC_PAGESIZE);
3380	assert(pgsz > 0);
3381
3382	ret = posix_memalign(&ptr, pgsz, pgsz);
3383	if (ret) {
3384		DBG("Failed to get a page (%ld) for userptr detection!\n",
3385			pgsz);
3386		return false;
3387	}
3388
3389	memset(&userptr, 0, sizeof(userptr));
3390	userptr.user_ptr = (__u64)(unsigned long)ptr;
3391	userptr.user_size = pgsz;
3392
3393retry:
3394	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
3395	if (ret) {
3396		if (errno == ENODEV && userptr.flags == 0) {
3397			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
3398			goto retry;
3399		}
3400		free(ptr);
3401		return false;
3402	}
3403
3404	close_bo.handle = userptr.handle;
3405	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
3406	free(ptr);
3407	if (ret) {
3408		fprintf(stderr, "Failed to release test userptr object! (%d) "
3409				"i915 kernel driver may not be sane!\n", errno);
3410		return false;
3411	}
3412
3413	return true;
3414}
3415
3416/**
3417 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3418 * and manage map buffer objections.
3419 *
3420 * \param fd File descriptor of the opened DRM device.
3421 */
3422drm_public drm_intel_bufmgr *
3423drm_intel_bufmgr_gem_init(int fd, int batch_size)
3424{
3425	drm_intel_bufmgr_gem *bufmgr_gem;
3426	struct drm_i915_gem_get_aperture aperture;
3427	drm_i915_getparam_t gp;
3428	int ret, tmp;
3429	bool exec2 = false;
3430
3431	pthread_mutex_lock(&bufmgr_list_mutex);
3432
3433	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3434	if (bufmgr_gem)
3435		goto exit;
3436
3437	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3438	if (bufmgr_gem == NULL)
3439		goto exit;
3440
3441	bufmgr_gem->fd = fd;
3442	atomic_set(&bufmgr_gem->refcount, 1);
3443
3444	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3445		free(bufmgr_gem);
3446		bufmgr_gem = NULL;
3447		goto exit;
3448	}
3449
3450	ret = drmIoctl(bufmgr_gem->fd,
3451		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3452		       &aperture);
3453
3454	if (ret == 0)
3455		bufmgr_gem->gtt_size = aperture.aper_available_size;
3456	else {
3457		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3458			strerror(errno));
3459		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3460		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3461			"May lead to reduced performance or incorrect "
3462			"rendering.\n",
3463			(int)bufmgr_gem->gtt_size / 1024);
3464	}
3465
3466	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3467
3468	if (IS_GEN2(bufmgr_gem->pci_device))
3469		bufmgr_gem->gen = 2;
3470	else if (IS_GEN3(bufmgr_gem->pci_device))
3471		bufmgr_gem->gen = 3;
3472	else if (IS_GEN4(bufmgr_gem->pci_device))
3473		bufmgr_gem->gen = 4;
3474	else if (IS_GEN5(bufmgr_gem->pci_device))
3475		bufmgr_gem->gen = 5;
3476	else if (IS_GEN6(bufmgr_gem->pci_device))
3477		bufmgr_gem->gen = 6;
3478	else if (IS_GEN7(bufmgr_gem->pci_device))
3479		bufmgr_gem->gen = 7;
3480	else if (IS_GEN8(bufmgr_gem->pci_device))
3481		bufmgr_gem->gen = 8;
3482	else {
3483		free(bufmgr_gem);
3484		bufmgr_gem = NULL;
3485		goto exit;
3486	}
3487
3488	if (IS_GEN3(bufmgr_gem->pci_device) &&
3489	    bufmgr_gem->gtt_size > 256*1024*1024) {
3490		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3491		 * be used for tiled blits. To simplify the accounting, just
3492		 * substract the unmappable part (fixed to 256MB on all known
3493		 * gen3 devices) if the kernel advertises it. */
3494		bufmgr_gem->gtt_size -= 256*1024*1024;
3495	}
3496
3497	VG_CLEAR(gp);
3498	gp.value = &tmp;
3499
3500	gp.param = I915_PARAM_HAS_EXECBUF2;
3501	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3502	if (!ret)
3503		exec2 = true;
3504
3505	gp.param = I915_PARAM_HAS_BSD;
3506	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3507	bufmgr_gem->has_bsd = ret == 0;
3508
3509	gp.param = I915_PARAM_HAS_BLT;
3510	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3511	bufmgr_gem->has_blt = ret == 0;
3512
3513	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3514	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3515	bufmgr_gem->has_relaxed_fencing = ret == 0;
3516
3517	if (has_userptr(bufmgr_gem))
3518		bufmgr_gem->bufmgr.bo_alloc_userptr =
3519			drm_intel_gem_bo_alloc_userptr;
3520
3521	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3522	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3523	bufmgr_gem->has_wait_timeout = ret == 0;
3524
3525	gp.param = I915_PARAM_HAS_LLC;
3526	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3527	if (ret != 0) {
3528		/* Kernel does not supports HAS_LLC query, fallback to GPU
3529		 * generation detection and assume that we have LLC on GEN6/7
3530		 */
3531		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3532				IS_GEN7(bufmgr_gem->pci_device));
3533	} else
3534		bufmgr_gem->has_llc = *gp.value;
3535
3536	gp.param = I915_PARAM_HAS_VEBOX;
3537	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3538	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3539
3540	if (bufmgr_gem->gen < 4) {
3541		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3542		gp.value = &bufmgr_gem->available_fences;
3543		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3544		if (ret) {
3545			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3546				errno);
3547			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3548				*gp.value);
3549			bufmgr_gem->available_fences = 0;
3550		} else {
3551			/* XXX The kernel reports the total number of fences,
3552			 * including any that may be pinned.
3553			 *
3554			 * We presume that there will be at least one pinned
3555			 * fence for the scanout buffer, but there may be more
3556			 * than one scanout and the user may be manually
3557			 * pinning buffers. Let's move to execbuffer2 and
3558			 * thereby forget the insanity of using fences...
3559			 */
3560			bufmgr_gem->available_fences -= 2;
3561			if (bufmgr_gem->available_fences < 0)
3562				bufmgr_gem->available_fences = 0;
3563		}
3564	}
3565
3566	/* Let's go with one relocation per every 2 dwords (but round down a bit
3567	 * since a power of two will mean an extra page allocation for the reloc
3568	 * buffer).
3569	 *
3570	 * Every 4 was too few for the blender benchmark.
3571	 */
3572	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3573
3574	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3575	bufmgr_gem->bufmgr.bo_alloc_for_render =
3576	    drm_intel_gem_bo_alloc_for_render;
3577	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3578	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3579	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3580	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3581	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3582	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3583	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3584	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3585	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3586	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3587	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3588	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3589	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3590	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3591	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3592	/* Use the new one if available */
3593	if (exec2) {
3594		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3595		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3596	} else
3597		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3598	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3599	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3600	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3601	bufmgr_gem->bufmgr.debug = 0;
3602	bufmgr_gem->bufmgr.check_aperture_space =
3603	    drm_intel_gem_check_aperture_space;
3604	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3605	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3606	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3607	    drm_intel_gem_get_pipe_from_crtc_id;
3608	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3609
3610	DRMINITLISTHEAD(&bufmgr_gem->named);
3611	init_cache_buckets(bufmgr_gem);
3612
3613	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3614	bufmgr_gem->vma_max = -1; /* unlimited by default */
3615
3616	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3617
3618exit:
3619	pthread_mutex_unlock(&bufmgr_list_mutex);
3620
3621	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3622}
3623