intel_bufmgr_gem.c revision fd815b59
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#include <xf86drm.h>
38#include <xf86atomic.h>
39#include <fcntl.h>
40#include <stdio.h>
41#include <stdlib.h>
42#include <string.h>
43#include <unistd.h>
44#include <assert.h>
45#include <pthread.h>
46#include <sys/ioctl.h>
47#include <sys/stat.h>
48#include <sys/types.h>
49#include <stdbool.h>
50
51#include "errno.h"
52#ifndef ETIME
53#define ETIME ETIMEDOUT
54#endif
55#include "libdrm_macros.h"
56#include "libdrm_lists.h"
57#include "intel_bufmgr.h"
58#include "intel_bufmgr_priv.h"
59#include "intel_chipset.h"
60#include "string.h"
61
62#include "i915_drm.h"
63#include "uthash.h"
64
65#if HAVE_VALGRIND
66#include <valgrind.h>
67#include <memcheck.h>
68#define VG(x) x
69#else
70#define VG(x)
71#endif
72
73#define memclear(s) memset(&s, 0, sizeof(s))
74
75#define DBG(...) do {					\
76	if (bufmgr_gem->bufmgr.debug)			\
77		fprintf(stderr, __VA_ARGS__);		\
78} while (0)
79
80#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
81#define MAX2(A, B) ((A) > (B) ? (A) : (B))
82
83/**
84 * upper_32_bits - return bits 32-63 of a number
85 * @n: the number we're accessing
86 *
87 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
88 * the "right shift count >= width of type" warning when that quantity is
89 * 32-bits.
90 */
91#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
92
93/**
94 * lower_32_bits - return bits 0-31 of a number
95 * @n: the number we're accessing
96 */
97#define lower_32_bits(n) ((__u32)(n))
98
99typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
100
101struct drm_intel_gem_bo_bucket {
102	drmMMListHead head;
103	unsigned long size;
104};
105
106typedef struct _drm_intel_bufmgr_gem {
107	drm_intel_bufmgr bufmgr;
108
109	atomic_t refcount;
110
111	int fd;
112
113	int max_relocs;
114
115	pthread_mutex_t lock;
116
117	struct drm_i915_gem_exec_object *exec_objects;
118	struct drm_i915_gem_exec_object2 *exec2_objects;
119	drm_intel_bo **exec_bos;
120	int exec_size;
121	int exec_count;
122
123	/** Array of lists of cached gem objects of power-of-two sizes */
124	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
125	int num_buckets;
126	time_t time;
127
128	drmMMListHead managers;
129
130	drm_intel_bo_gem *name_table;
131	drm_intel_bo_gem *handle_table;
132
133	drmMMListHead vma_cache;
134	int vma_count, vma_open, vma_max;
135
136	uint64_t gtt_size;
137	int available_fences;
138	int pci_device;
139	int gen;
140	unsigned int has_bsd : 1;
141	unsigned int has_blt : 1;
142	unsigned int has_relaxed_fencing : 1;
143	unsigned int has_llc : 1;
144	unsigned int has_wait_timeout : 1;
145	unsigned int bo_reuse : 1;
146	unsigned int no_exec : 1;
147	unsigned int has_vebox : 1;
148	unsigned int has_exec_async : 1;
149	bool fenced_relocs;
150
151	struct {
152		void *ptr;
153		uint32_t handle;
154	} userptr_active;
155
156} drm_intel_bufmgr_gem;
157
158#define DRM_INTEL_RELOC_FENCE (1<<0)
159
160typedef struct _drm_intel_reloc_target_info {
161	drm_intel_bo *bo;
162	int flags;
163} drm_intel_reloc_target;
164
165struct _drm_intel_bo_gem {
166	drm_intel_bo bo;
167
168	atomic_t refcount;
169	uint32_t gem_handle;
170	const char *name;
171
172	/**
173	 * Kenel-assigned global name for this object
174         *
175         * List contains both flink named and prime fd'd objects
176	 */
177	unsigned int global_name;
178
179	UT_hash_handle handle_hh;
180	UT_hash_handle name_hh;
181
182	/**
183	 * Index of the buffer within the validation list while preparing a
184	 * batchbuffer execution.
185	 */
186	int validate_index;
187
188	/**
189	 * Current tiling mode
190	 */
191	uint32_t tiling_mode;
192	uint32_t swizzle_mode;
193	unsigned long stride;
194
195	unsigned long kflags;
196
197	time_t free_time;
198
199	/** Array passed to the DRM containing relocation information. */
200	struct drm_i915_gem_relocation_entry *relocs;
201	/**
202	 * Array of info structs corresponding to relocs[i].target_handle etc
203	 */
204	drm_intel_reloc_target *reloc_target_info;
205	/** Number of entries in relocs */
206	int reloc_count;
207	/** Array of BOs that are referenced by this buffer and will be softpinned */
208	drm_intel_bo **softpin_target;
209	/** Number softpinned BOs that are referenced by this buffer */
210	int softpin_target_count;
211	/** Maximum amount of softpinned BOs that are referenced by this buffer */
212	int softpin_target_size;
213
214	/** Mapped address for the buffer, saved across map/unmap cycles */
215	void *mem_virtual;
216	/** GTT virtual address for the buffer, saved across map/unmap cycles */
217	void *gtt_virtual;
218	/** WC CPU address for the buffer, saved across map/unmap cycles */
219	void *wc_virtual;
220	/**
221	 * Virtual address of the buffer allocated by user, used for userptr
222	 * objects only.
223	 */
224	void *user_virtual;
225	int map_count;
226	drmMMListHead vma_list;
227
228	/** BO cache list */
229	drmMMListHead head;
230
231	/**
232	 * Boolean of whether this BO and its children have been included in
233	 * the current drm_intel_bufmgr_check_aperture_space() total.
234	 */
235	bool included_in_check_aperture;
236
237	/**
238	 * Boolean of whether this buffer has been used as a relocation
239	 * target and had its size accounted for, and thus can't have any
240	 * further relocations added to it.
241	 */
242	bool used_as_reloc_target;
243
244	/**
245	 * Boolean of whether we have encountered an error whilst building the relocation tree.
246	 */
247	bool has_error;
248
249	/**
250	 * Boolean of whether this buffer can be re-used
251	 */
252	bool reusable;
253
254	/**
255	 * Boolean of whether the GPU is definitely not accessing the buffer.
256	 *
257	 * This is only valid when reusable, since non-reusable
258	 * buffers are those that have been shared with other
259	 * processes, so we don't know their state.
260	 */
261	bool idle;
262
263	/**
264	 * Boolean of whether this buffer was allocated with userptr
265	 */
266	bool is_userptr;
267
268	/**
269	 * Size in bytes of this buffer and its relocation descendents.
270	 *
271	 * Used to avoid costly tree walking in
272	 * drm_intel_bufmgr_check_aperture in the common case.
273	 */
274	int reloc_tree_size;
275
276	/**
277	 * Number of potential fence registers required by this buffer and its
278	 * relocations.
279	 */
280	int reloc_tree_fences;
281
282	/** Flags that we may need to do the SW_FINISH ioctl on unmap. */
283	bool mapped_cpu_write;
284};
285
286static unsigned int
287drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
288
289static unsigned int
290drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
291
292static int
293drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
294			    uint32_t * swizzle_mode);
295
296static int
297drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
298				     uint32_t tiling_mode,
299				     uint32_t stride);
300
301static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
302						      time_t time);
303
304static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
305
306static void drm_intel_gem_bo_free(drm_intel_bo *bo);
307
308static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
309{
310        return (drm_intel_bo_gem *)bo;
311}
312
313static unsigned long
314drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
315			   uint32_t *tiling_mode)
316{
317	unsigned long min_size, max_size;
318	unsigned long i;
319
320	if (*tiling_mode == I915_TILING_NONE)
321		return size;
322
323	/* 965+ just need multiples of page size for tiling */
324	if (bufmgr_gem->gen >= 4)
325		return ROUND_UP_TO(size, 4096);
326
327	/* Older chips need powers of two, of at least 512k or 1M */
328	if (bufmgr_gem->gen == 3) {
329		min_size = 1024*1024;
330		max_size = 128*1024*1024;
331	} else {
332		min_size = 512*1024;
333		max_size = 64*1024*1024;
334	}
335
336	if (size > max_size) {
337		*tiling_mode = I915_TILING_NONE;
338		return size;
339	}
340
341	/* Do we need to allocate every page for the fence? */
342	if (bufmgr_gem->has_relaxed_fencing)
343		return ROUND_UP_TO(size, 4096);
344
345	for (i = min_size; i < size; i <<= 1)
346		;
347
348	return i;
349}
350
351/*
352 * Round a given pitch up to the minimum required for X tiling on a
353 * given chip.  We use 512 as the minimum to allow for a later tiling
354 * change.
355 */
356static unsigned long
357drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
358			    unsigned long pitch, uint32_t *tiling_mode)
359{
360	unsigned long tile_width;
361	unsigned long i;
362
363	/* If untiled, then just align it so that we can do rendering
364	 * to it with the 3D engine.
365	 */
366	if (*tiling_mode == I915_TILING_NONE)
367		return ALIGN(pitch, 64);
368
369	if (*tiling_mode == I915_TILING_X
370			|| (IS_915(bufmgr_gem->pci_device)
371			    && *tiling_mode == I915_TILING_Y))
372		tile_width = 512;
373	else
374		tile_width = 128;
375
376	/* 965 is flexible */
377	if (bufmgr_gem->gen >= 4)
378		return ROUND_UP_TO(pitch, tile_width);
379
380	/* The older hardware has a maximum pitch of 8192 with tiled
381	 * surfaces, so fallback to untiled if it's too large.
382	 */
383	if (pitch > 8192) {
384		*tiling_mode = I915_TILING_NONE;
385		return ALIGN(pitch, 64);
386	}
387
388	/* Pre-965 needs power of two tile width */
389	for (i = tile_width; i < pitch; i <<= 1)
390		;
391
392	return i;
393}
394
395static struct drm_intel_gem_bo_bucket *
396drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
397				 unsigned long size)
398{
399	int i;
400
401	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
402		struct drm_intel_gem_bo_bucket *bucket =
403		    &bufmgr_gem->cache_bucket[i];
404		if (bucket->size >= size) {
405			return bucket;
406		}
407	}
408
409	return NULL;
410}
411
412static void
413drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
414{
415	int i, j;
416
417	for (i = 0; i < bufmgr_gem->exec_count; i++) {
418		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
419		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
420
421		if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
422			DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
423			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
424			    bo_gem->name);
425			continue;
426		}
427
428		for (j = 0; j < bo_gem->reloc_count; j++) {
429			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
430			drm_intel_bo_gem *target_gem =
431			    (drm_intel_bo_gem *) target_bo;
432
433			DBG("%2d: %d %s(%s)@0x%08x %08x -> "
434			    "%d (%s)@0x%08x %08x + 0x%08x\n",
435			    i,
436			    bo_gem->gem_handle,
437			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
438			    bo_gem->name,
439			    upper_32_bits(bo_gem->relocs[j].offset),
440			    lower_32_bits(bo_gem->relocs[j].offset),
441			    target_gem->gem_handle,
442			    target_gem->name,
443			    upper_32_bits(target_bo->offset64),
444			    lower_32_bits(target_bo->offset64),
445			    bo_gem->relocs[j].delta);
446		}
447
448		for (j = 0; j < bo_gem->softpin_target_count; j++) {
449			drm_intel_bo *target_bo = bo_gem->softpin_target[j];
450			drm_intel_bo_gem *target_gem =
451			    (drm_intel_bo_gem *) target_bo;
452			DBG("%2d: %d %s(%s) -> "
453			    "%d *(%s)@0x%08x %08x\n",
454			    i,
455			    bo_gem->gem_handle,
456			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
457			    bo_gem->name,
458			    target_gem->gem_handle,
459			    target_gem->name,
460			    upper_32_bits(target_bo->offset64),
461			    lower_32_bits(target_bo->offset64));
462		}
463	}
464}
465
466static inline void
467drm_intel_gem_bo_reference(drm_intel_bo *bo)
468{
469	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
470
471	atomic_inc(&bo_gem->refcount);
472}
473
474/**
475 * Adds the given buffer to the list of buffers to be validated (moved into the
476 * appropriate memory type) with the next batch submission.
477 *
478 * If a buffer is validated multiple times in a batch submission, it ends up
479 * with the intersection of the memory type flags and the union of the
480 * access flags.
481 */
482static void
483drm_intel_add_validate_buffer(drm_intel_bo *bo)
484{
485	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
486	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
487	int index;
488
489	if (bo_gem->validate_index != -1)
490		return;
491
492	/* Extend the array of validation entries as necessary. */
493	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
494		int new_size = bufmgr_gem->exec_size * 2;
495
496		if (new_size == 0)
497			new_size = 5;
498
499		bufmgr_gem->exec_objects =
500		    realloc(bufmgr_gem->exec_objects,
501			    sizeof(*bufmgr_gem->exec_objects) * new_size);
502		bufmgr_gem->exec_bos =
503		    realloc(bufmgr_gem->exec_bos,
504			    sizeof(*bufmgr_gem->exec_bos) * new_size);
505		bufmgr_gem->exec_size = new_size;
506	}
507
508	index = bufmgr_gem->exec_count;
509	bo_gem->validate_index = index;
510	/* Fill in array entry */
511	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
512	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
513	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
514	bufmgr_gem->exec_objects[index].alignment = bo->align;
515	bufmgr_gem->exec_objects[index].offset = 0;
516	bufmgr_gem->exec_bos[index] = bo;
517	bufmgr_gem->exec_count++;
518}
519
520static void
521drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
522{
523	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
524	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
525	int index;
526	unsigned long flags;
527
528	flags = 0;
529	if (need_fence)
530		flags |= EXEC_OBJECT_NEEDS_FENCE;
531
532	if (bo_gem->validate_index != -1) {
533		bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
534		return;
535	}
536
537	/* Extend the array of validation entries as necessary. */
538	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
539		int new_size = bufmgr_gem->exec_size * 2;
540
541		if (new_size == 0)
542			new_size = 5;
543
544		bufmgr_gem->exec2_objects =
545			realloc(bufmgr_gem->exec2_objects,
546				sizeof(*bufmgr_gem->exec2_objects) * new_size);
547		bufmgr_gem->exec_bos =
548			realloc(bufmgr_gem->exec_bos,
549				sizeof(*bufmgr_gem->exec_bos) * new_size);
550		bufmgr_gem->exec_size = new_size;
551	}
552
553	index = bufmgr_gem->exec_count;
554	bo_gem->validate_index = index;
555	/* Fill in array entry */
556	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
557	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
558	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
559	bufmgr_gem->exec2_objects[index].alignment = bo->align;
560	bufmgr_gem->exec2_objects[index].offset = bo->offset64;
561	bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags;
562	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
563	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
564	bufmgr_gem->exec_bos[index] = bo;
565	bufmgr_gem->exec_count++;
566}
567
568#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
569	sizeof(uint32_t))
570
571static void
572drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
573				      drm_intel_bo_gem *bo_gem,
574				      unsigned int alignment)
575{
576	unsigned int size;
577
578	assert(!bo_gem->used_as_reloc_target);
579
580	/* The older chipsets are far-less flexible in terms of tiling,
581	 * and require tiled buffer to be size aligned in the aperture.
582	 * This means that in the worst possible case we will need a hole
583	 * twice as large as the object in order for it to fit into the
584	 * aperture. Optimal packing is for wimps.
585	 */
586	size = bo_gem->bo.size;
587	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
588		unsigned int min_size;
589
590		if (bufmgr_gem->has_relaxed_fencing) {
591			if (bufmgr_gem->gen == 3)
592				min_size = 1024*1024;
593			else
594				min_size = 512*1024;
595
596			while (min_size < size)
597				min_size *= 2;
598		} else
599			min_size = size;
600
601		/* Account for worst-case alignment. */
602		alignment = MAX2(alignment, min_size);
603	}
604
605	bo_gem->reloc_tree_size = size + alignment;
606}
607
608static int
609drm_intel_setup_reloc_list(drm_intel_bo *bo)
610{
611	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
612	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
613	unsigned int max_relocs = bufmgr_gem->max_relocs;
614
615	if (bo->size / 4 < max_relocs)
616		max_relocs = bo->size / 4;
617
618	bo_gem->relocs = malloc(max_relocs *
619				sizeof(struct drm_i915_gem_relocation_entry));
620	bo_gem->reloc_target_info = malloc(max_relocs *
621					   sizeof(drm_intel_reloc_target));
622	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
623		bo_gem->has_error = true;
624
625		free (bo_gem->relocs);
626		bo_gem->relocs = NULL;
627
628		free (bo_gem->reloc_target_info);
629		bo_gem->reloc_target_info = NULL;
630
631		return 1;
632	}
633
634	return 0;
635}
636
637static int
638drm_intel_gem_bo_busy(drm_intel_bo *bo)
639{
640	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
641	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
642	struct drm_i915_gem_busy busy;
643	int ret;
644
645	if (bo_gem->reusable && bo_gem->idle)
646		return false;
647
648	memclear(busy);
649	busy.handle = bo_gem->gem_handle;
650
651	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
652	if (ret == 0) {
653		bo_gem->idle = !busy.busy;
654		return busy.busy;
655	} else {
656		return false;
657	}
658}
659
660static int
661drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
662				  drm_intel_bo_gem *bo_gem, int state)
663{
664	struct drm_i915_gem_madvise madv;
665
666	memclear(madv);
667	madv.handle = bo_gem->gem_handle;
668	madv.madv = state;
669	madv.retained = 1;
670	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
671
672	return madv.retained;
673}
674
675static int
676drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
677{
678	return drm_intel_gem_bo_madvise_internal
679		((drm_intel_bufmgr_gem *) bo->bufmgr,
680		 (drm_intel_bo_gem *) bo,
681		 madv);
682}
683
684/* drop the oldest entries that have been purged by the kernel */
685static void
686drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
687				    struct drm_intel_gem_bo_bucket *bucket)
688{
689	while (!DRMLISTEMPTY(&bucket->head)) {
690		drm_intel_bo_gem *bo_gem;
691
692		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
693				      bucket->head.next, head);
694		if (drm_intel_gem_bo_madvise_internal
695		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
696			break;
697
698		DRMLISTDEL(&bo_gem->head);
699		drm_intel_gem_bo_free(&bo_gem->bo);
700	}
701}
702
703static drm_intel_bo *
704drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
705				const char *name,
706				unsigned long size,
707				unsigned long flags,
708				uint32_t tiling_mode,
709				unsigned long stride,
710				unsigned int alignment)
711{
712	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
713	drm_intel_bo_gem *bo_gem;
714	unsigned int page_size = getpagesize();
715	int ret;
716	struct drm_intel_gem_bo_bucket *bucket;
717	bool alloc_from_cache;
718	unsigned long bo_size;
719	bool for_render = false;
720
721	if (flags & BO_ALLOC_FOR_RENDER)
722		for_render = true;
723
724	/* Round the allocated size up to a power of two number of pages. */
725	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
726
727	/* If we don't have caching at this size, don't actually round the
728	 * allocation up.
729	 */
730	if (bucket == NULL) {
731		bo_size = size;
732		if (bo_size < page_size)
733			bo_size = page_size;
734	} else {
735		bo_size = bucket->size;
736	}
737
738	pthread_mutex_lock(&bufmgr_gem->lock);
739	/* Get a buffer out of the cache if available */
740retry:
741	alloc_from_cache = false;
742	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
743		if (for_render) {
744			/* Allocate new render-target BOs from the tail (MRU)
745			 * of the list, as it will likely be hot in the GPU
746			 * cache and in the aperture for us.
747			 */
748			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
749					      bucket->head.prev, head);
750			DRMLISTDEL(&bo_gem->head);
751			alloc_from_cache = true;
752			bo_gem->bo.align = alignment;
753		} else {
754			assert(alignment == 0);
755			/* For non-render-target BOs (where we're probably
756			 * going to map it first thing in order to fill it
757			 * with data), check if the last BO in the cache is
758			 * unbusy, and only reuse in that case. Otherwise,
759			 * allocating a new buffer is probably faster than
760			 * waiting for the GPU to finish.
761			 */
762			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
763					      bucket->head.next, head);
764			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
765				alloc_from_cache = true;
766				DRMLISTDEL(&bo_gem->head);
767			}
768		}
769
770		if (alloc_from_cache) {
771			if (!drm_intel_gem_bo_madvise_internal
772			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
773				drm_intel_gem_bo_free(&bo_gem->bo);
774				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
775								    bucket);
776				goto retry;
777			}
778
779			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
780								 tiling_mode,
781								 stride)) {
782				drm_intel_gem_bo_free(&bo_gem->bo);
783				goto retry;
784			}
785		}
786	}
787
788	if (!alloc_from_cache) {
789		struct drm_i915_gem_create create;
790
791		bo_gem = calloc(1, sizeof(*bo_gem));
792		if (!bo_gem)
793			goto err;
794
795		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
796		   list (vma_list), so better set the list head here */
797		DRMINITLISTHEAD(&bo_gem->vma_list);
798
799		bo_gem->bo.size = bo_size;
800
801		memclear(create);
802		create.size = bo_size;
803
804		ret = drmIoctl(bufmgr_gem->fd,
805			       DRM_IOCTL_I915_GEM_CREATE,
806			       &create);
807		if (ret != 0) {
808			free(bo_gem);
809			goto err;
810		}
811
812		bo_gem->gem_handle = create.handle;
813		HASH_ADD(handle_hh, bufmgr_gem->handle_table,
814			 gem_handle, sizeof(bo_gem->gem_handle),
815			 bo_gem);
816
817		bo_gem->bo.handle = bo_gem->gem_handle;
818		bo_gem->bo.bufmgr = bufmgr;
819		bo_gem->bo.align = alignment;
820
821		bo_gem->tiling_mode = I915_TILING_NONE;
822		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
823		bo_gem->stride = 0;
824
825		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
826							 tiling_mode,
827							 stride))
828			goto err_free;
829	}
830
831	bo_gem->name = name;
832	atomic_set(&bo_gem->refcount, 1);
833	bo_gem->validate_index = -1;
834	bo_gem->reloc_tree_fences = 0;
835	bo_gem->used_as_reloc_target = false;
836	bo_gem->has_error = false;
837	bo_gem->reusable = true;
838
839	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
840	pthread_mutex_unlock(&bufmgr_gem->lock);
841
842	DBG("bo_create: buf %d (%s) %ldb\n",
843	    bo_gem->gem_handle, bo_gem->name, size);
844
845	return &bo_gem->bo;
846
847err_free:
848	drm_intel_gem_bo_free(&bo_gem->bo);
849err:
850	pthread_mutex_unlock(&bufmgr_gem->lock);
851	return NULL;
852}
853
854static drm_intel_bo *
855drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
856				  const char *name,
857				  unsigned long size,
858				  unsigned int alignment)
859{
860	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
861					       BO_ALLOC_FOR_RENDER,
862					       I915_TILING_NONE, 0,
863					       alignment);
864}
865
866static drm_intel_bo *
867drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
868		       const char *name,
869		       unsigned long size,
870		       unsigned int alignment)
871{
872	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
873					       I915_TILING_NONE, 0, 0);
874}
875
876static drm_intel_bo *
877drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
878			     int x, int y, int cpp, uint32_t *tiling_mode,
879			     unsigned long *pitch, unsigned long flags)
880{
881	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
882	unsigned long size, stride;
883	uint32_t tiling;
884
885	do {
886		unsigned long aligned_y, height_alignment;
887
888		tiling = *tiling_mode;
889
890		/* If we're tiled, our allocations are in 8 or 32-row blocks,
891		 * so failure to align our height means that we won't allocate
892		 * enough pages.
893		 *
894		 * If we're untiled, we still have to align to 2 rows high
895		 * because the data port accesses 2x2 blocks even if the
896		 * bottom row isn't to be rendered, so failure to align means
897		 * we could walk off the end of the GTT and fault.  This is
898		 * documented on 965, and may be the case on older chipsets
899		 * too so we try to be careful.
900		 */
901		aligned_y = y;
902		height_alignment = 2;
903
904		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
905			height_alignment = 16;
906		else if (tiling == I915_TILING_X
907			|| (IS_915(bufmgr_gem->pci_device)
908			    && tiling == I915_TILING_Y))
909			height_alignment = 8;
910		else if (tiling == I915_TILING_Y)
911			height_alignment = 32;
912		aligned_y = ALIGN(y, height_alignment);
913
914		stride = x * cpp;
915		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
916		size = stride * aligned_y;
917		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
918	} while (*tiling_mode != tiling);
919	*pitch = stride;
920
921	if (tiling == I915_TILING_NONE)
922		stride = 0;
923
924	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
925					       tiling, stride, 0);
926}
927
928static drm_intel_bo *
929drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
930				const char *name,
931				void *addr,
932				uint32_t tiling_mode,
933				uint32_t stride,
934				unsigned long size,
935				unsigned long flags)
936{
937	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
938	drm_intel_bo_gem *bo_gem;
939	int ret;
940	struct drm_i915_gem_userptr userptr;
941
942	/* Tiling with userptr surfaces is not supported
943	 * on all hardware so refuse it for time being.
944	 */
945	if (tiling_mode != I915_TILING_NONE)
946		return NULL;
947
948	bo_gem = calloc(1, sizeof(*bo_gem));
949	if (!bo_gem)
950		return NULL;
951
952	atomic_set(&bo_gem->refcount, 1);
953	DRMINITLISTHEAD(&bo_gem->vma_list);
954
955	bo_gem->bo.size = size;
956
957	memclear(userptr);
958	userptr.user_ptr = (__u64)((unsigned long)addr);
959	userptr.user_size = size;
960	userptr.flags = flags;
961
962	ret = drmIoctl(bufmgr_gem->fd,
963			DRM_IOCTL_I915_GEM_USERPTR,
964			&userptr);
965	if (ret != 0) {
966		DBG("bo_create_userptr: "
967		    "ioctl failed with user ptr %p size 0x%lx, "
968		    "user flags 0x%lx\n", addr, size, flags);
969		free(bo_gem);
970		return NULL;
971	}
972
973	pthread_mutex_lock(&bufmgr_gem->lock);
974
975	bo_gem->gem_handle = userptr.handle;
976	bo_gem->bo.handle = bo_gem->gem_handle;
977	bo_gem->bo.bufmgr    = bufmgr;
978	bo_gem->is_userptr   = true;
979	bo_gem->bo.virtual   = addr;
980	/* Save the address provided by user */
981	bo_gem->user_virtual = addr;
982	bo_gem->tiling_mode  = I915_TILING_NONE;
983	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984	bo_gem->stride       = 0;
985
986	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
987		 gem_handle, sizeof(bo_gem->gem_handle),
988		 bo_gem);
989
990	bo_gem->name = name;
991	bo_gem->validate_index = -1;
992	bo_gem->reloc_tree_fences = 0;
993	bo_gem->used_as_reloc_target = false;
994	bo_gem->has_error = false;
995	bo_gem->reusable = false;
996
997	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
998	pthread_mutex_unlock(&bufmgr_gem->lock);
999
1000	DBG("bo_create_userptr: "
1001	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002		addr, bo_gem->gem_handle, bo_gem->name,
1003		size, stride, tiling_mode);
1004
1005	return &bo_gem->bo;
1006}
1007
1008static bool
1009has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010{
1011	int ret;
1012	void *ptr;
1013	long pgsz;
1014	struct drm_i915_gem_userptr userptr;
1015
1016	pgsz = sysconf(_SC_PAGESIZE);
1017	assert(pgsz > 0);
1018
1019	ret = posix_memalign(&ptr, pgsz, pgsz);
1020	if (ret) {
1021		DBG("Failed to get a page (%ld) for userptr detection!\n",
1022			pgsz);
1023		return false;
1024	}
1025
1026	memclear(userptr);
1027	userptr.user_ptr = (__u64)(unsigned long)ptr;
1028	userptr.user_size = pgsz;
1029
1030retry:
1031	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032	if (ret) {
1033		if (errno == ENODEV && userptr.flags == 0) {
1034			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035			goto retry;
1036		}
1037		free(ptr);
1038		return false;
1039	}
1040
1041	/* We don't release the userptr bo here as we want to keep the
1042	 * kernel mm tracking alive for our lifetime. The first time we
1043	 * create a userptr object the kernel has to install a mmu_notifer
1044	 * which is a heavyweight operation (e.g. it requires taking all
1045	 * mm_locks and stop_machine()).
1046	 */
1047
1048	bufmgr_gem->userptr_active.ptr = ptr;
1049	bufmgr_gem->userptr_active.handle = userptr.handle;
1050
1051	return true;
1052}
1053
1054static drm_intel_bo *
1055check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056		       const char *name,
1057		       void *addr,
1058		       uint32_t tiling_mode,
1059		       uint32_t stride,
1060		       unsigned long size,
1061		       unsigned long flags)
1062{
1063	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065	else
1066		bufmgr->bo_alloc_userptr = NULL;
1067
1068	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069					  tiling_mode, stride, size, flags);
1070}
1071
1072/**
1073 * Returns a drm_intel_bo wrapping the given buffer object handle.
1074 *
1075 * This can be used when one application needs to pass a buffer object
1076 * to another.
1077 */
1078drm_public drm_intel_bo *
1079drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1080				  const char *name,
1081				  unsigned int handle)
1082{
1083	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1084	drm_intel_bo_gem *bo_gem;
1085	int ret;
1086	struct drm_gem_open open_arg;
1087	struct drm_i915_gem_get_tiling get_tiling;
1088
1089	/* At the moment most applications only have a few named bo.
1090	 * For instance, in a DRI client only the render buffers passed
1091	 * between X and the client are named. And since X returns the
1092	 * alternating names for the front/back buffer a linear search
1093	 * provides a sufficiently fast match.
1094	 */
1095	pthread_mutex_lock(&bufmgr_gem->lock);
1096	HASH_FIND(name_hh, bufmgr_gem->name_table,
1097		  &handle, sizeof(handle), bo_gem);
1098	if (bo_gem) {
1099		drm_intel_gem_bo_reference(&bo_gem->bo);
1100		goto out;
1101	}
1102
1103	memclear(open_arg);
1104	open_arg.name = handle;
1105	ret = drmIoctl(bufmgr_gem->fd,
1106		       DRM_IOCTL_GEM_OPEN,
1107		       &open_arg);
1108	if (ret != 0) {
1109		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1110		    name, handle, strerror(errno));
1111		bo_gem = NULL;
1112		goto out;
1113	}
1114        /* Now see if someone has used a prime handle to get this
1115         * object from the kernel before by looking through the list
1116         * again for a matching gem_handle
1117         */
1118	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
1119		  &open_arg.handle, sizeof(open_arg.handle), bo_gem);
1120	if (bo_gem) {
1121		drm_intel_gem_bo_reference(&bo_gem->bo);
1122		goto out;
1123	}
1124
1125	bo_gem = calloc(1, sizeof(*bo_gem));
1126	if (!bo_gem)
1127		goto out;
1128
1129	atomic_set(&bo_gem->refcount, 1);
1130	DRMINITLISTHEAD(&bo_gem->vma_list);
1131
1132	bo_gem->bo.size = open_arg.size;
1133	bo_gem->bo.offset = 0;
1134	bo_gem->bo.offset64 = 0;
1135	bo_gem->bo.virtual = NULL;
1136	bo_gem->bo.bufmgr = bufmgr;
1137	bo_gem->name = name;
1138	bo_gem->validate_index = -1;
1139	bo_gem->gem_handle = open_arg.handle;
1140	bo_gem->bo.handle = open_arg.handle;
1141	bo_gem->global_name = handle;
1142	bo_gem->reusable = false;
1143
1144	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
1145		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
1146	HASH_ADD(name_hh, bufmgr_gem->name_table,
1147		 global_name, sizeof(bo_gem->global_name), bo_gem);
1148
1149	memclear(get_tiling);
1150	get_tiling.handle = bo_gem->gem_handle;
1151	ret = drmIoctl(bufmgr_gem->fd,
1152		       DRM_IOCTL_I915_GEM_GET_TILING,
1153		       &get_tiling);
1154	if (ret != 0)
1155		goto err_unref;
1156
1157	bo_gem->tiling_mode = get_tiling.tiling_mode;
1158	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1159	/* XXX stride is unknown */
1160	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1161	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1162
1163out:
1164	pthread_mutex_unlock(&bufmgr_gem->lock);
1165	return &bo_gem->bo;
1166
1167err_unref:
1168	drm_intel_gem_bo_free(&bo_gem->bo);
1169	pthread_mutex_unlock(&bufmgr_gem->lock);
1170	return NULL;
1171}
1172
1173static void
1174drm_intel_gem_bo_free(drm_intel_bo *bo)
1175{
1176	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1177	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1178	struct drm_gem_close close;
1179	int ret;
1180
1181	DRMLISTDEL(&bo_gem->vma_list);
1182	if (bo_gem->mem_virtual) {
1183		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1184		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1185		bufmgr_gem->vma_count--;
1186	}
1187	if (bo_gem->wc_virtual) {
1188		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0));
1189		drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1190		bufmgr_gem->vma_count--;
1191	}
1192	if (bo_gem->gtt_virtual) {
1193		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1194		bufmgr_gem->vma_count--;
1195	}
1196
1197	if (bo_gem->global_name)
1198		HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem);
1199	HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem);
1200
1201	/* Close this object */
1202	memclear(close);
1203	close.handle = bo_gem->gem_handle;
1204	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1205	if (ret != 0) {
1206		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1207		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1208	}
1209	free(bo);
1210}
1211
1212static void
1213drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1214{
1215#if HAVE_VALGRIND
1216	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1217
1218	if (bo_gem->mem_virtual)
1219		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1220
1221	if (bo_gem->wc_virtual)
1222		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size);
1223
1224	if (bo_gem->gtt_virtual)
1225		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1226#endif
1227}
1228
1229/** Frees all cached buffers significantly older than @time. */
1230static void
1231drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1232{
1233	int i;
1234
1235	if (bufmgr_gem->time == time)
1236		return;
1237
1238	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1239		struct drm_intel_gem_bo_bucket *bucket =
1240		    &bufmgr_gem->cache_bucket[i];
1241
1242		while (!DRMLISTEMPTY(&bucket->head)) {
1243			drm_intel_bo_gem *bo_gem;
1244
1245			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1246					      bucket->head.next, head);
1247			if (time - bo_gem->free_time <= 1)
1248				break;
1249
1250			DRMLISTDEL(&bo_gem->head);
1251
1252			drm_intel_gem_bo_free(&bo_gem->bo);
1253		}
1254	}
1255
1256	bufmgr_gem->time = time;
1257}
1258
1259static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1260{
1261	int limit;
1262
1263	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1264	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1265
1266	if (bufmgr_gem->vma_max < 0)
1267		return;
1268
1269	/* We may need to evict a few entries in order to create new mmaps */
1270	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1271	if (limit < 0)
1272		limit = 0;
1273
1274	while (bufmgr_gem->vma_count > limit) {
1275		drm_intel_bo_gem *bo_gem;
1276
1277		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1278				      bufmgr_gem->vma_cache.next,
1279				      vma_list);
1280		assert(bo_gem->map_count == 0);
1281		DRMLISTDELINIT(&bo_gem->vma_list);
1282
1283		if (bo_gem->mem_virtual) {
1284			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1285			bo_gem->mem_virtual = NULL;
1286			bufmgr_gem->vma_count--;
1287		}
1288		if (bo_gem->wc_virtual) {
1289			drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1290			bo_gem->wc_virtual = NULL;
1291			bufmgr_gem->vma_count--;
1292		}
1293		if (bo_gem->gtt_virtual) {
1294			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1295			bo_gem->gtt_virtual = NULL;
1296			bufmgr_gem->vma_count--;
1297		}
1298	}
1299}
1300
1301static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1302				       drm_intel_bo_gem *bo_gem)
1303{
1304	bufmgr_gem->vma_open--;
1305	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1306	if (bo_gem->mem_virtual)
1307		bufmgr_gem->vma_count++;
1308	if (bo_gem->wc_virtual)
1309		bufmgr_gem->vma_count++;
1310	if (bo_gem->gtt_virtual)
1311		bufmgr_gem->vma_count++;
1312	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1313}
1314
1315static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1316				      drm_intel_bo_gem *bo_gem)
1317{
1318	bufmgr_gem->vma_open++;
1319	DRMLISTDEL(&bo_gem->vma_list);
1320	if (bo_gem->mem_virtual)
1321		bufmgr_gem->vma_count--;
1322	if (bo_gem->wc_virtual)
1323		bufmgr_gem->vma_count--;
1324	if (bo_gem->gtt_virtual)
1325		bufmgr_gem->vma_count--;
1326	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1327}
1328
1329static void
1330drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1331{
1332	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1333	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1334	struct drm_intel_gem_bo_bucket *bucket;
1335	int i;
1336
1337	/* Unreference all the target buffers */
1338	for (i = 0; i < bo_gem->reloc_count; i++) {
1339		if (bo_gem->reloc_target_info[i].bo != bo) {
1340			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1341								  reloc_target_info[i].bo,
1342								  time);
1343		}
1344	}
1345	for (i = 0; i < bo_gem->softpin_target_count; i++)
1346		drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1347								  time);
1348	bo_gem->kflags = 0;
1349	bo_gem->reloc_count = 0;
1350	bo_gem->used_as_reloc_target = false;
1351	bo_gem->softpin_target_count = 0;
1352
1353	DBG("bo_unreference final: %d (%s)\n",
1354	    bo_gem->gem_handle, bo_gem->name);
1355
1356	/* release memory associated with this object */
1357	if (bo_gem->reloc_target_info) {
1358		free(bo_gem->reloc_target_info);
1359		bo_gem->reloc_target_info = NULL;
1360	}
1361	if (bo_gem->relocs) {
1362		free(bo_gem->relocs);
1363		bo_gem->relocs = NULL;
1364	}
1365	if (bo_gem->softpin_target) {
1366		free(bo_gem->softpin_target);
1367		bo_gem->softpin_target = NULL;
1368		bo_gem->softpin_target_size = 0;
1369	}
1370
1371	/* Clear any left-over mappings */
1372	if (bo_gem->map_count) {
1373		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1374		bo_gem->map_count = 0;
1375		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1376		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1377	}
1378
1379	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1380	/* Put the buffer into our internal cache for reuse if we can. */
1381	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1382	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1383					      I915_MADV_DONTNEED)) {
1384		bo_gem->free_time = time;
1385
1386		bo_gem->name = NULL;
1387		bo_gem->validate_index = -1;
1388
1389		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1390	} else {
1391		drm_intel_gem_bo_free(bo);
1392	}
1393}
1394
1395static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1396						      time_t time)
1397{
1398	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1399
1400	assert(atomic_read(&bo_gem->refcount) > 0);
1401	if (atomic_dec_and_test(&bo_gem->refcount))
1402		drm_intel_gem_bo_unreference_final(bo, time);
1403}
1404
1405static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1406{
1407	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1408
1409	assert(atomic_read(&bo_gem->refcount) > 0);
1410
1411	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1412		drm_intel_bufmgr_gem *bufmgr_gem =
1413		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1414		struct timespec time;
1415
1416		clock_gettime(CLOCK_MONOTONIC, &time);
1417
1418		pthread_mutex_lock(&bufmgr_gem->lock);
1419
1420		if (atomic_dec_and_test(&bo_gem->refcount)) {
1421			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1422			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1423		}
1424
1425		pthread_mutex_unlock(&bufmgr_gem->lock);
1426	}
1427}
1428
1429static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1430{
1431	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1432	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1433	struct drm_i915_gem_set_domain set_domain;
1434	int ret;
1435
1436	if (bo_gem->is_userptr) {
1437		/* Return the same user ptr */
1438		bo->virtual = bo_gem->user_virtual;
1439		return 0;
1440	}
1441
1442	pthread_mutex_lock(&bufmgr_gem->lock);
1443
1444	if (bo_gem->map_count++ == 0)
1445		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1446
1447	if (!bo_gem->mem_virtual) {
1448		struct drm_i915_gem_mmap mmap_arg;
1449
1450		DBG("bo_map: %d (%s), map_count=%d\n",
1451		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1452
1453		memclear(mmap_arg);
1454		mmap_arg.handle = bo_gem->gem_handle;
1455		mmap_arg.size = bo->size;
1456		ret = drmIoctl(bufmgr_gem->fd,
1457			       DRM_IOCTL_I915_GEM_MMAP,
1458			       &mmap_arg);
1459		if (ret != 0) {
1460			ret = -errno;
1461			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1462			    __FILE__, __LINE__, bo_gem->gem_handle,
1463			    bo_gem->name, strerror(errno));
1464			if (--bo_gem->map_count == 0)
1465				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1466			pthread_mutex_unlock(&bufmgr_gem->lock);
1467			return ret;
1468		}
1469		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1470		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1471	}
1472	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1473	    bo_gem->mem_virtual);
1474	bo->virtual = bo_gem->mem_virtual;
1475
1476	memclear(set_domain);
1477	set_domain.handle = bo_gem->gem_handle;
1478	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1479	if (write_enable)
1480		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1481	else
1482		set_domain.write_domain = 0;
1483	ret = drmIoctl(bufmgr_gem->fd,
1484		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1485		       &set_domain);
1486	if (ret != 0) {
1487		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1488		    __FILE__, __LINE__, bo_gem->gem_handle,
1489		    strerror(errno));
1490	}
1491
1492	if (write_enable)
1493		bo_gem->mapped_cpu_write = true;
1494
1495	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1496	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1497	pthread_mutex_unlock(&bufmgr_gem->lock);
1498
1499	return 0;
1500}
1501
1502static int
1503map_gtt(drm_intel_bo *bo)
1504{
1505	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1506	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1507	int ret;
1508
1509	if (bo_gem->is_userptr)
1510		return -EINVAL;
1511
1512	if (bo_gem->map_count++ == 0)
1513		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1514
1515	/* Get a mapping of the buffer if we haven't before. */
1516	if (bo_gem->gtt_virtual == NULL) {
1517		struct drm_i915_gem_mmap_gtt mmap_arg;
1518
1519		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1520		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1521
1522		memclear(mmap_arg);
1523		mmap_arg.handle = bo_gem->gem_handle;
1524
1525		/* Get the fake offset back... */
1526		ret = drmIoctl(bufmgr_gem->fd,
1527			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1528			       &mmap_arg);
1529		if (ret != 0) {
1530			ret = -errno;
1531			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1532			    __FILE__, __LINE__,
1533			    bo_gem->gem_handle, bo_gem->name,
1534			    strerror(errno));
1535			if (--bo_gem->map_count == 0)
1536				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1537			return ret;
1538		}
1539
1540		/* and mmap it */
1541		bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1542					       MAP_SHARED, bufmgr_gem->fd,
1543					       mmap_arg.offset);
1544		if (bo_gem->gtt_virtual == MAP_FAILED) {
1545			bo_gem->gtt_virtual = NULL;
1546			ret = -errno;
1547			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1548			    __FILE__, __LINE__,
1549			    bo_gem->gem_handle, bo_gem->name,
1550			    strerror(errno));
1551			if (--bo_gem->map_count == 0)
1552				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1553			return ret;
1554		}
1555	}
1556
1557	bo->virtual = bo_gem->gtt_virtual;
1558
1559	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1560	    bo_gem->gtt_virtual);
1561
1562	return 0;
1563}
1564
1565drm_public int
1566drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1567{
1568	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1569	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1570	struct drm_i915_gem_set_domain set_domain;
1571	int ret;
1572
1573	pthread_mutex_lock(&bufmgr_gem->lock);
1574
1575	ret = map_gtt(bo);
1576	if (ret) {
1577		pthread_mutex_unlock(&bufmgr_gem->lock);
1578		return ret;
1579	}
1580
1581	/* Now move it to the GTT domain so that the GPU and CPU
1582	 * caches are flushed and the GPU isn't actively using the
1583	 * buffer.
1584	 *
1585	 * The pagefault handler does this domain change for us when
1586	 * it has unbound the BO from the GTT, but it's up to us to
1587	 * tell it when we're about to use things if we had done
1588	 * rendering and it still happens to be bound to the GTT.
1589	 */
1590	memclear(set_domain);
1591	set_domain.handle = bo_gem->gem_handle;
1592	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1593	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1594	ret = drmIoctl(bufmgr_gem->fd,
1595		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1596		       &set_domain);
1597	if (ret != 0) {
1598		DBG("%s:%d: Error setting domain %d: %s\n",
1599		    __FILE__, __LINE__, bo_gem->gem_handle,
1600		    strerror(errno));
1601	}
1602
1603	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1604	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1605	pthread_mutex_unlock(&bufmgr_gem->lock);
1606
1607	return 0;
1608}
1609
1610/**
1611 * Performs a mapping of the buffer object like the normal GTT
1612 * mapping, but avoids waiting for the GPU to be done reading from or
1613 * rendering to the buffer.
1614 *
1615 * This is used in the implementation of GL_ARB_map_buffer_range: The
1616 * user asks to create a buffer, then does a mapping, fills some
1617 * space, runs a drawing command, then asks to map it again without
1618 * synchronizing because it guarantees that it won't write over the
1619 * data that the GPU is busy using (or, more specifically, that if it
1620 * does write over the data, it acknowledges that rendering is
1621 * undefined).
1622 */
1623
1624drm_public int
1625drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1626{
1627	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1628#if HAVE_VALGRIND
1629	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1630#endif
1631	int ret;
1632
1633	/* If the CPU cache isn't coherent with the GTT, then use a
1634	 * regular synchronized mapping.  The problem is that we don't
1635	 * track where the buffer was last used on the CPU side in
1636	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1637	 * we would potentially corrupt the buffer even when the user
1638	 * does reasonable things.
1639	 */
1640	if (!bufmgr_gem->has_llc)
1641		return drm_intel_gem_bo_map_gtt(bo);
1642
1643	pthread_mutex_lock(&bufmgr_gem->lock);
1644
1645	ret = map_gtt(bo);
1646	if (ret == 0) {
1647		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1648		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1649	}
1650
1651	pthread_mutex_unlock(&bufmgr_gem->lock);
1652
1653	return ret;
1654}
1655
1656static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1657{
1658	drm_intel_bufmgr_gem *bufmgr_gem;
1659	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1660	int ret = 0;
1661
1662	if (bo == NULL)
1663		return 0;
1664
1665	if (bo_gem->is_userptr)
1666		return 0;
1667
1668	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1669
1670	pthread_mutex_lock(&bufmgr_gem->lock);
1671
1672	if (bo_gem->map_count <= 0) {
1673		DBG("attempted to unmap an unmapped bo\n");
1674		pthread_mutex_unlock(&bufmgr_gem->lock);
1675		/* Preserve the old behaviour of just treating this as a
1676		 * no-op rather than reporting the error.
1677		 */
1678		return 0;
1679	}
1680
1681	if (bo_gem->mapped_cpu_write) {
1682		struct drm_i915_gem_sw_finish sw_finish;
1683
1684		/* Cause a flush to happen if the buffer's pinned for
1685		 * scanout, so the results show up in a timely manner.
1686		 * Unlike GTT set domains, this only does work if the
1687		 * buffer should be scanout-related.
1688		 */
1689		memclear(sw_finish);
1690		sw_finish.handle = bo_gem->gem_handle;
1691		ret = drmIoctl(bufmgr_gem->fd,
1692			       DRM_IOCTL_I915_GEM_SW_FINISH,
1693			       &sw_finish);
1694		ret = ret == -1 ? -errno : 0;
1695
1696		bo_gem->mapped_cpu_write = false;
1697	}
1698
1699	/* We need to unmap after every innovation as we cannot track
1700	 * an open vma for every bo as that will exhaust the system
1701	 * limits and cause later failures.
1702	 */
1703	if (--bo_gem->map_count == 0) {
1704		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1705		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1706		bo->virtual = NULL;
1707	}
1708	pthread_mutex_unlock(&bufmgr_gem->lock);
1709
1710	return ret;
1711}
1712
1713drm_public int
1714drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1715{
1716	return drm_intel_gem_bo_unmap(bo);
1717}
1718
1719static int
1720drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1721			 unsigned long size, const void *data)
1722{
1723	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1724	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1725	struct drm_i915_gem_pwrite pwrite;
1726	int ret;
1727
1728	if (bo_gem->is_userptr)
1729		return -EINVAL;
1730
1731	memclear(pwrite);
1732	pwrite.handle = bo_gem->gem_handle;
1733	pwrite.offset = offset;
1734	pwrite.size = size;
1735	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1736	ret = drmIoctl(bufmgr_gem->fd,
1737		       DRM_IOCTL_I915_GEM_PWRITE,
1738		       &pwrite);
1739	if (ret != 0) {
1740		ret = -errno;
1741		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1742		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1743		    (int)size, strerror(errno));
1744	}
1745
1746	return ret;
1747}
1748
1749static int
1750drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1751{
1752	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1753	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1754	int ret;
1755
1756	memclear(get_pipe_from_crtc_id);
1757	get_pipe_from_crtc_id.crtc_id = crtc_id;
1758	ret = drmIoctl(bufmgr_gem->fd,
1759		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1760		       &get_pipe_from_crtc_id);
1761	if (ret != 0) {
1762		/* We return -1 here to signal that we don't
1763		 * know which pipe is associated with this crtc.
1764		 * This lets the caller know that this information
1765		 * isn't available; using the wrong pipe for
1766		 * vblank waiting can cause the chipset to lock up
1767		 */
1768		return -1;
1769	}
1770
1771	return get_pipe_from_crtc_id.pipe;
1772}
1773
1774static int
1775drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1776			     unsigned long size, void *data)
1777{
1778	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1779	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1780	struct drm_i915_gem_pread pread;
1781	int ret;
1782
1783	if (bo_gem->is_userptr)
1784		return -EINVAL;
1785
1786	memclear(pread);
1787	pread.handle = bo_gem->gem_handle;
1788	pread.offset = offset;
1789	pread.size = size;
1790	pread.data_ptr = (uint64_t) (uintptr_t) data;
1791	ret = drmIoctl(bufmgr_gem->fd,
1792		       DRM_IOCTL_I915_GEM_PREAD,
1793		       &pread);
1794	if (ret != 0) {
1795		ret = -errno;
1796		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1797		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1798		    (int)size, strerror(errno));
1799	}
1800
1801	return ret;
1802}
1803
1804/** Waits for all GPU rendering with the object to have completed. */
1805static void
1806drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1807{
1808	drm_intel_gem_bo_start_gtt_access(bo, 1);
1809}
1810
1811/**
1812 * Waits on a BO for the given amount of time.
1813 *
1814 * @bo: buffer object to wait for
1815 * @timeout_ns: amount of time to wait in nanoseconds.
1816 *   If value is less than 0, an infinite wait will occur.
1817 *
1818 * Returns 0 if the wait was successful ie. the last batch referencing the
1819 * object has completed within the allotted time. Otherwise some negative return
1820 * value describes the error. Of particular interest is -ETIME when the wait has
1821 * failed to yield the desired result.
1822 *
1823 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1824 * the operation to give up after a certain amount of time. Another subtle
1825 * difference is the internal locking semantics are different (this variant does
1826 * not hold the lock for the duration of the wait). This makes the wait subject
1827 * to a larger userspace race window.
1828 *
1829 * The implementation shall wait until the object is no longer actively
1830 * referenced within a batch buffer at the time of the call. The wait will
1831 * not guarantee that the buffer is re-issued via another thread, or an flinked
1832 * handle. Userspace must make sure this race does not occur if such precision
1833 * is important.
1834 *
1835 * Note that some kernels have broken the inifite wait for negative values
1836 * promise, upgrade to latest stable kernels if this is the case.
1837 */
1838drm_public int
1839drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1840{
1841	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1842	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1843	struct drm_i915_gem_wait wait;
1844	int ret;
1845
1846	if (!bufmgr_gem->has_wait_timeout) {
1847		DBG("%s:%d: Timed wait is not supported. Falling back to "
1848		    "infinite wait\n", __FILE__, __LINE__);
1849		if (timeout_ns) {
1850			drm_intel_gem_bo_wait_rendering(bo);
1851			return 0;
1852		} else {
1853			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1854		}
1855	}
1856
1857	memclear(wait);
1858	wait.bo_handle = bo_gem->gem_handle;
1859	wait.timeout_ns = timeout_ns;
1860	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1861	if (ret == -1)
1862		return -errno;
1863
1864	return ret;
1865}
1866
1867/**
1868 * Sets the object to the GTT read and possibly write domain, used by the X
1869 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1870 *
1871 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1872 * can do tiled pixmaps this way.
1873 */
1874drm_public void
1875drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1876{
1877	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1878	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1879	struct drm_i915_gem_set_domain set_domain;
1880	int ret;
1881
1882	memclear(set_domain);
1883	set_domain.handle = bo_gem->gem_handle;
1884	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1885	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1886	ret = drmIoctl(bufmgr_gem->fd,
1887		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1888		       &set_domain);
1889	if (ret != 0) {
1890		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1891		    __FILE__, __LINE__, bo_gem->gem_handle,
1892		    set_domain.read_domains, set_domain.write_domain,
1893		    strerror(errno));
1894	}
1895}
1896
1897static void
1898drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1899{
1900	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1901	struct drm_gem_close close_bo;
1902	int i, ret;
1903
1904	free(bufmgr_gem->exec2_objects);
1905	free(bufmgr_gem->exec_objects);
1906	free(bufmgr_gem->exec_bos);
1907
1908	pthread_mutex_destroy(&bufmgr_gem->lock);
1909
1910	/* Free any cached buffer objects we were going to reuse */
1911	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1912		struct drm_intel_gem_bo_bucket *bucket =
1913		    &bufmgr_gem->cache_bucket[i];
1914		drm_intel_bo_gem *bo_gem;
1915
1916		while (!DRMLISTEMPTY(&bucket->head)) {
1917			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1918					      bucket->head.next, head);
1919			DRMLISTDEL(&bo_gem->head);
1920
1921			drm_intel_gem_bo_free(&bo_gem->bo);
1922		}
1923	}
1924
1925	/* Release userptr bo kept hanging around for optimisation. */
1926	if (bufmgr_gem->userptr_active.ptr) {
1927		memclear(close_bo);
1928		close_bo.handle = bufmgr_gem->userptr_active.handle;
1929		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1930		free(bufmgr_gem->userptr_active.ptr);
1931		if (ret)
1932			fprintf(stderr,
1933				"Failed to release test userptr object! (%d) "
1934				"i915 kernel driver may not be sane!\n", errno);
1935	}
1936
1937	free(bufmgr);
1938}
1939
1940/**
1941 * Adds the target buffer to the validation list and adds the relocation
1942 * to the reloc_buffer's relocation list.
1943 *
1944 * The relocation entry at the given offset must already contain the
1945 * precomputed relocation value, because the kernel will optimize out
1946 * the relocation entry write when the buffer hasn't moved from the
1947 * last known offset in target_bo.
1948 */
1949static int
1950do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1951		 drm_intel_bo *target_bo, uint32_t target_offset,
1952		 uint32_t read_domains, uint32_t write_domain,
1953		 bool need_fence)
1954{
1955	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1956	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1957	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1958	bool fenced_command;
1959
1960	if (bo_gem->has_error)
1961		return -ENOMEM;
1962
1963	if (target_bo_gem->has_error) {
1964		bo_gem->has_error = true;
1965		return -ENOMEM;
1966	}
1967
1968	/* We never use HW fences for rendering on 965+ */
1969	if (bufmgr_gem->gen >= 4)
1970		need_fence = false;
1971
1972	fenced_command = need_fence;
1973	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1974		need_fence = false;
1975
1976	/* Create a new relocation list if needed */
1977	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1978		return -ENOMEM;
1979
1980	/* Check overflow */
1981	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1982
1983	/* Check args */
1984	assert(offset <= bo->size - 4);
1985	assert((write_domain & (write_domain - 1)) == 0);
1986
1987	/* An object needing a fence is a tiled buffer, so it won't have
1988	 * relocs to other buffers.
1989	 */
1990	if (need_fence) {
1991		assert(target_bo_gem->reloc_count == 0);
1992		target_bo_gem->reloc_tree_fences = 1;
1993	}
1994
1995	/* Make sure that we're not adding a reloc to something whose size has
1996	 * already been accounted for.
1997	 */
1998	assert(!bo_gem->used_as_reloc_target);
1999	if (target_bo_gem != bo_gem) {
2000		target_bo_gem->used_as_reloc_target = true;
2001		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
2002		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
2003	}
2004
2005	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
2006	if (target_bo != bo)
2007		drm_intel_gem_bo_reference(target_bo);
2008	if (fenced_command)
2009		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
2010			DRM_INTEL_RELOC_FENCE;
2011	else
2012		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
2013
2014	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
2015	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2016	bo_gem->relocs[bo_gem->reloc_count].target_handle =
2017	    target_bo_gem->gem_handle;
2018	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2019	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2020	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2021	bo_gem->reloc_count++;
2022
2023	return 0;
2024}
2025
2026static void
2027drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2028{
2029	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2030
2031	if (enable)
2032		bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2033	else
2034		bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2035}
2036
2037static int
2038drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2039{
2040	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2041	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2042	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2043	if (bo_gem->has_error)
2044		return -ENOMEM;
2045
2046	if (target_bo_gem->has_error) {
2047		bo_gem->has_error = true;
2048		return -ENOMEM;
2049	}
2050
2051	if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED))
2052		return -EINVAL;
2053	if (target_bo_gem == bo_gem)
2054		return -EINVAL;
2055
2056	if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2057		int new_size = bo_gem->softpin_target_size * 2;
2058		if (new_size == 0)
2059			new_size = bufmgr_gem->max_relocs;
2060
2061		bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2062				sizeof(drm_intel_bo *));
2063		if (!bo_gem->softpin_target)
2064			return -ENOMEM;
2065
2066		bo_gem->softpin_target_size = new_size;
2067	}
2068	bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2069	drm_intel_gem_bo_reference(target_bo);
2070	bo_gem->softpin_target_count++;
2071
2072	return 0;
2073}
2074
2075static int
2076drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2077			    drm_intel_bo *target_bo, uint32_t target_offset,
2078			    uint32_t read_domains, uint32_t write_domain)
2079{
2080	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2081	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2082
2083	if (target_bo_gem->kflags & EXEC_OBJECT_PINNED)
2084		return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2085	else
2086		return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2087					read_domains, write_domain,
2088					!bufmgr_gem->fenced_relocs);
2089}
2090
2091static int
2092drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2093				  drm_intel_bo *target_bo,
2094				  uint32_t target_offset,
2095				  uint32_t read_domains, uint32_t write_domain)
2096{
2097	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2098				read_domains, write_domain, true);
2099}
2100
2101drm_public int
2102drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2103{
2104	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2105
2106	return bo_gem->reloc_count;
2107}
2108
2109/**
2110 * Removes existing relocation entries in the BO after "start".
2111 *
2112 * This allows a user to avoid a two-step process for state setup with
2113 * counting up all the buffer objects and doing a
2114 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2115 * relocations for the state setup.  Instead, save the state of the
2116 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2117 * state, and then check if it still fits in the aperture.
2118 *
2119 * Any further drm_intel_bufmgr_check_aperture_space() queries
2120 * involving this buffer in the tree are undefined after this call.
2121 *
2122 * This also removes all softpinned targets being referenced by the BO.
2123 */
2124drm_public void
2125drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2126{
2127	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2128	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2129	int i;
2130	struct timespec time;
2131
2132	clock_gettime(CLOCK_MONOTONIC, &time);
2133
2134	assert(bo_gem->reloc_count >= start);
2135
2136	/* Unreference the cleared target buffers */
2137	pthread_mutex_lock(&bufmgr_gem->lock);
2138
2139	for (i = start; i < bo_gem->reloc_count; i++) {
2140		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2141		if (&target_bo_gem->bo != bo) {
2142			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2143			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2144								  time.tv_sec);
2145		}
2146	}
2147	bo_gem->reloc_count = start;
2148
2149	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2150		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2151		drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2152	}
2153	bo_gem->softpin_target_count = 0;
2154
2155	pthread_mutex_unlock(&bufmgr_gem->lock);
2156
2157}
2158
2159/**
2160 * Walk the tree of relocations rooted at BO and accumulate the list of
2161 * validations to be performed and update the relocation buffers with
2162 * index values into the validation list.
2163 */
2164static void
2165drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2166{
2167	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2168	int i;
2169
2170	if (bo_gem->relocs == NULL)
2171		return;
2172
2173	for (i = 0; i < bo_gem->reloc_count; i++) {
2174		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2175
2176		if (target_bo == bo)
2177			continue;
2178
2179		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2180
2181		/* Continue walking the tree depth-first. */
2182		drm_intel_gem_bo_process_reloc(target_bo);
2183
2184		/* Add the target to the validate list */
2185		drm_intel_add_validate_buffer(target_bo);
2186	}
2187}
2188
2189static void
2190drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2191{
2192	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2193	int i;
2194
2195	if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2196		return;
2197
2198	for (i = 0; i < bo_gem->reloc_count; i++) {
2199		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2200		int need_fence;
2201
2202		if (target_bo == bo)
2203			continue;
2204
2205		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2206
2207		/* Continue walking the tree depth-first. */
2208		drm_intel_gem_bo_process_reloc2(target_bo);
2209
2210		need_fence = (bo_gem->reloc_target_info[i].flags &
2211			      DRM_INTEL_RELOC_FENCE);
2212
2213		/* Add the target to the validate list */
2214		drm_intel_add_validate_buffer2(target_bo, need_fence);
2215	}
2216
2217	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2218		drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2219
2220		if (target_bo == bo)
2221			continue;
2222
2223		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2224		drm_intel_gem_bo_process_reloc2(target_bo);
2225		drm_intel_add_validate_buffer2(target_bo, false);
2226	}
2227}
2228
2229
2230static void
2231drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2232{
2233	int i;
2234
2235	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2236		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2237		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2238
2239		/* Update the buffer offset */
2240		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2241			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2242			    bo_gem->gem_handle, bo_gem->name,
2243			    upper_32_bits(bo->offset64),
2244			    lower_32_bits(bo->offset64),
2245			    upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2246			    lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2247			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2248			bo->offset = bufmgr_gem->exec_objects[i].offset;
2249		}
2250	}
2251}
2252
2253static void
2254drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2255{
2256	int i;
2257
2258	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2259		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2260		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2261
2262		/* Update the buffer offset */
2263		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2264			/* If we're seeing softpinned object here it means that the kernel
2265			 * has relocated our object... Indicating a programming error
2266			 */
2267			assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED));
2268			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2269			    bo_gem->gem_handle, bo_gem->name,
2270			    upper_32_bits(bo->offset64),
2271			    lower_32_bits(bo->offset64),
2272			    upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2273			    lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2274			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2275			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2276		}
2277	}
2278}
2279
2280drm_public void
2281drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2282			      int x1, int y1, int width, int height,
2283			      enum aub_dump_bmp_format format,
2284			      int pitch, int offset)
2285{
2286}
2287
2288static int
2289drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2290		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2291{
2292	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2293	struct drm_i915_gem_execbuffer execbuf;
2294	int ret, i;
2295
2296	if (to_bo_gem(bo)->has_error)
2297		return -ENOMEM;
2298
2299	pthread_mutex_lock(&bufmgr_gem->lock);
2300	/* Update indices and set up the validate list. */
2301	drm_intel_gem_bo_process_reloc(bo);
2302
2303	/* Add the batch buffer to the validation list.  There are no
2304	 * relocations pointing to it.
2305	 */
2306	drm_intel_add_validate_buffer(bo);
2307
2308	memclear(execbuf);
2309	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2310	execbuf.buffer_count = bufmgr_gem->exec_count;
2311	execbuf.batch_start_offset = 0;
2312	execbuf.batch_len = used;
2313	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2314	execbuf.num_cliprects = num_cliprects;
2315	execbuf.DR1 = 0;
2316	execbuf.DR4 = DR4;
2317
2318	ret = drmIoctl(bufmgr_gem->fd,
2319		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2320		       &execbuf);
2321	if (ret != 0) {
2322		ret = -errno;
2323		if (errno == ENOSPC) {
2324			DBG("Execbuffer fails to pin. "
2325			    "Estimate: %u. Actual: %u. Available: %u\n",
2326			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2327							       bufmgr_gem->
2328							       exec_count),
2329			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2330							      bufmgr_gem->
2331							      exec_count),
2332			    (unsigned int)bufmgr_gem->gtt_size);
2333		}
2334	}
2335	drm_intel_update_buffer_offsets(bufmgr_gem);
2336
2337	if (bufmgr_gem->bufmgr.debug)
2338		drm_intel_gem_dump_validation_list(bufmgr_gem);
2339
2340	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2341		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2342
2343		bo_gem->idle = false;
2344
2345		/* Disconnect the buffer from the validate list */
2346		bo_gem->validate_index = -1;
2347		bufmgr_gem->exec_bos[i] = NULL;
2348	}
2349	bufmgr_gem->exec_count = 0;
2350	pthread_mutex_unlock(&bufmgr_gem->lock);
2351
2352	return ret;
2353}
2354
2355static int
2356do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2357	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2358	 int in_fence, int *out_fence,
2359	 unsigned int flags)
2360{
2361	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2362	struct drm_i915_gem_execbuffer2 execbuf;
2363	int ret = 0;
2364	int i;
2365
2366	if (to_bo_gem(bo)->has_error)
2367		return -ENOMEM;
2368
2369	switch (flags & 0x7) {
2370	default:
2371		return -EINVAL;
2372	case I915_EXEC_BLT:
2373		if (!bufmgr_gem->has_blt)
2374			return -EINVAL;
2375		break;
2376	case I915_EXEC_BSD:
2377		if (!bufmgr_gem->has_bsd)
2378			return -EINVAL;
2379		break;
2380	case I915_EXEC_VEBOX:
2381		if (!bufmgr_gem->has_vebox)
2382			return -EINVAL;
2383		break;
2384	case I915_EXEC_RENDER:
2385	case I915_EXEC_DEFAULT:
2386		break;
2387	}
2388
2389	pthread_mutex_lock(&bufmgr_gem->lock);
2390	/* Update indices and set up the validate list. */
2391	drm_intel_gem_bo_process_reloc2(bo);
2392
2393	/* Add the batch buffer to the validation list.  There are no relocations
2394	 * pointing to it.
2395	 */
2396	drm_intel_add_validate_buffer2(bo, 0);
2397
2398	memclear(execbuf);
2399	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2400	execbuf.buffer_count = bufmgr_gem->exec_count;
2401	execbuf.batch_start_offset = 0;
2402	execbuf.batch_len = used;
2403	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2404	execbuf.num_cliprects = num_cliprects;
2405	execbuf.DR1 = 0;
2406	execbuf.DR4 = DR4;
2407	execbuf.flags = flags;
2408	if (ctx == NULL)
2409		i915_execbuffer2_set_context_id(execbuf, 0);
2410	else
2411		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2412	execbuf.rsvd2 = 0;
2413	if (in_fence != -1) {
2414		execbuf.rsvd2 = in_fence;
2415		execbuf.flags |= I915_EXEC_FENCE_IN;
2416	}
2417	if (out_fence != NULL) {
2418		*out_fence = -1;
2419		execbuf.flags |= I915_EXEC_FENCE_OUT;
2420	}
2421
2422	if (bufmgr_gem->no_exec)
2423		goto skip_execution;
2424
2425	ret = drmIoctl(bufmgr_gem->fd,
2426		       DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
2427		       &execbuf);
2428	if (ret != 0) {
2429		ret = -errno;
2430		if (ret == -ENOSPC) {
2431			DBG("Execbuffer fails to pin. "
2432			    "Estimate: %u. Actual: %u. Available: %u\n",
2433			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2434							       bufmgr_gem->exec_count),
2435			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2436							      bufmgr_gem->exec_count),
2437			    (unsigned int) bufmgr_gem->gtt_size);
2438		}
2439	}
2440	drm_intel_update_buffer_offsets2(bufmgr_gem);
2441
2442	if (ret == 0 && out_fence != NULL)
2443		*out_fence = execbuf.rsvd2 >> 32;
2444
2445skip_execution:
2446	if (bufmgr_gem->bufmgr.debug)
2447		drm_intel_gem_dump_validation_list(bufmgr_gem);
2448
2449	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2450		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2451
2452		bo_gem->idle = false;
2453
2454		/* Disconnect the buffer from the validate list */
2455		bo_gem->validate_index = -1;
2456		bufmgr_gem->exec_bos[i] = NULL;
2457	}
2458	bufmgr_gem->exec_count = 0;
2459	pthread_mutex_unlock(&bufmgr_gem->lock);
2460
2461	return ret;
2462}
2463
2464static int
2465drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2466		       drm_clip_rect_t *cliprects, int num_cliprects,
2467		       int DR4)
2468{
2469	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2470			-1, NULL, I915_EXEC_RENDER);
2471}
2472
2473static int
2474drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2475			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2476			unsigned int flags)
2477{
2478	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2479			-1, NULL, flags);
2480}
2481
2482drm_public int
2483drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2484			      int used, unsigned int flags)
2485{
2486	return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags);
2487}
2488
2489drm_public int
2490drm_intel_gem_bo_fence_exec(drm_intel_bo *bo,
2491			    drm_intel_context *ctx,
2492			    int used,
2493			    int in_fence,
2494			    int *out_fence,
2495			    unsigned int flags)
2496{
2497	return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags);
2498}
2499
2500static int
2501drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2502{
2503	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2504	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2505	struct drm_i915_gem_pin pin;
2506	int ret;
2507
2508	memclear(pin);
2509	pin.handle = bo_gem->gem_handle;
2510	pin.alignment = alignment;
2511
2512	ret = drmIoctl(bufmgr_gem->fd,
2513		       DRM_IOCTL_I915_GEM_PIN,
2514		       &pin);
2515	if (ret != 0)
2516		return -errno;
2517
2518	bo->offset64 = pin.offset;
2519	bo->offset = pin.offset;
2520	return 0;
2521}
2522
2523static int
2524drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2525{
2526	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2527	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2528	struct drm_i915_gem_unpin unpin;
2529	int ret;
2530
2531	memclear(unpin);
2532	unpin.handle = bo_gem->gem_handle;
2533
2534	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2535	if (ret != 0)
2536		return -errno;
2537
2538	return 0;
2539}
2540
2541static int
2542drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2543				     uint32_t tiling_mode,
2544				     uint32_t stride)
2545{
2546	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2547	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2548	struct drm_i915_gem_set_tiling set_tiling;
2549	int ret;
2550
2551	if (bo_gem->global_name == 0 &&
2552	    tiling_mode == bo_gem->tiling_mode &&
2553	    stride == bo_gem->stride)
2554		return 0;
2555
2556	memset(&set_tiling, 0, sizeof(set_tiling));
2557	do {
2558		/* set_tiling is slightly broken and overwrites the
2559		 * input on the error path, so we have to open code
2560		 * rmIoctl.
2561		 */
2562		set_tiling.handle = bo_gem->gem_handle;
2563		set_tiling.tiling_mode = tiling_mode;
2564		set_tiling.stride = stride;
2565
2566		ret = ioctl(bufmgr_gem->fd,
2567			    DRM_IOCTL_I915_GEM_SET_TILING,
2568			    &set_tiling);
2569	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2570	if (ret == -1)
2571		return -errno;
2572
2573	bo_gem->tiling_mode = set_tiling.tiling_mode;
2574	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2575	bo_gem->stride = set_tiling.stride;
2576	return 0;
2577}
2578
2579static int
2580drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2581			    uint32_t stride)
2582{
2583	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2584	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2585	int ret;
2586
2587	/* Tiling with userptr surfaces is not supported
2588	 * on all hardware so refuse it for time being.
2589	 */
2590	if (bo_gem->is_userptr)
2591		return -EINVAL;
2592
2593	/* Linear buffers have no stride. By ensuring that we only ever use
2594	 * stride 0 with linear buffers, we simplify our code.
2595	 */
2596	if (*tiling_mode == I915_TILING_NONE)
2597		stride = 0;
2598
2599	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2600	if (ret == 0)
2601		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2602
2603	*tiling_mode = bo_gem->tiling_mode;
2604	return ret;
2605}
2606
2607static int
2608drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2609			    uint32_t * swizzle_mode)
2610{
2611	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2612
2613	*tiling_mode = bo_gem->tiling_mode;
2614	*swizzle_mode = bo_gem->swizzle_mode;
2615	return 0;
2616}
2617
2618static int
2619drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2620{
2621	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2622
2623	bo->offset64 = offset;
2624	bo->offset = offset;
2625	bo_gem->kflags |= EXEC_OBJECT_PINNED;
2626
2627	return 0;
2628}
2629
2630drm_public drm_intel_bo *
2631drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2632{
2633	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2634	int ret;
2635	uint32_t handle;
2636	drm_intel_bo_gem *bo_gem;
2637	struct drm_i915_gem_get_tiling get_tiling;
2638
2639	pthread_mutex_lock(&bufmgr_gem->lock);
2640	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2641	if (ret) {
2642		DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2643		pthread_mutex_unlock(&bufmgr_gem->lock);
2644		return NULL;
2645	}
2646
2647	/*
2648	 * See if the kernel has already returned this buffer to us. Just as
2649	 * for named buffers, we must not create two bo's pointing at the same
2650	 * kernel object
2651	 */
2652	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
2653		  &handle, sizeof(handle), bo_gem);
2654	if (bo_gem) {
2655		drm_intel_gem_bo_reference(&bo_gem->bo);
2656		goto out;
2657	}
2658
2659	bo_gem = calloc(1, sizeof(*bo_gem));
2660	if (!bo_gem)
2661		goto out;
2662
2663	atomic_set(&bo_gem->refcount, 1);
2664	DRMINITLISTHEAD(&bo_gem->vma_list);
2665
2666	/* Determine size of bo.  The fd-to-handle ioctl really should
2667	 * return the size, but it doesn't.  If we have kernel 3.12 or
2668	 * later, we can lseek on the prime fd to get the size.  Older
2669	 * kernels will just fail, in which case we fall back to the
2670	 * provided (estimated or guess size). */
2671	ret = lseek(prime_fd, 0, SEEK_END);
2672	if (ret != -1)
2673		bo_gem->bo.size = ret;
2674	else
2675		bo_gem->bo.size = size;
2676
2677	bo_gem->bo.handle = handle;
2678	bo_gem->bo.bufmgr = bufmgr;
2679
2680	bo_gem->gem_handle = handle;
2681	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
2682		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
2683
2684	bo_gem->name = "prime";
2685	bo_gem->validate_index = -1;
2686	bo_gem->reloc_tree_fences = 0;
2687	bo_gem->used_as_reloc_target = false;
2688	bo_gem->has_error = false;
2689	bo_gem->reusable = false;
2690
2691	memclear(get_tiling);
2692	get_tiling.handle = bo_gem->gem_handle;
2693	if (drmIoctl(bufmgr_gem->fd,
2694		     DRM_IOCTL_I915_GEM_GET_TILING,
2695		     &get_tiling))
2696		goto err;
2697
2698	bo_gem->tiling_mode = get_tiling.tiling_mode;
2699	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2700	/* XXX stride is unknown */
2701	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2702
2703out:
2704	pthread_mutex_unlock(&bufmgr_gem->lock);
2705	return &bo_gem->bo;
2706
2707err:
2708	drm_intel_gem_bo_free(&bo_gem->bo);
2709	pthread_mutex_unlock(&bufmgr_gem->lock);
2710	return NULL;
2711}
2712
2713drm_public int
2714drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2715{
2716	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2717	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2718
2719	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2720			       DRM_CLOEXEC, prime_fd) != 0)
2721		return -errno;
2722
2723	bo_gem->reusable = false;
2724
2725	return 0;
2726}
2727
2728static int
2729drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2730{
2731	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2732	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2733
2734	if (!bo_gem->global_name) {
2735		struct drm_gem_flink flink;
2736
2737		memclear(flink);
2738		flink.handle = bo_gem->gem_handle;
2739		if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink))
2740			return -errno;
2741
2742		pthread_mutex_lock(&bufmgr_gem->lock);
2743		if (!bo_gem->global_name) {
2744			bo_gem->global_name = flink.name;
2745			bo_gem->reusable = false;
2746
2747			HASH_ADD(name_hh, bufmgr_gem->name_table,
2748				 global_name, sizeof(bo_gem->global_name),
2749				 bo_gem);
2750		}
2751		pthread_mutex_unlock(&bufmgr_gem->lock);
2752	}
2753
2754	*name = bo_gem->global_name;
2755	return 0;
2756}
2757
2758/**
2759 * Enables unlimited caching of buffer objects for reuse.
2760 *
2761 * This is potentially very memory expensive, as the cache at each bucket
2762 * size is only bounded by how many buffers of that size we've managed to have
2763 * in flight at once.
2764 */
2765drm_public void
2766drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2767{
2768	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2769
2770	bufmgr_gem->bo_reuse = true;
2771}
2772
2773/**
2774 * Disables implicit synchronisation before executing the bo
2775 *
2776 * This will cause rendering corruption unless you correctly manage explicit
2777 * fences for all rendering involving this buffer - including use by others.
2778 * Disabling the implicit serialisation is only required if that serialisation
2779 * is too coarse (for example, you have split the buffer into many
2780 * non-overlapping regions and are sharing the whole buffer between concurrent
2781 * independent command streams).
2782 *
2783 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC,
2784 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync,
2785 * or subsequent execbufs involving the bo will generate EINVAL.
2786 */
2787drm_public void
2788drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo)
2789{
2790	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2791
2792	bo_gem->kflags |= EXEC_OBJECT_ASYNC;
2793}
2794
2795/**
2796 * Enables implicit synchronisation before executing the bo
2797 *
2798 * This is the default behaviour of the kernel, to wait upon prior writes
2799 * completing on the object before rendering with it, or to wait for prior
2800 * reads to complete before writing into the object.
2801 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling
2802 * the kernel never to insert a stall before using the object. Then this
2803 * function can be used to restore the implicit sync before subsequent
2804 * rendering.
2805 */
2806drm_public void
2807drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo)
2808{
2809	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2810
2811	bo_gem->kflags &= ~EXEC_OBJECT_ASYNC;
2812}
2813
2814/**
2815 * Query whether the kernel supports disabling of its implicit synchronisation
2816 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync()
2817 */
2818drm_public int
2819drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr)
2820{
2821	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2822
2823	return bufmgr_gem->has_exec_async;
2824}
2825
2826/**
2827 * Enable use of fenced reloc type.
2828 *
2829 * New code should enable this to avoid unnecessary fence register
2830 * allocation.  If this option is not enabled, all relocs will have fence
2831 * register allocated.
2832 */
2833drm_public void
2834drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2835{
2836	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2837
2838	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2839		bufmgr_gem->fenced_relocs = true;
2840}
2841
2842/**
2843 * Return the additional aperture space required by the tree of buffer objects
2844 * rooted at bo.
2845 */
2846static int
2847drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2848{
2849	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2850	int i;
2851	int total = 0;
2852
2853	if (bo == NULL || bo_gem->included_in_check_aperture)
2854		return 0;
2855
2856	total += bo->size;
2857	bo_gem->included_in_check_aperture = true;
2858
2859	for (i = 0; i < bo_gem->reloc_count; i++)
2860		total +=
2861		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2862							reloc_target_info[i].bo);
2863
2864	return total;
2865}
2866
2867/**
2868 * Count the number of buffers in this list that need a fence reg
2869 *
2870 * If the count is greater than the number of available regs, we'll have
2871 * to ask the caller to resubmit a batch with fewer tiled buffers.
2872 *
2873 * This function over-counts if the same buffer is used multiple times.
2874 */
2875static unsigned int
2876drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2877{
2878	int i;
2879	unsigned int total = 0;
2880
2881	for (i = 0; i < count; i++) {
2882		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2883
2884		if (bo_gem == NULL)
2885			continue;
2886
2887		total += bo_gem->reloc_tree_fences;
2888	}
2889	return total;
2890}
2891
2892/**
2893 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2894 * for the next drm_intel_bufmgr_check_aperture_space() call.
2895 */
2896static void
2897drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2898{
2899	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2900	int i;
2901
2902	if (bo == NULL || !bo_gem->included_in_check_aperture)
2903		return;
2904
2905	bo_gem->included_in_check_aperture = false;
2906
2907	for (i = 0; i < bo_gem->reloc_count; i++)
2908		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2909							   reloc_target_info[i].bo);
2910}
2911
2912/**
2913 * Return a conservative estimate for the amount of aperture required
2914 * for a collection of buffers. This may double-count some buffers.
2915 */
2916static unsigned int
2917drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2918{
2919	int i;
2920	unsigned int total = 0;
2921
2922	for (i = 0; i < count; i++) {
2923		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2924		if (bo_gem != NULL)
2925			total += bo_gem->reloc_tree_size;
2926	}
2927	return total;
2928}
2929
2930/**
2931 * Return the amount of aperture needed for a collection of buffers.
2932 * This avoids double counting any buffers, at the cost of looking
2933 * at every buffer in the set.
2934 */
2935static unsigned int
2936drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2937{
2938	int i;
2939	unsigned int total = 0;
2940
2941	for (i = 0; i < count; i++) {
2942		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2943		/* For the first buffer object in the array, we get an
2944		 * accurate count back for its reloc_tree size (since nothing
2945		 * had been flagged as being counted yet).  We can save that
2946		 * value out as a more conservative reloc_tree_size that
2947		 * avoids double-counting target buffers.  Since the first
2948		 * buffer happens to usually be the batch buffer in our
2949		 * callers, this can pull us back from doing the tree
2950		 * walk on every new batch emit.
2951		 */
2952		if (i == 0) {
2953			drm_intel_bo_gem *bo_gem =
2954			    (drm_intel_bo_gem *) bo_array[i];
2955			bo_gem->reloc_tree_size = total;
2956		}
2957	}
2958
2959	for (i = 0; i < count; i++)
2960		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2961	return total;
2962}
2963
2964/**
2965 * Return -1 if the batchbuffer should be flushed before attempting to
2966 * emit rendering referencing the buffers pointed to by bo_array.
2967 *
2968 * This is required because if we try to emit a batchbuffer with relocations
2969 * to a tree of buffers that won't simultaneously fit in the aperture,
2970 * the rendering will return an error at a point where the software is not
2971 * prepared to recover from it.
2972 *
2973 * However, we also want to emit the batchbuffer significantly before we reach
2974 * the limit, as a series of batchbuffers each of which references buffers
2975 * covering almost all of the aperture means that at each emit we end up
2976 * waiting to evict a buffer from the last rendering, and we get synchronous
2977 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2978 * get better parallelism.
2979 */
2980static int
2981drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2982{
2983	drm_intel_bufmgr_gem *bufmgr_gem =
2984	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2985	unsigned int total = 0;
2986	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2987	int total_fences;
2988
2989	/* Check for fence reg constraints if necessary */
2990	if (bufmgr_gem->available_fences) {
2991		total_fences = drm_intel_gem_total_fences(bo_array, count);
2992		if (total_fences > bufmgr_gem->available_fences)
2993			return -ENOSPC;
2994	}
2995
2996	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2997
2998	if (total > threshold)
2999		total = drm_intel_gem_compute_batch_space(bo_array, count);
3000
3001	if (total > threshold) {
3002		DBG("check_space: overflowed available aperture, "
3003		    "%dkb vs %dkb\n",
3004		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3005		return -ENOSPC;
3006	} else {
3007		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3008		    (int)bufmgr_gem->gtt_size / 1024);
3009		return 0;
3010	}
3011}
3012
3013/*
3014 * Disable buffer reuse for objects which are shared with the kernel
3015 * as scanout buffers
3016 */
3017static int
3018drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3019{
3020	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3021
3022	bo_gem->reusable = false;
3023	return 0;
3024}
3025
3026static int
3027drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3028{
3029	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3030
3031	return bo_gem->reusable;
3032}
3033
3034static int
3035_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3036{
3037	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3038	int i;
3039
3040	for (i = 0; i < bo_gem->reloc_count; i++) {
3041		if (bo_gem->reloc_target_info[i].bo == target_bo)
3042			return 1;
3043		if (bo == bo_gem->reloc_target_info[i].bo)
3044			continue;
3045		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3046						target_bo))
3047			return 1;
3048	}
3049
3050	for (i = 0; i< bo_gem->softpin_target_count; i++) {
3051		if (bo_gem->softpin_target[i] == target_bo)
3052			return 1;
3053		if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
3054			return 1;
3055	}
3056
3057	return 0;
3058}
3059
3060/** Return true if target_bo is referenced by bo's relocation tree. */
3061static int
3062drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3063{
3064	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3065
3066	if (bo == NULL || target_bo == NULL)
3067		return 0;
3068	if (target_bo_gem->used_as_reloc_target)
3069		return _drm_intel_gem_bo_references(bo, target_bo);
3070	return 0;
3071}
3072
3073static void
3074add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3075{
3076	unsigned int i = bufmgr_gem->num_buckets;
3077
3078	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3079
3080	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3081	bufmgr_gem->cache_bucket[i].size = size;
3082	bufmgr_gem->num_buckets++;
3083}
3084
3085static void
3086init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3087{
3088	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3089
3090	/* OK, so power of two buckets was too wasteful of memory.
3091	 * Give 3 other sizes between each power of two, to hopefully
3092	 * cover things accurately enough.  (The alternative is
3093	 * probably to just go for exact matching of sizes, and assume
3094	 * that for things like composited window resize the tiled
3095	 * width/height alignment and rounding of sizes to pages will
3096	 * get us useful cache hit rates anyway)
3097	 */
3098	add_bucket(bufmgr_gem, 4096);
3099	add_bucket(bufmgr_gem, 4096 * 2);
3100	add_bucket(bufmgr_gem, 4096 * 3);
3101
3102	/* Initialize the linked lists for BO reuse cache. */
3103	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3104		add_bucket(bufmgr_gem, size);
3105
3106		add_bucket(bufmgr_gem, size + size * 1 / 4);
3107		add_bucket(bufmgr_gem, size + size * 2 / 4);
3108		add_bucket(bufmgr_gem, size + size * 3 / 4);
3109	}
3110}
3111
3112drm_public void
3113drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3114{
3115	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3116
3117	bufmgr_gem->vma_max = limit;
3118
3119	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3120}
3121
3122static int
3123parse_devid_override(const char *devid_override)
3124{
3125	static const struct {
3126		const char *name;
3127		int pci_id;
3128	} name_map[] = {
3129		{ "brw", PCI_CHIP_I965_GM },
3130		{ "g4x", PCI_CHIP_GM45_GM },
3131		{ "ilk", PCI_CHIP_ILD_G },
3132		{ "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS },
3133		{ "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 },
3134		{ "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 },
3135		{ "byt", PCI_CHIP_VALLEYVIEW_3 },
3136		{ "bdw", 0x1620 | BDW_ULX },
3137		{ "skl", PCI_CHIP_SKYLAKE_DT_GT2 },
3138		{ "kbl", PCI_CHIP_KABYLAKE_DT_GT2 },
3139	};
3140	unsigned int i;
3141
3142	for (i = 0; i < ARRAY_SIZE(name_map); i++) {
3143		if (!strcmp(name_map[i].name, devid_override))
3144			return name_map[i].pci_id;
3145	}
3146
3147	return strtod(devid_override, NULL);
3148}
3149
3150/**
3151 * Get the PCI ID for the device.  This can be overridden by setting the
3152 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3153 */
3154static int
3155get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3156{
3157	char *devid_override;
3158	int devid = 0;
3159	int ret;
3160	drm_i915_getparam_t gp;
3161
3162	if (geteuid() == getuid()) {
3163		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3164		if (devid_override) {
3165			bufmgr_gem->no_exec = true;
3166			return parse_devid_override(devid_override);
3167		}
3168	}
3169
3170	memclear(gp);
3171	gp.param = I915_PARAM_CHIPSET_ID;
3172	gp.value = &devid;
3173	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3174	if (ret) {
3175		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3176		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3177	}
3178	return devid;
3179}
3180
3181drm_public int
3182drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3183{
3184	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3185
3186	return bufmgr_gem->pci_device;
3187}
3188
3189/**
3190 * Sets the AUB filename.
3191 *
3192 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3193 * for it to have any effect.
3194 */
3195drm_public void
3196drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3197				      const char *filename)
3198{
3199}
3200
3201/**
3202 * Sets up AUB dumping.
3203 *
3204 * This is a trace file format that can be used with the simulator.
3205 * Packets are emitted in a format somewhat like GPU command packets.
3206 * You can set up a GTT and upload your objects into the referenced
3207 * space, then send off batchbuffers and get BMPs out the other end.
3208 */
3209drm_public void
3210drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3211{
3212	fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3213		"Use intel_aubdump from intel-gpu-tools instead.  Install intel-gpu-tools,\n"
3214		"then run (for example)\n\n"
3215		"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3216		"See the intel_aubdump man page for more details.\n");
3217}
3218
3219drm_public drm_intel_context *
3220drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3221{
3222	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3223	struct drm_i915_gem_context_create create;
3224	drm_intel_context *context = NULL;
3225	int ret;
3226
3227	context = calloc(1, sizeof(*context));
3228	if (!context)
3229		return NULL;
3230
3231	memclear(create);
3232	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3233	if (ret != 0) {
3234		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3235		    strerror(errno));
3236		free(context);
3237		return NULL;
3238	}
3239
3240	context->ctx_id = create.ctx_id;
3241	context->bufmgr = bufmgr;
3242
3243	return context;
3244}
3245
3246drm_public int
3247drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id)
3248{
3249	if (ctx == NULL)
3250		return -EINVAL;
3251
3252	*ctx_id = ctx->ctx_id;
3253
3254	return 0;
3255}
3256
3257drm_public void
3258drm_intel_gem_context_destroy(drm_intel_context *ctx)
3259{
3260	drm_intel_bufmgr_gem *bufmgr_gem;
3261	struct drm_i915_gem_context_destroy destroy;
3262	int ret;
3263
3264	if (ctx == NULL)
3265		return;
3266
3267	memclear(destroy);
3268
3269	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3270	destroy.ctx_id = ctx->ctx_id;
3271	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3272		       &destroy);
3273	if (ret != 0)
3274		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3275			strerror(errno));
3276
3277	free(ctx);
3278}
3279
3280drm_public int
3281drm_intel_get_reset_stats(drm_intel_context *ctx,
3282			  uint32_t *reset_count,
3283			  uint32_t *active,
3284			  uint32_t *pending)
3285{
3286	drm_intel_bufmgr_gem *bufmgr_gem;
3287	struct drm_i915_reset_stats stats;
3288	int ret;
3289
3290	if (ctx == NULL)
3291		return -EINVAL;
3292
3293	memclear(stats);
3294
3295	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3296	stats.ctx_id = ctx->ctx_id;
3297	ret = drmIoctl(bufmgr_gem->fd,
3298		       DRM_IOCTL_I915_GET_RESET_STATS,
3299		       &stats);
3300	if (ret == 0) {
3301		if (reset_count != NULL)
3302			*reset_count = stats.reset_count;
3303
3304		if (active != NULL)
3305			*active = stats.batch_active;
3306
3307		if (pending != NULL)
3308			*pending = stats.batch_pending;
3309	}
3310
3311	return ret;
3312}
3313
3314drm_public int
3315drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3316		   uint32_t offset,
3317		   uint64_t *result)
3318{
3319	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3320	struct drm_i915_reg_read reg_read;
3321	int ret;
3322
3323	memclear(reg_read);
3324	reg_read.offset = offset;
3325
3326	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3327
3328	*result = reg_read.val;
3329	return ret;
3330}
3331
3332drm_public int
3333drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3334{
3335	drm_i915_getparam_t gp;
3336	int ret;
3337
3338	memclear(gp);
3339	gp.value = (int*)subslice_total;
3340	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3341	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3342	if (ret)
3343		return -errno;
3344
3345	return 0;
3346}
3347
3348drm_public int
3349drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3350{
3351	drm_i915_getparam_t gp;
3352	int ret;
3353
3354	memclear(gp);
3355	gp.value = (int*)eu_total;
3356	gp.param = I915_PARAM_EU_TOTAL;
3357	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3358	if (ret)
3359		return -errno;
3360
3361	return 0;
3362}
3363
3364drm_public int
3365drm_intel_get_pooled_eu(int fd)
3366{
3367	drm_i915_getparam_t gp;
3368	int ret = -1;
3369
3370	memclear(gp);
3371	gp.param = I915_PARAM_HAS_POOLED_EU;
3372	gp.value = &ret;
3373	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3374		return -errno;
3375
3376	return ret;
3377}
3378
3379drm_public int
3380drm_intel_get_min_eu_in_pool(int fd)
3381{
3382	drm_i915_getparam_t gp;
3383	int ret = -1;
3384
3385	memclear(gp);
3386	gp.param = I915_PARAM_MIN_EU_IN_POOL;
3387	gp.value = &ret;
3388	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3389		return -errno;
3390
3391	return ret;
3392}
3393
3394/**
3395 * Annotate the given bo for use in aub dumping.
3396 *
3397 * \param annotations is an array of drm_intel_aub_annotation objects
3398 * describing the type of data in various sections of the bo.  Each
3399 * element of the array specifies the type and subtype of a section of
3400 * the bo, and the past-the-end offset of that section.  The elements
3401 * of \c annotations must be sorted so that ending_offset is
3402 * increasing.
3403 *
3404 * \param count is the number of elements in the \c annotations array.
3405 * If \c count is zero, then \c annotations will not be dereferenced.
3406 *
3407 * Annotations are copied into a private data structure, so caller may
3408 * re-use the memory pointed to by \c annotations after the call
3409 * returns.
3410 *
3411 * Annotations are stored for the lifetime of the bo; to reset to the
3412 * default state (no annotations), call this function with a \c count
3413 * of zero.
3414 */
3415drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3416					 drm_intel_aub_annotation *annotations,
3417					 unsigned count)
3418{
3419}
3420
3421static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3422static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3423
3424static drm_intel_bufmgr_gem *
3425drm_intel_bufmgr_gem_find(int fd)
3426{
3427	drm_intel_bufmgr_gem *bufmgr_gem;
3428
3429	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3430		if (bufmgr_gem->fd == fd) {
3431			atomic_inc(&bufmgr_gem->refcount);
3432			return bufmgr_gem;
3433		}
3434	}
3435
3436	return NULL;
3437}
3438
3439static void
3440drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3441{
3442	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3443
3444	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3445		pthread_mutex_lock(&bufmgr_list_mutex);
3446
3447		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3448			DRMLISTDEL(&bufmgr_gem->managers);
3449			drm_intel_bufmgr_gem_destroy(bufmgr);
3450		}
3451
3452		pthread_mutex_unlock(&bufmgr_list_mutex);
3453	}
3454}
3455
3456drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo)
3457{
3458	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3459	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3460
3461	if (bo_gem->gtt_virtual)
3462		return bo_gem->gtt_virtual;
3463
3464	if (bo_gem->is_userptr)
3465		return NULL;
3466
3467	pthread_mutex_lock(&bufmgr_gem->lock);
3468	if (bo_gem->gtt_virtual == NULL) {
3469		struct drm_i915_gem_mmap_gtt mmap_arg;
3470		void *ptr;
3471
3472		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
3473		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3474
3475		if (bo_gem->map_count++ == 0)
3476			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3477
3478		memclear(mmap_arg);
3479		mmap_arg.handle = bo_gem->gem_handle;
3480
3481		/* Get the fake offset back... */
3482		ptr = MAP_FAILED;
3483		if (drmIoctl(bufmgr_gem->fd,
3484			     DRM_IOCTL_I915_GEM_MMAP_GTT,
3485			     &mmap_arg) == 0) {
3486			/* and mmap it */
3487			ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
3488				       MAP_SHARED, bufmgr_gem->fd,
3489				       mmap_arg.offset);
3490		}
3491		if (ptr == MAP_FAILED) {
3492			if (--bo_gem->map_count == 0)
3493				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3494			ptr = NULL;
3495		}
3496
3497		bo_gem->gtt_virtual = ptr;
3498	}
3499	pthread_mutex_unlock(&bufmgr_gem->lock);
3500
3501	return bo_gem->gtt_virtual;
3502}
3503
3504drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo)
3505{
3506	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3507	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3508
3509	if (bo_gem->mem_virtual)
3510		return bo_gem->mem_virtual;
3511
3512	if (bo_gem->is_userptr) {
3513		/* Return the same user ptr */
3514		return bo_gem->user_virtual;
3515	}
3516
3517	pthread_mutex_lock(&bufmgr_gem->lock);
3518	if (!bo_gem->mem_virtual) {
3519		struct drm_i915_gem_mmap mmap_arg;
3520
3521		if (bo_gem->map_count++ == 0)
3522			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3523
3524		DBG("bo_map: %d (%s), map_count=%d\n",
3525		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3526
3527		memclear(mmap_arg);
3528		mmap_arg.handle = bo_gem->gem_handle;
3529		mmap_arg.size = bo->size;
3530		if (drmIoctl(bufmgr_gem->fd,
3531			     DRM_IOCTL_I915_GEM_MMAP,
3532			     &mmap_arg)) {
3533			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3534			    __FILE__, __LINE__, bo_gem->gem_handle,
3535			    bo_gem->name, strerror(errno));
3536			if (--bo_gem->map_count == 0)
3537				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3538		} else {
3539			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3540			bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3541		}
3542	}
3543	pthread_mutex_unlock(&bufmgr_gem->lock);
3544
3545	return bo_gem->mem_virtual;
3546}
3547
3548drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo)
3549{
3550	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3551	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3552
3553	if (bo_gem->wc_virtual)
3554		return bo_gem->wc_virtual;
3555
3556	if (bo_gem->is_userptr)
3557		return NULL;
3558
3559	pthread_mutex_lock(&bufmgr_gem->lock);
3560	if (!bo_gem->wc_virtual) {
3561		struct drm_i915_gem_mmap mmap_arg;
3562
3563		if (bo_gem->map_count++ == 0)
3564			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3565
3566		DBG("bo_map: %d (%s), map_count=%d\n",
3567		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3568
3569		memclear(mmap_arg);
3570		mmap_arg.handle = bo_gem->gem_handle;
3571		mmap_arg.size = bo->size;
3572		mmap_arg.flags = I915_MMAP_WC;
3573		if (drmIoctl(bufmgr_gem->fd,
3574			     DRM_IOCTL_I915_GEM_MMAP,
3575			     &mmap_arg)) {
3576			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3577			    __FILE__, __LINE__, bo_gem->gem_handle,
3578			    bo_gem->name, strerror(errno));
3579			if (--bo_gem->map_count == 0)
3580				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3581		} else {
3582			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3583			bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3584		}
3585	}
3586	pthread_mutex_unlock(&bufmgr_gem->lock);
3587
3588	return bo_gem->wc_virtual;
3589}
3590
3591/**
3592 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3593 * and manage map buffer objections.
3594 *
3595 * \param fd File descriptor of the opened DRM device.
3596 */
3597drm_public drm_intel_bufmgr *
3598drm_intel_bufmgr_gem_init(int fd, int batch_size)
3599{
3600	drm_intel_bufmgr_gem *bufmgr_gem;
3601	struct drm_i915_gem_get_aperture aperture;
3602	drm_i915_getparam_t gp;
3603	int ret, tmp;
3604	bool exec2 = false;
3605
3606	pthread_mutex_lock(&bufmgr_list_mutex);
3607
3608	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3609	if (bufmgr_gem)
3610		goto exit;
3611
3612	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3613	if (bufmgr_gem == NULL)
3614		goto exit;
3615
3616	bufmgr_gem->fd = fd;
3617	atomic_set(&bufmgr_gem->refcount, 1);
3618
3619	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3620		free(bufmgr_gem);
3621		bufmgr_gem = NULL;
3622		goto exit;
3623	}
3624
3625	memclear(aperture);
3626	ret = drmIoctl(bufmgr_gem->fd,
3627		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3628		       &aperture);
3629
3630	if (ret == 0)
3631		bufmgr_gem->gtt_size = aperture.aper_available_size;
3632	else {
3633		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3634			strerror(errno));
3635		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3636		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3637			"May lead to reduced performance or incorrect "
3638			"rendering.\n",
3639			(int)bufmgr_gem->gtt_size / 1024);
3640	}
3641
3642	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3643
3644	if (IS_GEN2(bufmgr_gem->pci_device))
3645		bufmgr_gem->gen = 2;
3646	else if (IS_GEN3(bufmgr_gem->pci_device))
3647		bufmgr_gem->gen = 3;
3648	else if (IS_GEN4(bufmgr_gem->pci_device))
3649		bufmgr_gem->gen = 4;
3650	else if (IS_GEN5(bufmgr_gem->pci_device))
3651		bufmgr_gem->gen = 5;
3652	else if (IS_GEN6(bufmgr_gem->pci_device))
3653		bufmgr_gem->gen = 6;
3654	else if (IS_GEN7(bufmgr_gem->pci_device))
3655		bufmgr_gem->gen = 7;
3656	else if (IS_GEN8(bufmgr_gem->pci_device))
3657		bufmgr_gem->gen = 8;
3658	else if (!intel_get_genx(bufmgr_gem->pci_device, &bufmgr_gem->gen)) {
3659		free(bufmgr_gem);
3660		bufmgr_gem = NULL;
3661		goto exit;
3662	}
3663
3664	if (IS_GEN3(bufmgr_gem->pci_device) &&
3665	    bufmgr_gem->gtt_size > 256*1024*1024) {
3666		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3667		 * be used for tiled blits. To simplify the accounting, just
3668		 * subtract the unmappable part (fixed to 256MB on all known
3669		 * gen3 devices) if the kernel advertises it. */
3670		bufmgr_gem->gtt_size -= 256*1024*1024;
3671	}
3672
3673	memclear(gp);
3674	gp.value = &tmp;
3675
3676	gp.param = I915_PARAM_HAS_EXECBUF2;
3677	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3678	if (!ret)
3679		exec2 = true;
3680
3681	gp.param = I915_PARAM_HAS_BSD;
3682	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3683	bufmgr_gem->has_bsd = ret == 0;
3684
3685	gp.param = I915_PARAM_HAS_BLT;
3686	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3687	bufmgr_gem->has_blt = ret == 0;
3688
3689	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3690	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3691	bufmgr_gem->has_relaxed_fencing = ret == 0;
3692
3693	gp.param = I915_PARAM_HAS_EXEC_ASYNC;
3694	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3695	bufmgr_gem->has_exec_async = ret == 0;
3696
3697	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3698
3699	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3700	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3701	bufmgr_gem->has_wait_timeout = ret == 0;
3702
3703	gp.param = I915_PARAM_HAS_LLC;
3704	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3705	if (ret != 0) {
3706		/* Kernel does not supports HAS_LLC query, fallback to GPU
3707		 * generation detection and assume that we have LLC on GEN6/7
3708		 */
3709		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3710				IS_GEN7(bufmgr_gem->pci_device));
3711	} else
3712		bufmgr_gem->has_llc = *gp.value;
3713
3714	gp.param = I915_PARAM_HAS_VEBOX;
3715	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3716	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3717
3718	gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3719	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3720	if (ret == 0 && *gp.value > 0)
3721		bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3722
3723	if (bufmgr_gem->gen < 4) {
3724		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3725		gp.value = &bufmgr_gem->available_fences;
3726		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3727		if (ret) {
3728			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3729				errno);
3730			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3731				*gp.value);
3732			bufmgr_gem->available_fences = 0;
3733		} else {
3734			/* XXX The kernel reports the total number of fences,
3735			 * including any that may be pinned.
3736			 *
3737			 * We presume that there will be at least one pinned
3738			 * fence for the scanout buffer, but there may be more
3739			 * than one scanout and the user may be manually
3740			 * pinning buffers. Let's move to execbuffer2 and
3741			 * thereby forget the insanity of using fences...
3742			 */
3743			bufmgr_gem->available_fences -= 2;
3744			if (bufmgr_gem->available_fences < 0)
3745				bufmgr_gem->available_fences = 0;
3746		}
3747	}
3748
3749	if (bufmgr_gem->gen >= 8) {
3750		gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3751		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3752		if (ret == 0 && *gp.value == 3)
3753			bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3754	}
3755
3756	/* Let's go with one relocation per every 2 dwords (but round down a bit
3757	 * since a power of two will mean an extra page allocation for the reloc
3758	 * buffer).
3759	 *
3760	 * Every 4 was too few for the blender benchmark.
3761	 */
3762	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3763
3764	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3765	bufmgr_gem->bufmgr.bo_alloc_for_render =
3766	    drm_intel_gem_bo_alloc_for_render;
3767	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3768	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3769	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3770	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3771	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3772	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3773	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3774	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3775	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3776	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3777	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3778	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3779	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3780	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3781	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3782	/* Use the new one if available */
3783	if (exec2) {
3784		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3785		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3786	} else
3787		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3788	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3789	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3790	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3791	bufmgr_gem->bufmgr.debug = 0;
3792	bufmgr_gem->bufmgr.check_aperture_space =
3793	    drm_intel_gem_check_aperture_space;
3794	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3795	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3796	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3797	    drm_intel_gem_get_pipe_from_crtc_id;
3798	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3799
3800	init_cache_buckets(bufmgr_gem);
3801
3802	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3803	bufmgr_gem->vma_max = -1; /* unlimited by default */
3804
3805	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3806
3807exit:
3808	pthread_mutex_unlock(&bufmgr_list_mutex);
3809
3810	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3811}
3812