intel_bufmgr_gem.c revision fe517fc9
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#ifdef HAVE_CONFIG_H
38#include "config.h"
39#endif
40
41#include <xf86drm.h>
42#include <xf86atomic.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <assert.h>
49#include <pthread.h>
50#include <stddef.h>
51#include <sys/ioctl.h>
52#include <sys/stat.h>
53#include <sys/types.h>
54#include <stdbool.h>
55
56#include "errno.h"
57#ifndef ETIME
58#define ETIME ETIMEDOUT
59#endif
60#include "libdrm_macros.h"
61#include "libdrm_lists.h"
62#include "intel_bufmgr.h"
63#include "intel_bufmgr_priv.h"
64#include "intel_chipset.h"
65#include "string.h"
66
67#include "i915_drm.h"
68
69#ifdef HAVE_VALGRIND
70#include <valgrind.h>
71#include <memcheck.h>
72#define VG(x) x
73#else
74#define VG(x)
75#endif
76
77#define memclear(s) memset(&s, 0, sizeof(s))
78
79#define DBG(...) do {					\
80	if (bufmgr_gem->bufmgr.debug)			\
81		fprintf(stderr, __VA_ARGS__);		\
82} while (0)
83
84#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
85#define MAX2(A, B) ((A) > (B) ? (A) : (B))
86
87/**
88 * upper_32_bits - return bits 32-63 of a number
89 * @n: the number we're accessing
90 *
91 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
92 * the "right shift count >= width of type" warning when that quantity is
93 * 32-bits.
94 */
95#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
96
97/**
98 * lower_32_bits - return bits 0-31 of a number
99 * @n: the number we're accessing
100 */
101#define lower_32_bits(n) ((__u32)(n))
102
103typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
104
105struct drm_intel_gem_bo_bucket {
106	drmMMListHead head;
107	unsigned long size;
108};
109
110typedef struct _drm_intel_bufmgr_gem {
111	drm_intel_bufmgr bufmgr;
112
113	atomic_t refcount;
114
115	int fd;
116
117	int max_relocs;
118
119	pthread_mutex_t lock;
120
121	struct drm_i915_gem_exec_object *exec_objects;
122	struct drm_i915_gem_exec_object2 *exec2_objects;
123	drm_intel_bo **exec_bos;
124	int exec_size;
125	int exec_count;
126
127	/** Array of lists of cached gem objects of power-of-two sizes */
128	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
129	int num_buckets;
130	time_t time;
131
132	drmMMListHead managers;
133
134	drmMMListHead named;
135	drmMMListHead vma_cache;
136	int vma_count, vma_open, vma_max;
137
138	uint64_t gtt_size;
139	int available_fences;
140	int pci_device;
141	int gen;
142	unsigned int has_bsd : 1;
143	unsigned int has_blt : 1;
144	unsigned int has_relaxed_fencing : 1;
145	unsigned int has_llc : 1;
146	unsigned int has_wait_timeout : 1;
147	unsigned int bo_reuse : 1;
148	unsigned int no_exec : 1;
149	unsigned int has_vebox : 1;
150	bool fenced_relocs;
151
152	struct {
153		void *ptr;
154		uint32_t handle;
155	} userptr_active;
156
157} drm_intel_bufmgr_gem;
158
159#define DRM_INTEL_RELOC_FENCE (1<<0)
160
161typedef struct _drm_intel_reloc_target_info {
162	drm_intel_bo *bo;
163	int flags;
164} drm_intel_reloc_target;
165
166struct _drm_intel_bo_gem {
167	drm_intel_bo bo;
168
169	atomic_t refcount;
170	uint32_t gem_handle;
171	const char *name;
172
173	/**
174	 * Kenel-assigned global name for this object
175         *
176         * List contains both flink named and prime fd'd objects
177	 */
178	unsigned int global_name;
179	drmMMListHead name_list;
180
181	/**
182	 * Index of the buffer within the validation list while preparing a
183	 * batchbuffer execution.
184	 */
185	int validate_index;
186
187	/**
188	 * Current tiling mode
189	 */
190	uint32_t tiling_mode;
191	uint32_t swizzle_mode;
192	unsigned long stride;
193
194	time_t free_time;
195
196	/** Array passed to the DRM containing relocation information. */
197	struct drm_i915_gem_relocation_entry *relocs;
198	/**
199	 * Array of info structs corresponding to relocs[i].target_handle etc
200	 */
201	drm_intel_reloc_target *reloc_target_info;
202	/** Number of entries in relocs */
203	int reloc_count;
204	/** Array of BOs that are referenced by this buffer and will be softpinned */
205	drm_intel_bo **softpin_target;
206	/** Number softpinned BOs that are referenced by this buffer */
207	int softpin_target_count;
208	/** Maximum amount of softpinned BOs that are referenced by this buffer */
209	int softpin_target_size;
210
211	/** Mapped address for the buffer, saved across map/unmap cycles */
212	void *mem_virtual;
213	/** GTT virtual address for the buffer, saved across map/unmap cycles */
214	void *gtt_virtual;
215	/**
216	 * Virtual address of the buffer allocated by user, used for userptr
217	 * objects only.
218	 */
219	void *user_virtual;
220	int map_count;
221	drmMMListHead vma_list;
222
223	/** BO cache list */
224	drmMMListHead head;
225
226	/**
227	 * Boolean of whether this BO and its children have been included in
228	 * the current drm_intel_bufmgr_check_aperture_space() total.
229	 */
230	bool included_in_check_aperture;
231
232	/**
233	 * Boolean of whether this buffer has been used as a relocation
234	 * target and had its size accounted for, and thus can't have any
235	 * further relocations added to it.
236	 */
237	bool used_as_reloc_target;
238
239	/**
240	 * Boolean of whether we have encountered an error whilst building the relocation tree.
241	 */
242	bool has_error;
243
244	/**
245	 * Boolean of whether this buffer can be re-used
246	 */
247	bool reusable;
248
249	/**
250	 * Boolean of whether the GPU is definitely not accessing the buffer.
251	 *
252	 * This is only valid when reusable, since non-reusable
253	 * buffers are those that have been shared wth other
254	 * processes, so we don't know their state.
255	 */
256	bool idle;
257
258	/**
259	 * Boolean of whether this buffer was allocated with userptr
260	 */
261	bool is_userptr;
262
263	/**
264	 * Boolean of whether this buffer can be placed in the full 48-bit
265	 * address range on gen8+.
266	 *
267	 * By default, buffers will be keep in a 32-bit range, unless this
268	 * flag is explicitly set.
269	 */
270	bool use_48b_address_range;
271
272	/**
273	 * Whether this buffer is softpinned at offset specified by the user
274	 */
275	bool is_softpin;
276
277	/**
278	 * Size in bytes of this buffer and its relocation descendents.
279	 *
280	 * Used to avoid costly tree walking in
281	 * drm_intel_bufmgr_check_aperture in the common case.
282	 */
283	int reloc_tree_size;
284
285	/**
286	 * Number of potential fence registers required by this buffer and its
287	 * relocations.
288	 */
289	int reloc_tree_fences;
290
291	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
292	bool mapped_cpu_write;
293};
294
295static unsigned int
296drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
297
298static unsigned int
299drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
300
301static int
302drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
303			    uint32_t * swizzle_mode);
304
305static int
306drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
307				     uint32_t tiling_mode,
308				     uint32_t stride);
309
310static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
311						      time_t time);
312
313static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
314
315static void drm_intel_gem_bo_free(drm_intel_bo *bo);
316
317static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
318{
319        return (drm_intel_bo_gem *)bo;
320}
321
322static unsigned long
323drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
324			   uint32_t *tiling_mode)
325{
326	unsigned long min_size, max_size;
327	unsigned long i;
328
329	if (*tiling_mode == I915_TILING_NONE)
330		return size;
331
332	/* 965+ just need multiples of page size for tiling */
333	if (bufmgr_gem->gen >= 4)
334		return ROUND_UP_TO(size, 4096);
335
336	/* Older chips need powers of two, of at least 512k or 1M */
337	if (bufmgr_gem->gen == 3) {
338		min_size = 1024*1024;
339		max_size = 128*1024*1024;
340	} else {
341		min_size = 512*1024;
342		max_size = 64*1024*1024;
343	}
344
345	if (size > max_size) {
346		*tiling_mode = I915_TILING_NONE;
347		return size;
348	}
349
350	/* Do we need to allocate every page for the fence? */
351	if (bufmgr_gem->has_relaxed_fencing)
352		return ROUND_UP_TO(size, 4096);
353
354	for (i = min_size; i < size; i <<= 1)
355		;
356
357	return i;
358}
359
360/*
361 * Round a given pitch up to the minimum required for X tiling on a
362 * given chip.  We use 512 as the minimum to allow for a later tiling
363 * change.
364 */
365static unsigned long
366drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
367			    unsigned long pitch, uint32_t *tiling_mode)
368{
369	unsigned long tile_width;
370	unsigned long i;
371
372	/* If untiled, then just align it so that we can do rendering
373	 * to it with the 3D engine.
374	 */
375	if (*tiling_mode == I915_TILING_NONE)
376		return ALIGN(pitch, 64);
377
378	if (*tiling_mode == I915_TILING_X
379			|| (IS_915(bufmgr_gem->pci_device)
380			    && *tiling_mode == I915_TILING_Y))
381		tile_width = 512;
382	else
383		tile_width = 128;
384
385	/* 965 is flexible */
386	if (bufmgr_gem->gen >= 4)
387		return ROUND_UP_TO(pitch, tile_width);
388
389	/* The older hardware has a maximum pitch of 8192 with tiled
390	 * surfaces, so fallback to untiled if it's too large.
391	 */
392	if (pitch > 8192) {
393		*tiling_mode = I915_TILING_NONE;
394		return ALIGN(pitch, 64);
395	}
396
397	/* Pre-965 needs power of two tile width */
398	for (i = tile_width; i < pitch; i <<= 1)
399		;
400
401	return i;
402}
403
404static struct drm_intel_gem_bo_bucket *
405drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
406				 unsigned long size)
407{
408	int i;
409
410	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
411		struct drm_intel_gem_bo_bucket *bucket =
412		    &bufmgr_gem->cache_bucket[i];
413		if (bucket->size >= size) {
414			return bucket;
415		}
416	}
417
418	return NULL;
419}
420
421static void
422drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
423{
424	int i, j;
425
426	for (i = 0; i < bufmgr_gem->exec_count; i++) {
427		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
428		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
429
430		if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
431			DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
432			    bo_gem->is_softpin ? "*" : "",
433			    bo_gem->name);
434			continue;
435		}
436
437		for (j = 0; j < bo_gem->reloc_count; j++) {
438			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
439			drm_intel_bo_gem *target_gem =
440			    (drm_intel_bo_gem *) target_bo;
441
442			DBG("%2d: %d %s(%s)@0x%08x %08x -> "
443			    "%d (%s)@0x%08x %08x + 0x%08x\n",
444			    i,
445			    bo_gem->gem_handle,
446			    bo_gem->is_softpin ? "*" : "",
447			    bo_gem->name,
448			    upper_32_bits(bo_gem->relocs[j].offset),
449			    lower_32_bits(bo_gem->relocs[j].offset),
450			    target_gem->gem_handle,
451			    target_gem->name,
452			    upper_32_bits(target_bo->offset64),
453			    lower_32_bits(target_bo->offset64),
454			    bo_gem->relocs[j].delta);
455		}
456
457		for (j = 0; j < bo_gem->softpin_target_count; j++) {
458			drm_intel_bo *target_bo = bo_gem->softpin_target[j];
459			drm_intel_bo_gem *target_gem =
460			    (drm_intel_bo_gem *) target_bo;
461			DBG("%2d: %d %s(%s) -> "
462			    "%d *(%s)@0x%08x %08x\n",
463			    i,
464			    bo_gem->gem_handle,
465			    bo_gem->is_softpin ? "*" : "",
466			    bo_gem->name,
467			    target_gem->gem_handle,
468			    target_gem->name,
469			    upper_32_bits(target_bo->offset64),
470			    lower_32_bits(target_bo->offset64));
471		}
472	}
473}
474
475static inline void
476drm_intel_gem_bo_reference(drm_intel_bo *bo)
477{
478	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
479
480	atomic_inc(&bo_gem->refcount);
481}
482
483/**
484 * Adds the given buffer to the list of buffers to be validated (moved into the
485 * appropriate memory type) with the next batch submission.
486 *
487 * If a buffer is validated multiple times in a batch submission, it ends up
488 * with the intersection of the memory type flags and the union of the
489 * access flags.
490 */
491static void
492drm_intel_add_validate_buffer(drm_intel_bo *bo)
493{
494	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
495	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
496	int index;
497
498	if (bo_gem->validate_index != -1)
499		return;
500
501	/* Extend the array of validation entries as necessary. */
502	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
503		int new_size = bufmgr_gem->exec_size * 2;
504
505		if (new_size == 0)
506			new_size = 5;
507
508		bufmgr_gem->exec_objects =
509		    realloc(bufmgr_gem->exec_objects,
510			    sizeof(*bufmgr_gem->exec_objects) * new_size);
511		bufmgr_gem->exec_bos =
512		    realloc(bufmgr_gem->exec_bos,
513			    sizeof(*bufmgr_gem->exec_bos) * new_size);
514		bufmgr_gem->exec_size = new_size;
515	}
516
517	index = bufmgr_gem->exec_count;
518	bo_gem->validate_index = index;
519	/* Fill in array entry */
520	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
521	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
522	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
523	bufmgr_gem->exec_objects[index].alignment = bo->align;
524	bufmgr_gem->exec_objects[index].offset = 0;
525	bufmgr_gem->exec_bos[index] = bo;
526	bufmgr_gem->exec_count++;
527}
528
529static void
530drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
531{
532	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
533	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
534	int index;
535	int flags = 0;
536
537	if (need_fence)
538		flags |= EXEC_OBJECT_NEEDS_FENCE;
539	if (bo_gem->use_48b_address_range)
540		flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
541	if (bo_gem->is_softpin)
542		flags |= EXEC_OBJECT_PINNED;
543
544	if (bo_gem->validate_index != -1) {
545		bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
546		return;
547	}
548
549	/* Extend the array of validation entries as necessary. */
550	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
551		int new_size = bufmgr_gem->exec_size * 2;
552
553		if (new_size == 0)
554			new_size = 5;
555
556		bufmgr_gem->exec2_objects =
557			realloc(bufmgr_gem->exec2_objects,
558				sizeof(*bufmgr_gem->exec2_objects) * new_size);
559		bufmgr_gem->exec_bos =
560			realloc(bufmgr_gem->exec_bos,
561				sizeof(*bufmgr_gem->exec_bos) * new_size);
562		bufmgr_gem->exec_size = new_size;
563	}
564
565	index = bufmgr_gem->exec_count;
566	bo_gem->validate_index = index;
567	/* Fill in array entry */
568	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
569	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
570	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
571	bufmgr_gem->exec2_objects[index].alignment = bo->align;
572	bufmgr_gem->exec2_objects[index].offset = bo_gem->is_softpin ?
573		bo->offset64 : 0;
574	bufmgr_gem->exec_bos[index] = bo;
575	bufmgr_gem->exec2_objects[index].flags = flags;
576	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
577	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
578	bufmgr_gem->exec_count++;
579}
580
581#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
582	sizeof(uint32_t))
583
584static void
585drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
586				      drm_intel_bo_gem *bo_gem,
587				      unsigned int alignment)
588{
589	unsigned int size;
590
591	assert(!bo_gem->used_as_reloc_target);
592
593	/* The older chipsets are far-less flexible in terms of tiling,
594	 * and require tiled buffer to be size aligned in the aperture.
595	 * This means that in the worst possible case we will need a hole
596	 * twice as large as the object in order for it to fit into the
597	 * aperture. Optimal packing is for wimps.
598	 */
599	size = bo_gem->bo.size;
600	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
601		unsigned int min_size;
602
603		if (bufmgr_gem->has_relaxed_fencing) {
604			if (bufmgr_gem->gen == 3)
605				min_size = 1024*1024;
606			else
607				min_size = 512*1024;
608
609			while (min_size < size)
610				min_size *= 2;
611		} else
612			min_size = size;
613
614		/* Account for worst-case alignment. */
615		alignment = MAX2(alignment, min_size);
616	}
617
618	bo_gem->reloc_tree_size = size + alignment;
619}
620
621static int
622drm_intel_setup_reloc_list(drm_intel_bo *bo)
623{
624	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
625	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
626	unsigned int max_relocs = bufmgr_gem->max_relocs;
627
628	if (bo->size / 4 < max_relocs)
629		max_relocs = bo->size / 4;
630
631	bo_gem->relocs = malloc(max_relocs *
632				sizeof(struct drm_i915_gem_relocation_entry));
633	bo_gem->reloc_target_info = malloc(max_relocs *
634					   sizeof(drm_intel_reloc_target));
635	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
636		bo_gem->has_error = true;
637
638		free (bo_gem->relocs);
639		bo_gem->relocs = NULL;
640
641		free (bo_gem->reloc_target_info);
642		bo_gem->reloc_target_info = NULL;
643
644		return 1;
645	}
646
647	return 0;
648}
649
650static int
651drm_intel_gem_bo_busy(drm_intel_bo *bo)
652{
653	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
654	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
655	struct drm_i915_gem_busy busy;
656	int ret;
657
658	if (bo_gem->reusable && bo_gem->idle)
659		return false;
660
661	memclear(busy);
662	busy.handle = bo_gem->gem_handle;
663
664	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
665	if (ret == 0) {
666		bo_gem->idle = !busy.busy;
667		return busy.busy;
668	} else {
669		return false;
670	}
671	return (ret == 0 && busy.busy);
672}
673
674static int
675drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
676				  drm_intel_bo_gem *bo_gem, int state)
677{
678	struct drm_i915_gem_madvise madv;
679
680	memclear(madv);
681	madv.handle = bo_gem->gem_handle;
682	madv.madv = state;
683	madv.retained = 1;
684	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
685
686	return madv.retained;
687}
688
689static int
690drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
691{
692	return drm_intel_gem_bo_madvise_internal
693		((drm_intel_bufmgr_gem *) bo->bufmgr,
694		 (drm_intel_bo_gem *) bo,
695		 madv);
696}
697
698/* drop the oldest entries that have been purged by the kernel */
699static void
700drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
701				    struct drm_intel_gem_bo_bucket *bucket)
702{
703	while (!DRMLISTEMPTY(&bucket->head)) {
704		drm_intel_bo_gem *bo_gem;
705
706		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
707				      bucket->head.next, head);
708		if (drm_intel_gem_bo_madvise_internal
709		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
710			break;
711
712		DRMLISTDEL(&bo_gem->head);
713		drm_intel_gem_bo_free(&bo_gem->bo);
714	}
715}
716
717static drm_intel_bo *
718drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
719				const char *name,
720				unsigned long size,
721				unsigned long flags,
722				uint32_t tiling_mode,
723				unsigned long stride,
724				unsigned int alignment)
725{
726	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
727	drm_intel_bo_gem *bo_gem;
728	unsigned int page_size = getpagesize();
729	int ret;
730	struct drm_intel_gem_bo_bucket *bucket;
731	bool alloc_from_cache;
732	unsigned long bo_size;
733	bool for_render = false;
734
735	if (flags & BO_ALLOC_FOR_RENDER)
736		for_render = true;
737
738	/* Round the allocated size up to a power of two number of pages. */
739	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
740
741	/* If we don't have caching at this size, don't actually round the
742	 * allocation up.
743	 */
744	if (bucket == NULL) {
745		bo_size = size;
746		if (bo_size < page_size)
747			bo_size = page_size;
748	} else {
749		bo_size = bucket->size;
750	}
751
752	pthread_mutex_lock(&bufmgr_gem->lock);
753	/* Get a buffer out of the cache if available */
754retry:
755	alloc_from_cache = false;
756	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
757		if (for_render) {
758			/* Allocate new render-target BOs from the tail (MRU)
759			 * of the list, as it will likely be hot in the GPU
760			 * cache and in the aperture for us.
761			 */
762			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
763					      bucket->head.prev, head);
764			DRMLISTDEL(&bo_gem->head);
765			alloc_from_cache = true;
766			bo_gem->bo.align = alignment;
767		} else {
768			assert(alignment == 0);
769			/* For non-render-target BOs (where we're probably
770			 * going to map it first thing in order to fill it
771			 * with data), check if the last BO in the cache is
772			 * unbusy, and only reuse in that case. Otherwise,
773			 * allocating a new buffer is probably faster than
774			 * waiting for the GPU to finish.
775			 */
776			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
777					      bucket->head.next, head);
778			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
779				alloc_from_cache = true;
780				DRMLISTDEL(&bo_gem->head);
781			}
782		}
783
784		if (alloc_from_cache) {
785			if (!drm_intel_gem_bo_madvise_internal
786			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
787				drm_intel_gem_bo_free(&bo_gem->bo);
788				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
789								    bucket);
790				goto retry;
791			}
792
793			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
794								 tiling_mode,
795								 stride)) {
796				drm_intel_gem_bo_free(&bo_gem->bo);
797				goto retry;
798			}
799		}
800	}
801	pthread_mutex_unlock(&bufmgr_gem->lock);
802
803	if (!alloc_from_cache) {
804		struct drm_i915_gem_create create;
805
806		bo_gem = calloc(1, sizeof(*bo_gem));
807		if (!bo_gem)
808			return NULL;
809
810		bo_gem->bo.size = bo_size;
811
812		memclear(create);
813		create.size = bo_size;
814
815		ret = drmIoctl(bufmgr_gem->fd,
816			       DRM_IOCTL_I915_GEM_CREATE,
817			       &create);
818		bo_gem->gem_handle = create.handle;
819		bo_gem->bo.handle = bo_gem->gem_handle;
820		if (ret != 0) {
821			free(bo_gem);
822			return NULL;
823		}
824		bo_gem->bo.bufmgr = bufmgr;
825		bo_gem->bo.align = alignment;
826
827		bo_gem->tiling_mode = I915_TILING_NONE;
828		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
829		bo_gem->stride = 0;
830
831		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
832		   list (vma_list), so better set the list head here */
833		DRMINITLISTHEAD(&bo_gem->name_list);
834		DRMINITLISTHEAD(&bo_gem->vma_list);
835		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
836							 tiling_mode,
837							 stride)) {
838		    drm_intel_gem_bo_free(&bo_gem->bo);
839		    return NULL;
840		}
841	}
842
843	bo_gem->name = name;
844	atomic_set(&bo_gem->refcount, 1);
845	bo_gem->validate_index = -1;
846	bo_gem->reloc_tree_fences = 0;
847	bo_gem->used_as_reloc_target = false;
848	bo_gem->has_error = false;
849	bo_gem->reusable = true;
850	bo_gem->use_48b_address_range = false;
851
852	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
853
854	DBG("bo_create: buf %d (%s) %ldb\n",
855	    bo_gem->gem_handle, bo_gem->name, size);
856
857	return &bo_gem->bo;
858}
859
860static drm_intel_bo *
861drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
862				  const char *name,
863				  unsigned long size,
864				  unsigned int alignment)
865{
866	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
867					       BO_ALLOC_FOR_RENDER,
868					       I915_TILING_NONE, 0,
869					       alignment);
870}
871
872static drm_intel_bo *
873drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
874		       const char *name,
875		       unsigned long size,
876		       unsigned int alignment)
877{
878	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
879					       I915_TILING_NONE, 0, 0);
880}
881
882static drm_intel_bo *
883drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
884			     int x, int y, int cpp, uint32_t *tiling_mode,
885			     unsigned long *pitch, unsigned long flags)
886{
887	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
888	unsigned long size, stride;
889	uint32_t tiling;
890
891	do {
892		unsigned long aligned_y, height_alignment;
893
894		tiling = *tiling_mode;
895
896		/* If we're tiled, our allocations are in 8 or 32-row blocks,
897		 * so failure to align our height means that we won't allocate
898		 * enough pages.
899		 *
900		 * If we're untiled, we still have to align to 2 rows high
901		 * because the data port accesses 2x2 blocks even if the
902		 * bottom row isn't to be rendered, so failure to align means
903		 * we could walk off the end of the GTT and fault.  This is
904		 * documented on 965, and may be the case on older chipsets
905		 * too so we try to be careful.
906		 */
907		aligned_y = y;
908		height_alignment = 2;
909
910		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
911			height_alignment = 16;
912		else if (tiling == I915_TILING_X
913			|| (IS_915(bufmgr_gem->pci_device)
914			    && tiling == I915_TILING_Y))
915			height_alignment = 8;
916		else if (tiling == I915_TILING_Y)
917			height_alignment = 32;
918		aligned_y = ALIGN(y, height_alignment);
919
920		stride = x * cpp;
921		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
922		size = stride * aligned_y;
923		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
924	} while (*tiling_mode != tiling);
925	*pitch = stride;
926
927	if (tiling == I915_TILING_NONE)
928		stride = 0;
929
930	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
931					       tiling, stride, 0);
932}
933
934static drm_intel_bo *
935drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
936				const char *name,
937				void *addr,
938				uint32_t tiling_mode,
939				uint32_t stride,
940				unsigned long size,
941				unsigned long flags)
942{
943	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
944	drm_intel_bo_gem *bo_gem;
945	int ret;
946	struct drm_i915_gem_userptr userptr;
947
948	/* Tiling with userptr surfaces is not supported
949	 * on all hardware so refuse it for time being.
950	 */
951	if (tiling_mode != I915_TILING_NONE)
952		return NULL;
953
954	bo_gem = calloc(1, sizeof(*bo_gem));
955	if (!bo_gem)
956		return NULL;
957
958	bo_gem->bo.size = size;
959
960	memclear(userptr);
961	userptr.user_ptr = (__u64)((unsigned long)addr);
962	userptr.user_size = size;
963	userptr.flags = flags;
964
965	ret = drmIoctl(bufmgr_gem->fd,
966			DRM_IOCTL_I915_GEM_USERPTR,
967			&userptr);
968	if (ret != 0) {
969		DBG("bo_create_userptr: "
970		    "ioctl failed with user ptr %p size 0x%lx, "
971		    "user flags 0x%lx\n", addr, size, flags);
972		free(bo_gem);
973		return NULL;
974	}
975
976	bo_gem->gem_handle = userptr.handle;
977	bo_gem->bo.handle = bo_gem->gem_handle;
978	bo_gem->bo.bufmgr    = bufmgr;
979	bo_gem->is_userptr   = true;
980	bo_gem->bo.virtual   = addr;
981	/* Save the address provided by user */
982	bo_gem->user_virtual = addr;
983	bo_gem->tiling_mode  = I915_TILING_NONE;
984	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
985	bo_gem->stride       = 0;
986
987	DRMINITLISTHEAD(&bo_gem->name_list);
988	DRMINITLISTHEAD(&bo_gem->vma_list);
989
990	bo_gem->name = name;
991	atomic_set(&bo_gem->refcount, 1);
992	bo_gem->validate_index = -1;
993	bo_gem->reloc_tree_fences = 0;
994	bo_gem->used_as_reloc_target = false;
995	bo_gem->has_error = false;
996	bo_gem->reusable = false;
997	bo_gem->use_48b_address_range = false;
998
999	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1000
1001	DBG("bo_create_userptr: "
1002	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1003		addr, bo_gem->gem_handle, bo_gem->name,
1004		size, stride, tiling_mode);
1005
1006	return &bo_gem->bo;
1007}
1008
1009static bool
1010has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1011{
1012	int ret;
1013	void *ptr;
1014	long pgsz;
1015	struct drm_i915_gem_userptr userptr;
1016
1017	pgsz = sysconf(_SC_PAGESIZE);
1018	assert(pgsz > 0);
1019
1020	ret = posix_memalign(&ptr, pgsz, pgsz);
1021	if (ret) {
1022		DBG("Failed to get a page (%ld) for userptr detection!\n",
1023			pgsz);
1024		return false;
1025	}
1026
1027	memclear(userptr);
1028	userptr.user_ptr = (__u64)(unsigned long)ptr;
1029	userptr.user_size = pgsz;
1030
1031retry:
1032	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1033	if (ret) {
1034		if (errno == ENODEV && userptr.flags == 0) {
1035			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1036			goto retry;
1037		}
1038		free(ptr);
1039		return false;
1040	}
1041
1042	/* We don't release the userptr bo here as we want to keep the
1043	 * kernel mm tracking alive for our lifetime. The first time we
1044	 * create a userptr object the kernel has to install a mmu_notifer
1045	 * which is a heavyweight operation (e.g. it requires taking all
1046	 * mm_locks and stop_machine()).
1047	 */
1048
1049	bufmgr_gem->userptr_active.ptr = ptr;
1050	bufmgr_gem->userptr_active.handle = userptr.handle;
1051
1052	return true;
1053}
1054
1055static drm_intel_bo *
1056check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1057		       const char *name,
1058		       void *addr,
1059		       uint32_t tiling_mode,
1060		       uint32_t stride,
1061		       unsigned long size,
1062		       unsigned long flags)
1063{
1064	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1065		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1066	else
1067		bufmgr->bo_alloc_userptr = NULL;
1068
1069	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1070					  tiling_mode, stride, size, flags);
1071}
1072
1073/**
1074 * Returns a drm_intel_bo wrapping the given buffer object handle.
1075 *
1076 * This can be used when one application needs to pass a buffer object
1077 * to another.
1078 */
1079drm_intel_bo *
1080drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1081				  const char *name,
1082				  unsigned int handle)
1083{
1084	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1085	drm_intel_bo_gem *bo_gem;
1086	int ret;
1087	struct drm_gem_open open_arg;
1088	struct drm_i915_gem_get_tiling get_tiling;
1089	drmMMListHead *list;
1090
1091	/* At the moment most applications only have a few named bo.
1092	 * For instance, in a DRI client only the render buffers passed
1093	 * between X and the client are named. And since X returns the
1094	 * alternating names for the front/back buffer a linear search
1095	 * provides a sufficiently fast match.
1096	 */
1097	pthread_mutex_lock(&bufmgr_gem->lock);
1098	for (list = bufmgr_gem->named.next;
1099	     list != &bufmgr_gem->named;
1100	     list = list->next) {
1101		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1102		if (bo_gem->global_name == handle) {
1103			drm_intel_gem_bo_reference(&bo_gem->bo);
1104			pthread_mutex_unlock(&bufmgr_gem->lock);
1105			return &bo_gem->bo;
1106		}
1107	}
1108
1109	memclear(open_arg);
1110	open_arg.name = handle;
1111	ret = drmIoctl(bufmgr_gem->fd,
1112		       DRM_IOCTL_GEM_OPEN,
1113		       &open_arg);
1114	if (ret != 0) {
1115		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1116		    name, handle, strerror(errno));
1117		pthread_mutex_unlock(&bufmgr_gem->lock);
1118		return NULL;
1119	}
1120        /* Now see if someone has used a prime handle to get this
1121         * object from the kernel before by looking through the list
1122         * again for a matching gem_handle
1123         */
1124	for (list = bufmgr_gem->named.next;
1125	     list != &bufmgr_gem->named;
1126	     list = list->next) {
1127		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1128		if (bo_gem->gem_handle == open_arg.handle) {
1129			drm_intel_gem_bo_reference(&bo_gem->bo);
1130			pthread_mutex_unlock(&bufmgr_gem->lock);
1131			return &bo_gem->bo;
1132		}
1133	}
1134
1135	bo_gem = calloc(1, sizeof(*bo_gem));
1136	if (!bo_gem) {
1137		pthread_mutex_unlock(&bufmgr_gem->lock);
1138		return NULL;
1139	}
1140
1141	bo_gem->bo.size = open_arg.size;
1142	bo_gem->bo.offset = 0;
1143	bo_gem->bo.offset64 = 0;
1144	bo_gem->bo.virtual = NULL;
1145	bo_gem->bo.bufmgr = bufmgr;
1146	bo_gem->name = name;
1147	atomic_set(&bo_gem->refcount, 1);
1148	bo_gem->validate_index = -1;
1149	bo_gem->gem_handle = open_arg.handle;
1150	bo_gem->bo.handle = open_arg.handle;
1151	bo_gem->global_name = handle;
1152	bo_gem->reusable = false;
1153	bo_gem->use_48b_address_range = false;
1154
1155	memclear(get_tiling);
1156	get_tiling.handle = bo_gem->gem_handle;
1157	ret = drmIoctl(bufmgr_gem->fd,
1158		       DRM_IOCTL_I915_GEM_GET_TILING,
1159		       &get_tiling);
1160	if (ret != 0) {
1161		drm_intel_gem_bo_unreference(&bo_gem->bo);
1162		pthread_mutex_unlock(&bufmgr_gem->lock);
1163		return NULL;
1164	}
1165	bo_gem->tiling_mode = get_tiling.tiling_mode;
1166	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1167	/* XXX stride is unknown */
1168	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1169
1170	DRMINITLISTHEAD(&bo_gem->vma_list);
1171	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1172	pthread_mutex_unlock(&bufmgr_gem->lock);
1173	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1174
1175	return &bo_gem->bo;
1176}
1177
1178static void
1179drm_intel_gem_bo_free(drm_intel_bo *bo)
1180{
1181	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1182	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1183	struct drm_gem_close close;
1184	int ret;
1185
1186	DRMLISTDEL(&bo_gem->vma_list);
1187	if (bo_gem->mem_virtual) {
1188		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1189		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1190		bufmgr_gem->vma_count--;
1191	}
1192	if (bo_gem->gtt_virtual) {
1193		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1194		bufmgr_gem->vma_count--;
1195	}
1196
1197	/* Close this object */
1198	memclear(close);
1199	close.handle = bo_gem->gem_handle;
1200	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1201	if (ret != 0) {
1202		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1203		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1204	}
1205	free(bo);
1206}
1207
1208static void
1209drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1210{
1211#if HAVE_VALGRIND
1212	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1213
1214	if (bo_gem->mem_virtual)
1215		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1216
1217	if (bo_gem->gtt_virtual)
1218		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1219#endif
1220}
1221
1222/** Frees all cached buffers significantly older than @time. */
1223static void
1224drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1225{
1226	int i;
1227
1228	if (bufmgr_gem->time == time)
1229		return;
1230
1231	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1232		struct drm_intel_gem_bo_bucket *bucket =
1233		    &bufmgr_gem->cache_bucket[i];
1234
1235		while (!DRMLISTEMPTY(&bucket->head)) {
1236			drm_intel_bo_gem *bo_gem;
1237
1238			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1239					      bucket->head.next, head);
1240			if (time - bo_gem->free_time <= 1)
1241				break;
1242
1243			DRMLISTDEL(&bo_gem->head);
1244
1245			drm_intel_gem_bo_free(&bo_gem->bo);
1246		}
1247	}
1248
1249	bufmgr_gem->time = time;
1250}
1251
1252static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1253{
1254	int limit;
1255
1256	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1257	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1258
1259	if (bufmgr_gem->vma_max < 0)
1260		return;
1261
1262	/* We may need to evict a few entries in order to create new mmaps */
1263	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1264	if (limit < 0)
1265		limit = 0;
1266
1267	while (bufmgr_gem->vma_count > limit) {
1268		drm_intel_bo_gem *bo_gem;
1269
1270		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1271				      bufmgr_gem->vma_cache.next,
1272				      vma_list);
1273		assert(bo_gem->map_count == 0);
1274		DRMLISTDELINIT(&bo_gem->vma_list);
1275
1276		if (bo_gem->mem_virtual) {
1277			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1278			bo_gem->mem_virtual = NULL;
1279			bufmgr_gem->vma_count--;
1280		}
1281		if (bo_gem->gtt_virtual) {
1282			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1283			bo_gem->gtt_virtual = NULL;
1284			bufmgr_gem->vma_count--;
1285		}
1286	}
1287}
1288
1289static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1290				       drm_intel_bo_gem *bo_gem)
1291{
1292	bufmgr_gem->vma_open--;
1293	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1294	if (bo_gem->mem_virtual)
1295		bufmgr_gem->vma_count++;
1296	if (bo_gem->gtt_virtual)
1297		bufmgr_gem->vma_count++;
1298	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1299}
1300
1301static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1302				      drm_intel_bo_gem *bo_gem)
1303{
1304	bufmgr_gem->vma_open++;
1305	DRMLISTDEL(&bo_gem->vma_list);
1306	if (bo_gem->mem_virtual)
1307		bufmgr_gem->vma_count--;
1308	if (bo_gem->gtt_virtual)
1309		bufmgr_gem->vma_count--;
1310	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1311}
1312
1313static void
1314drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1315{
1316	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1317	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1318	struct drm_intel_gem_bo_bucket *bucket;
1319	int i;
1320
1321	/* Unreference all the target buffers */
1322	for (i = 0; i < bo_gem->reloc_count; i++) {
1323		if (bo_gem->reloc_target_info[i].bo != bo) {
1324			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1325								  reloc_target_info[i].bo,
1326								  time);
1327		}
1328	}
1329	for (i = 0; i < bo_gem->softpin_target_count; i++)
1330		drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1331								  time);
1332	bo_gem->reloc_count = 0;
1333	bo_gem->used_as_reloc_target = false;
1334	bo_gem->softpin_target_count = 0;
1335
1336	DBG("bo_unreference final: %d (%s)\n",
1337	    bo_gem->gem_handle, bo_gem->name);
1338
1339	/* release memory associated with this object */
1340	if (bo_gem->reloc_target_info) {
1341		free(bo_gem->reloc_target_info);
1342		bo_gem->reloc_target_info = NULL;
1343	}
1344	if (bo_gem->relocs) {
1345		free(bo_gem->relocs);
1346		bo_gem->relocs = NULL;
1347	}
1348	if (bo_gem->softpin_target) {
1349		free(bo_gem->softpin_target);
1350		bo_gem->softpin_target = NULL;
1351		bo_gem->softpin_target_size = 0;
1352	}
1353
1354	/* Clear any left-over mappings */
1355	if (bo_gem->map_count) {
1356		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1357		bo_gem->map_count = 0;
1358		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1359		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1360	}
1361
1362	DRMLISTDEL(&bo_gem->name_list);
1363
1364	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1365	/* Put the buffer into our internal cache for reuse if we can. */
1366	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1367	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1368					      I915_MADV_DONTNEED)) {
1369		bo_gem->free_time = time;
1370
1371		bo_gem->name = NULL;
1372		bo_gem->validate_index = -1;
1373
1374		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1375	} else {
1376		drm_intel_gem_bo_free(bo);
1377	}
1378}
1379
1380static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1381						      time_t time)
1382{
1383	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1384
1385	assert(atomic_read(&bo_gem->refcount) > 0);
1386	if (atomic_dec_and_test(&bo_gem->refcount))
1387		drm_intel_gem_bo_unreference_final(bo, time);
1388}
1389
1390static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1391{
1392	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1393
1394	assert(atomic_read(&bo_gem->refcount) > 0);
1395
1396	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1397		drm_intel_bufmgr_gem *bufmgr_gem =
1398		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1399		struct timespec time;
1400
1401		clock_gettime(CLOCK_MONOTONIC, &time);
1402
1403		pthread_mutex_lock(&bufmgr_gem->lock);
1404
1405		if (atomic_dec_and_test(&bo_gem->refcount)) {
1406			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1407			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1408		}
1409
1410		pthread_mutex_unlock(&bufmgr_gem->lock);
1411	}
1412}
1413
1414static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1415{
1416	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1417	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1418	struct drm_i915_gem_set_domain set_domain;
1419	int ret;
1420
1421	if (bo_gem->is_userptr) {
1422		/* Return the same user ptr */
1423		bo->virtual = bo_gem->user_virtual;
1424		return 0;
1425	}
1426
1427	pthread_mutex_lock(&bufmgr_gem->lock);
1428
1429	if (bo_gem->map_count++ == 0)
1430		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1431
1432	if (!bo_gem->mem_virtual) {
1433		struct drm_i915_gem_mmap mmap_arg;
1434
1435		DBG("bo_map: %d (%s), map_count=%d\n",
1436		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1437
1438		memclear(mmap_arg);
1439		mmap_arg.handle = bo_gem->gem_handle;
1440		mmap_arg.size = bo->size;
1441		ret = drmIoctl(bufmgr_gem->fd,
1442			       DRM_IOCTL_I915_GEM_MMAP,
1443			       &mmap_arg);
1444		if (ret != 0) {
1445			ret = -errno;
1446			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1447			    __FILE__, __LINE__, bo_gem->gem_handle,
1448			    bo_gem->name, strerror(errno));
1449			if (--bo_gem->map_count == 0)
1450				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1451			pthread_mutex_unlock(&bufmgr_gem->lock);
1452			return ret;
1453		}
1454		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1455		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1456	}
1457	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1458	    bo_gem->mem_virtual);
1459	bo->virtual = bo_gem->mem_virtual;
1460
1461	memclear(set_domain);
1462	set_domain.handle = bo_gem->gem_handle;
1463	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1464	if (write_enable)
1465		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1466	else
1467		set_domain.write_domain = 0;
1468	ret = drmIoctl(bufmgr_gem->fd,
1469		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1470		       &set_domain);
1471	if (ret != 0) {
1472		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1473		    __FILE__, __LINE__, bo_gem->gem_handle,
1474		    strerror(errno));
1475	}
1476
1477	if (write_enable)
1478		bo_gem->mapped_cpu_write = true;
1479
1480	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1481	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1482	pthread_mutex_unlock(&bufmgr_gem->lock);
1483
1484	return 0;
1485}
1486
1487static int
1488map_gtt(drm_intel_bo *bo)
1489{
1490	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1491	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1492	int ret;
1493
1494	if (bo_gem->is_userptr)
1495		return -EINVAL;
1496
1497	if (bo_gem->map_count++ == 0)
1498		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1499
1500	/* Get a mapping of the buffer if we haven't before. */
1501	if (bo_gem->gtt_virtual == NULL) {
1502		struct drm_i915_gem_mmap_gtt mmap_arg;
1503
1504		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1505		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1506
1507		memclear(mmap_arg);
1508		mmap_arg.handle = bo_gem->gem_handle;
1509
1510		/* Get the fake offset back... */
1511		ret = drmIoctl(bufmgr_gem->fd,
1512			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1513			       &mmap_arg);
1514		if (ret != 0) {
1515			ret = -errno;
1516			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1517			    __FILE__, __LINE__,
1518			    bo_gem->gem_handle, bo_gem->name,
1519			    strerror(errno));
1520			if (--bo_gem->map_count == 0)
1521				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1522			return ret;
1523		}
1524
1525		/* and mmap it */
1526		ret = drmMap(bufmgr_gem->fd, mmap_arg.offset, bo->size,
1527		    &bo_gem->gtt_virtual);
1528		if (ret) {
1529			bo_gem->gtt_virtual = NULL;
1530			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1531			    __FILE__, __LINE__,
1532			    bo_gem->gem_handle, bo_gem->name,
1533			    strerror(errno));
1534			if (--bo_gem->map_count == 0)
1535				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1536			return ret;
1537		}
1538	}
1539
1540	bo->virtual = bo_gem->gtt_virtual;
1541
1542	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1543	    bo_gem->gtt_virtual);
1544
1545	return 0;
1546}
1547
1548int
1549drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1550{
1551	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1552	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1553	struct drm_i915_gem_set_domain set_domain;
1554	int ret;
1555
1556	pthread_mutex_lock(&bufmgr_gem->lock);
1557
1558	ret = map_gtt(bo);
1559	if (ret) {
1560		pthread_mutex_unlock(&bufmgr_gem->lock);
1561		return ret;
1562	}
1563
1564	/* Now move it to the GTT domain so that the GPU and CPU
1565	 * caches are flushed and the GPU isn't actively using the
1566	 * buffer.
1567	 *
1568	 * The pagefault handler does this domain change for us when
1569	 * it has unbound the BO from the GTT, but it's up to us to
1570	 * tell it when we're about to use things if we had done
1571	 * rendering and it still happens to be bound to the GTT.
1572	 */
1573	memclear(set_domain);
1574	set_domain.handle = bo_gem->gem_handle;
1575	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1576	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1577	ret = drmIoctl(bufmgr_gem->fd,
1578		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1579		       &set_domain);
1580	if (ret != 0) {
1581		DBG("%s:%d: Error setting domain %d: %s\n",
1582		    __FILE__, __LINE__, bo_gem->gem_handle,
1583		    strerror(errno));
1584	}
1585
1586	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1587	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1588	pthread_mutex_unlock(&bufmgr_gem->lock);
1589
1590	return 0;
1591}
1592
1593/**
1594 * Performs a mapping of the buffer object like the normal GTT
1595 * mapping, but avoids waiting for the GPU to be done reading from or
1596 * rendering to the buffer.
1597 *
1598 * This is used in the implementation of GL_ARB_map_buffer_range: The
1599 * user asks to create a buffer, then does a mapping, fills some
1600 * space, runs a drawing command, then asks to map it again without
1601 * synchronizing because it guarantees that it won't write over the
1602 * data that the GPU is busy using (or, more specifically, that if it
1603 * does write over the data, it acknowledges that rendering is
1604 * undefined).
1605 */
1606
1607int
1608drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1609{
1610	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1611#ifdef HAVE_VALGRIND
1612	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1613#endif
1614	int ret;
1615
1616	/* If the CPU cache isn't coherent with the GTT, then use a
1617	 * regular synchronized mapping.  The problem is that we don't
1618	 * track where the buffer was last used on the CPU side in
1619	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1620	 * we would potentially corrupt the buffer even when the user
1621	 * does reasonable things.
1622	 */
1623	if (!bufmgr_gem->has_llc)
1624		return drm_intel_gem_bo_map_gtt(bo);
1625
1626	pthread_mutex_lock(&bufmgr_gem->lock);
1627
1628	ret = map_gtt(bo);
1629	if (ret == 0) {
1630		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1631		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1632	}
1633
1634	pthread_mutex_unlock(&bufmgr_gem->lock);
1635
1636	return ret;
1637}
1638
1639static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1640{
1641	drm_intel_bufmgr_gem *bufmgr_gem;
1642	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1643	int ret = 0;
1644
1645	if (bo == NULL)
1646		return 0;
1647
1648	if (bo_gem->is_userptr)
1649		return 0;
1650
1651	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1652
1653	pthread_mutex_lock(&bufmgr_gem->lock);
1654
1655	if (bo_gem->map_count <= 0) {
1656		DBG("attempted to unmap an unmapped bo\n");
1657		pthread_mutex_unlock(&bufmgr_gem->lock);
1658		/* Preserve the old behaviour of just treating this as a
1659		 * no-op rather than reporting the error.
1660		 */
1661		return 0;
1662	}
1663
1664	if (bo_gem->mapped_cpu_write) {
1665		struct drm_i915_gem_sw_finish sw_finish;
1666
1667		/* Cause a flush to happen if the buffer's pinned for
1668		 * scanout, so the results show up in a timely manner.
1669		 * Unlike GTT set domains, this only does work if the
1670		 * buffer should be scanout-related.
1671		 */
1672		memclear(sw_finish);
1673		sw_finish.handle = bo_gem->gem_handle;
1674		ret = drmIoctl(bufmgr_gem->fd,
1675			       DRM_IOCTL_I915_GEM_SW_FINISH,
1676			       &sw_finish);
1677		ret = ret == -1 ? -errno : 0;
1678
1679		bo_gem->mapped_cpu_write = false;
1680	}
1681
1682	/* We need to unmap after every innovation as we cannot track
1683	 * an open vma for every bo as that will exhaasut the system
1684	 * limits and cause later failures.
1685	 */
1686	if (--bo_gem->map_count == 0) {
1687		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1688		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1689		bo->virtual = NULL;
1690	}
1691	pthread_mutex_unlock(&bufmgr_gem->lock);
1692
1693	return ret;
1694}
1695
1696int
1697drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1698{
1699	return drm_intel_gem_bo_unmap(bo);
1700}
1701
1702static int
1703drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1704			 unsigned long size, const void *data)
1705{
1706	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1707	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1708	struct drm_i915_gem_pwrite pwrite;
1709	int ret;
1710
1711	if (bo_gem->is_userptr)
1712		return -EINVAL;
1713
1714	memclear(pwrite);
1715	pwrite.handle = bo_gem->gem_handle;
1716	pwrite.offset = offset;
1717	pwrite.size = size;
1718	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1719	ret = drmIoctl(bufmgr_gem->fd,
1720		       DRM_IOCTL_I915_GEM_PWRITE,
1721		       &pwrite);
1722	if (ret != 0) {
1723		ret = -errno;
1724		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1725		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1726		    (int)size, strerror(errno));
1727	}
1728
1729	return ret;
1730}
1731
1732static int
1733drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1734{
1735	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1736	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1737	int ret;
1738
1739	memclear(get_pipe_from_crtc_id);
1740	get_pipe_from_crtc_id.crtc_id = crtc_id;
1741	ret = drmIoctl(bufmgr_gem->fd,
1742		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1743		       &get_pipe_from_crtc_id);
1744	if (ret != 0) {
1745		/* We return -1 here to signal that we don't
1746		 * know which pipe is associated with this crtc.
1747		 * This lets the caller know that this information
1748		 * isn't available; using the wrong pipe for
1749		 * vblank waiting can cause the chipset to lock up
1750		 */
1751		return -1;
1752	}
1753
1754	return get_pipe_from_crtc_id.pipe;
1755}
1756
1757static int
1758drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1759			     unsigned long size, void *data)
1760{
1761	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1762	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1763	struct drm_i915_gem_pread pread;
1764	int ret;
1765
1766	if (bo_gem->is_userptr)
1767		return -EINVAL;
1768
1769	memclear(pread);
1770	pread.handle = bo_gem->gem_handle;
1771	pread.offset = offset;
1772	pread.size = size;
1773	pread.data_ptr = (uint64_t) (uintptr_t) data;
1774	ret = drmIoctl(bufmgr_gem->fd,
1775		       DRM_IOCTL_I915_GEM_PREAD,
1776		       &pread);
1777	if (ret != 0) {
1778		ret = -errno;
1779		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1780		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1781		    (int)size, strerror(errno));
1782	}
1783
1784	return ret;
1785}
1786
1787/** Waits for all GPU rendering with the object to have completed. */
1788static void
1789drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1790{
1791	drm_intel_gem_bo_start_gtt_access(bo, 1);
1792}
1793
1794/**
1795 * Waits on a BO for the given amount of time.
1796 *
1797 * @bo: buffer object to wait for
1798 * @timeout_ns: amount of time to wait in nanoseconds.
1799 *   If value is less than 0, an infinite wait will occur.
1800 *
1801 * Returns 0 if the wait was successful ie. the last batch referencing the
1802 * object has completed within the allotted time. Otherwise some negative return
1803 * value describes the error. Of particular interest is -ETIME when the wait has
1804 * failed to yield the desired result.
1805 *
1806 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1807 * the operation to give up after a certain amount of time. Another subtle
1808 * difference is the internal locking semantics are different (this variant does
1809 * not hold the lock for the duration of the wait). This makes the wait subject
1810 * to a larger userspace race window.
1811 *
1812 * The implementation shall wait until the object is no longer actively
1813 * referenced within a batch buffer at the time of the call. The wait will
1814 * not guarantee that the buffer is re-issued via another thread, or an flinked
1815 * handle. Userspace must make sure this race does not occur if such precision
1816 * is important.
1817 *
1818 * Note that some kernels have broken the inifite wait for negative values
1819 * promise, upgrade to latest stable kernels if this is the case.
1820 */
1821int
1822drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1823{
1824	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1825	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1826	struct drm_i915_gem_wait wait;
1827	int ret;
1828
1829	if (!bufmgr_gem->has_wait_timeout) {
1830		DBG("%s:%d: Timed wait is not supported. Falling back to "
1831		    "infinite wait\n", __FILE__, __LINE__);
1832		if (timeout_ns) {
1833			drm_intel_gem_bo_wait_rendering(bo);
1834			return 0;
1835		} else {
1836			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1837		}
1838	}
1839
1840	memclear(wait);
1841	wait.bo_handle = bo_gem->gem_handle;
1842	wait.timeout_ns = timeout_ns;
1843	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1844	if (ret == -1)
1845		return -errno;
1846
1847	return ret;
1848}
1849
1850/**
1851 * Sets the object to the GTT read and possibly write domain, used by the X
1852 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1853 *
1854 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1855 * can do tiled pixmaps this way.
1856 */
1857void
1858drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1859{
1860	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1861	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1862	struct drm_i915_gem_set_domain set_domain;
1863	int ret;
1864
1865	memclear(set_domain);
1866	set_domain.handle = bo_gem->gem_handle;
1867	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1868	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1869	ret = drmIoctl(bufmgr_gem->fd,
1870		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1871		       &set_domain);
1872	if (ret != 0) {
1873		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1874		    __FILE__, __LINE__, bo_gem->gem_handle,
1875		    set_domain.read_domains, set_domain.write_domain,
1876		    strerror(errno));
1877	}
1878}
1879
1880static void
1881drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1882{
1883	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1884	struct drm_gem_close close_bo;
1885	int i, ret;
1886
1887	free(bufmgr_gem->exec2_objects);
1888	free(bufmgr_gem->exec_objects);
1889	free(bufmgr_gem->exec_bos);
1890
1891	pthread_mutex_destroy(&bufmgr_gem->lock);
1892
1893	/* Free any cached buffer objects we were going to reuse */
1894	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1895		struct drm_intel_gem_bo_bucket *bucket =
1896		    &bufmgr_gem->cache_bucket[i];
1897		drm_intel_bo_gem *bo_gem;
1898
1899		while (!DRMLISTEMPTY(&bucket->head)) {
1900			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1901					      bucket->head.next, head);
1902			DRMLISTDEL(&bo_gem->head);
1903
1904			drm_intel_gem_bo_free(&bo_gem->bo);
1905		}
1906	}
1907
1908	/* Release userptr bo kept hanging around for optimisation. */
1909	if (bufmgr_gem->userptr_active.ptr) {
1910		memclear(close_bo);
1911		close_bo.handle = bufmgr_gem->userptr_active.handle;
1912		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1913		free(bufmgr_gem->userptr_active.ptr);
1914		if (ret)
1915			fprintf(stderr,
1916				"Failed to release test userptr object! (%d) "
1917				"i915 kernel driver may not be sane!\n", errno);
1918	}
1919
1920	free(bufmgr);
1921}
1922
1923/**
1924 * Adds the target buffer to the validation list and adds the relocation
1925 * to the reloc_buffer's relocation list.
1926 *
1927 * The relocation entry at the given offset must already contain the
1928 * precomputed relocation value, because the kernel will optimize out
1929 * the relocation entry write when the buffer hasn't moved from the
1930 * last known offset in target_bo.
1931 */
1932static int
1933do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1934		 drm_intel_bo *target_bo, uint32_t target_offset,
1935		 uint32_t read_domains, uint32_t write_domain,
1936		 bool need_fence)
1937{
1938	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1939	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1940	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1941	bool fenced_command;
1942
1943	if (bo_gem->has_error)
1944		return -ENOMEM;
1945
1946	if (target_bo_gem->has_error) {
1947		bo_gem->has_error = true;
1948		return -ENOMEM;
1949	}
1950
1951	/* We never use HW fences for rendering on 965+ */
1952	if (bufmgr_gem->gen >= 4)
1953		need_fence = false;
1954
1955	fenced_command = need_fence;
1956	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1957		need_fence = false;
1958
1959	/* Create a new relocation list if needed */
1960	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1961		return -ENOMEM;
1962
1963	/* Check overflow */
1964	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1965
1966	/* Check args */
1967	assert(offset <= bo->size - 4);
1968	assert((write_domain & (write_domain - 1)) == 0);
1969
1970	/* An object needing a fence is a tiled buffer, so it won't have
1971	 * relocs to other buffers.
1972	 */
1973	if (need_fence) {
1974		assert(target_bo_gem->reloc_count == 0);
1975		target_bo_gem->reloc_tree_fences = 1;
1976	}
1977
1978	/* Make sure that we're not adding a reloc to something whose size has
1979	 * already been accounted for.
1980	 */
1981	assert(!bo_gem->used_as_reloc_target);
1982	if (target_bo_gem != bo_gem) {
1983		target_bo_gem->used_as_reloc_target = true;
1984		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1985		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1986	}
1987
1988	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1989	if (target_bo != bo)
1990		drm_intel_gem_bo_reference(target_bo);
1991	if (fenced_command)
1992		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1993			DRM_INTEL_RELOC_FENCE;
1994	else
1995		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1996
1997	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1998	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1999	bo_gem->relocs[bo_gem->reloc_count].target_handle =
2000	    target_bo_gem->gem_handle;
2001	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2002	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2003	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2004	bo_gem->reloc_count++;
2005
2006	return 0;
2007}
2008
2009static void
2010drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2011{
2012	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2013	bo_gem->use_48b_address_range = enable;
2014}
2015
2016static int
2017drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2018{
2019	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2020	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2021	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2022	if (bo_gem->has_error)
2023		return -ENOMEM;
2024
2025	if (target_bo_gem->has_error) {
2026		bo_gem->has_error = true;
2027		return -ENOMEM;
2028	}
2029
2030	if (!target_bo_gem->is_softpin)
2031		return -EINVAL;
2032	if (target_bo_gem == bo_gem)
2033		return -EINVAL;
2034
2035	if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2036		int new_size = bo_gem->softpin_target_size * 2;
2037		if (new_size == 0)
2038			new_size = bufmgr_gem->max_relocs;
2039
2040		bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2041				sizeof(drm_intel_bo *));
2042		if (!bo_gem->softpin_target)
2043			return -ENOMEM;
2044
2045		bo_gem->softpin_target_size = new_size;
2046	}
2047	bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2048	drm_intel_gem_bo_reference(target_bo);
2049	bo_gem->softpin_target_count++;
2050
2051	return 0;
2052}
2053
2054static int
2055drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2056			    drm_intel_bo *target_bo, uint32_t target_offset,
2057			    uint32_t read_domains, uint32_t write_domain)
2058{
2059	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2060	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2061
2062	if (target_bo_gem->is_softpin)
2063		return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2064	else
2065		return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2066					read_domains, write_domain,
2067					!bufmgr_gem->fenced_relocs);
2068}
2069
2070static int
2071drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2072				  drm_intel_bo *target_bo,
2073				  uint32_t target_offset,
2074				  uint32_t read_domains, uint32_t write_domain)
2075{
2076	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2077				read_domains, write_domain, true);
2078}
2079
2080int
2081drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2082{
2083	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2084
2085	return bo_gem->reloc_count;
2086}
2087
2088/**
2089 * Removes existing relocation entries in the BO after "start".
2090 *
2091 * This allows a user to avoid a two-step process for state setup with
2092 * counting up all the buffer objects and doing a
2093 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2094 * relocations for the state setup.  Instead, save the state of the
2095 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2096 * state, and then check if it still fits in the aperture.
2097 *
2098 * Any further drm_intel_bufmgr_check_aperture_space() queries
2099 * involving this buffer in the tree are undefined after this call.
2100 *
2101 * This also removes all softpinned targets being referenced by the BO.
2102 */
2103void
2104drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2105{
2106	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2107	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2108	int i;
2109	struct timespec time;
2110
2111	clock_gettime(CLOCK_MONOTONIC, &time);
2112
2113	assert(bo_gem->reloc_count >= start);
2114
2115	/* Unreference the cleared target buffers */
2116	pthread_mutex_lock(&bufmgr_gem->lock);
2117
2118	for (i = start; i < bo_gem->reloc_count; i++) {
2119		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2120		if (&target_bo_gem->bo != bo) {
2121			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2122			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2123								  time.tv_sec);
2124		}
2125	}
2126	bo_gem->reloc_count = start;
2127
2128	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2129		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2130		drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2131	}
2132	bo_gem->softpin_target_count = 0;
2133
2134	pthread_mutex_unlock(&bufmgr_gem->lock);
2135
2136}
2137
2138/**
2139 * Walk the tree of relocations rooted at BO and accumulate the list of
2140 * validations to be performed and update the relocation buffers with
2141 * index values into the validation list.
2142 */
2143static void
2144drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2145{
2146	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2147	int i;
2148
2149	if (bo_gem->relocs == NULL)
2150		return;
2151
2152	for (i = 0; i < bo_gem->reloc_count; i++) {
2153		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2154
2155		if (target_bo == bo)
2156			continue;
2157
2158		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2159
2160		/* Continue walking the tree depth-first. */
2161		drm_intel_gem_bo_process_reloc(target_bo);
2162
2163		/* Add the target to the validate list */
2164		drm_intel_add_validate_buffer(target_bo);
2165	}
2166}
2167
2168static void
2169drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2170{
2171	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2172	int i;
2173
2174	if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2175		return;
2176
2177	for (i = 0; i < bo_gem->reloc_count; i++) {
2178		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2179		int need_fence;
2180
2181		if (target_bo == bo)
2182			continue;
2183
2184		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2185
2186		/* Continue walking the tree depth-first. */
2187		drm_intel_gem_bo_process_reloc2(target_bo);
2188
2189		need_fence = (bo_gem->reloc_target_info[i].flags &
2190			      DRM_INTEL_RELOC_FENCE);
2191
2192		/* Add the target to the validate list */
2193		drm_intel_add_validate_buffer2(target_bo, need_fence);
2194	}
2195
2196	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2197		drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2198
2199		if (target_bo == bo)
2200			continue;
2201
2202		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2203		drm_intel_gem_bo_process_reloc2(target_bo);
2204		drm_intel_add_validate_buffer2(target_bo, false);
2205	}
2206}
2207
2208
2209static void
2210drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2211{
2212	int i;
2213
2214	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2215		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2216		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2217
2218		/* Update the buffer offset */
2219		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2220			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2221			    bo_gem->gem_handle, bo_gem->name,
2222			    upper_32_bits(bo->offset64),
2223			    lower_32_bits(bo->offset64),
2224			    upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2225			    lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2226			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2227			bo->offset = bufmgr_gem->exec_objects[i].offset;
2228		}
2229	}
2230}
2231
2232static void
2233drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2234{
2235	int i;
2236
2237	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2238		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2239		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2240
2241		/* Update the buffer offset */
2242		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2243			/* If we're seeing softpinned object here it means that the kernel
2244			 * has relocated our object... Indicating a programming error
2245			 */
2246			assert(!bo_gem->is_softpin);
2247			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2248			    bo_gem->gem_handle, bo_gem->name,
2249			    upper_32_bits(bo->offset64),
2250			    lower_32_bits(bo->offset64),
2251			    upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2252			    lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2253			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2254			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2255		}
2256	}
2257}
2258
2259void
2260drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2261			      int x1, int y1, int width, int height,
2262			      enum aub_dump_bmp_format format,
2263			      int pitch, int offset)
2264{
2265}
2266
2267static int
2268drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2269		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2270{
2271	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2272	struct drm_i915_gem_execbuffer execbuf;
2273	int ret, i;
2274
2275	if (to_bo_gem(bo)->has_error)
2276		return -ENOMEM;
2277
2278	pthread_mutex_lock(&bufmgr_gem->lock);
2279	/* Update indices and set up the validate list. */
2280	drm_intel_gem_bo_process_reloc(bo);
2281
2282	/* Add the batch buffer to the validation list.  There are no
2283	 * relocations pointing to it.
2284	 */
2285	drm_intel_add_validate_buffer(bo);
2286
2287	memclear(execbuf);
2288	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2289	execbuf.buffer_count = bufmgr_gem->exec_count;
2290	execbuf.batch_start_offset = 0;
2291	execbuf.batch_len = used;
2292	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2293	execbuf.num_cliprects = num_cliprects;
2294	execbuf.DR1 = 0;
2295	execbuf.DR4 = DR4;
2296
2297	ret = drmIoctl(bufmgr_gem->fd,
2298		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2299		       &execbuf);
2300	if (ret != 0) {
2301		ret = -errno;
2302		if (errno == ENOSPC) {
2303			DBG("Execbuffer fails to pin. "
2304			    "Estimate: %u. Actual: %u. Available: %u\n",
2305			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2306							       bufmgr_gem->
2307							       exec_count),
2308			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2309							      bufmgr_gem->
2310							      exec_count),
2311			    (unsigned int)bufmgr_gem->gtt_size);
2312		}
2313	}
2314	drm_intel_update_buffer_offsets(bufmgr_gem);
2315
2316	if (bufmgr_gem->bufmgr.debug)
2317		drm_intel_gem_dump_validation_list(bufmgr_gem);
2318
2319	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2320		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2321
2322		bo_gem->idle = false;
2323
2324		/* Disconnect the buffer from the validate list */
2325		bo_gem->validate_index = -1;
2326		bufmgr_gem->exec_bos[i] = NULL;
2327	}
2328	bufmgr_gem->exec_count = 0;
2329	pthread_mutex_unlock(&bufmgr_gem->lock);
2330
2331	return ret;
2332}
2333
2334static int
2335do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2336	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2337	 unsigned int flags)
2338{
2339	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2340	struct drm_i915_gem_execbuffer2 execbuf;
2341	int ret = 0;
2342	int i;
2343
2344	if (to_bo_gem(bo)->has_error)
2345		return -ENOMEM;
2346
2347	switch (flags & 0x7) {
2348	default:
2349		return -EINVAL;
2350	case I915_EXEC_BLT:
2351		if (!bufmgr_gem->has_blt)
2352			return -EINVAL;
2353		break;
2354	case I915_EXEC_BSD:
2355		if (!bufmgr_gem->has_bsd)
2356			return -EINVAL;
2357		break;
2358	case I915_EXEC_VEBOX:
2359		if (!bufmgr_gem->has_vebox)
2360			return -EINVAL;
2361		break;
2362	case I915_EXEC_RENDER:
2363	case I915_EXEC_DEFAULT:
2364		break;
2365	}
2366
2367	pthread_mutex_lock(&bufmgr_gem->lock);
2368	/* Update indices and set up the validate list. */
2369	drm_intel_gem_bo_process_reloc2(bo);
2370
2371	/* Add the batch buffer to the validation list.  There are no relocations
2372	 * pointing to it.
2373	 */
2374	drm_intel_add_validate_buffer2(bo, 0);
2375
2376	memclear(execbuf);
2377	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2378	execbuf.buffer_count = bufmgr_gem->exec_count;
2379	execbuf.batch_start_offset = 0;
2380	execbuf.batch_len = used;
2381	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2382	execbuf.num_cliprects = num_cliprects;
2383	execbuf.DR1 = 0;
2384	execbuf.DR4 = DR4;
2385	execbuf.flags = flags;
2386	if (ctx == NULL)
2387		i915_execbuffer2_set_context_id(execbuf, 0);
2388	else
2389		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2390	execbuf.rsvd2 = 0;
2391
2392	if (bufmgr_gem->no_exec)
2393		goto skip_execution;
2394
2395	ret = drmIoctl(bufmgr_gem->fd,
2396		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2397		       &execbuf);
2398	if (ret != 0) {
2399		ret = -errno;
2400		if (ret == -ENOSPC) {
2401			DBG("Execbuffer fails to pin. "
2402			    "Estimate: %u. Actual: %u. Available: %u\n",
2403			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2404							       bufmgr_gem->exec_count),
2405			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2406							      bufmgr_gem->exec_count),
2407			    (unsigned int) bufmgr_gem->gtt_size);
2408		}
2409	}
2410	drm_intel_update_buffer_offsets2(bufmgr_gem);
2411
2412skip_execution:
2413	if (bufmgr_gem->bufmgr.debug)
2414		drm_intel_gem_dump_validation_list(bufmgr_gem);
2415
2416	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2417		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2418
2419		bo_gem->idle = false;
2420
2421		/* Disconnect the buffer from the validate list */
2422		bo_gem->validate_index = -1;
2423		bufmgr_gem->exec_bos[i] = NULL;
2424	}
2425	bufmgr_gem->exec_count = 0;
2426	pthread_mutex_unlock(&bufmgr_gem->lock);
2427
2428	return ret;
2429}
2430
2431static int
2432drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2433		       drm_clip_rect_t *cliprects, int num_cliprects,
2434		       int DR4)
2435{
2436	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2437			I915_EXEC_RENDER);
2438}
2439
2440static int
2441drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2442			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2443			unsigned int flags)
2444{
2445	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2446			flags);
2447}
2448
2449int
2450drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2451			      int used, unsigned int flags)
2452{
2453	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2454}
2455
2456static int
2457drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2458{
2459	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2460	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2461	struct drm_i915_gem_pin pin;
2462	int ret;
2463
2464	memclear(pin);
2465	pin.handle = bo_gem->gem_handle;
2466	pin.alignment = alignment;
2467
2468	ret = drmIoctl(bufmgr_gem->fd,
2469		       DRM_IOCTL_I915_GEM_PIN,
2470		       &pin);
2471	if (ret != 0)
2472		return -errno;
2473
2474	bo->offset64 = pin.offset;
2475	bo->offset = pin.offset;
2476	return 0;
2477}
2478
2479static int
2480drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2481{
2482	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2483	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2484	struct drm_i915_gem_unpin unpin;
2485	int ret;
2486
2487	memclear(unpin);
2488	unpin.handle = bo_gem->gem_handle;
2489
2490	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2491	if (ret != 0)
2492		return -errno;
2493
2494	return 0;
2495}
2496
2497static int
2498drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2499				     uint32_t tiling_mode,
2500				     uint32_t stride)
2501{
2502	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2503	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2504	struct drm_i915_gem_set_tiling set_tiling;
2505	int ret;
2506
2507	if (bo_gem->global_name == 0 &&
2508	    tiling_mode == bo_gem->tiling_mode &&
2509	    stride == bo_gem->stride)
2510		return 0;
2511
2512	memset(&set_tiling, 0, sizeof(set_tiling));
2513	do {
2514		/* set_tiling is slightly broken and overwrites the
2515		 * input on the error path, so we have to open code
2516		 * rmIoctl.
2517		 */
2518		set_tiling.handle = bo_gem->gem_handle;
2519		set_tiling.tiling_mode = tiling_mode;
2520		set_tiling.stride = stride;
2521
2522		ret = ioctl(bufmgr_gem->fd,
2523			    DRM_IOCTL_I915_GEM_SET_TILING,
2524			    &set_tiling);
2525	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2526	if (ret == -1)
2527		return -errno;
2528
2529	bo_gem->tiling_mode = set_tiling.tiling_mode;
2530	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2531	bo_gem->stride = set_tiling.stride;
2532	return 0;
2533}
2534
2535static int
2536drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2537			    uint32_t stride)
2538{
2539	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2540	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2541	int ret;
2542
2543	/* Tiling with userptr surfaces is not supported
2544	 * on all hardware so refuse it for time being.
2545	 */
2546	if (bo_gem->is_userptr)
2547		return -EINVAL;
2548
2549	/* Linear buffers have no stride. By ensuring that we only ever use
2550	 * stride 0 with linear buffers, we simplify our code.
2551	 */
2552	if (*tiling_mode == I915_TILING_NONE)
2553		stride = 0;
2554
2555	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2556	if (ret == 0)
2557		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2558
2559	*tiling_mode = bo_gem->tiling_mode;
2560	return ret;
2561}
2562
2563static int
2564drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2565			    uint32_t * swizzle_mode)
2566{
2567	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2568
2569	*tiling_mode = bo_gem->tiling_mode;
2570	*swizzle_mode = bo_gem->swizzle_mode;
2571	return 0;
2572}
2573
2574static int
2575drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2576{
2577	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2578
2579	bo_gem->is_softpin = true;
2580	bo->offset64 = offset;
2581	bo->offset = offset;
2582	return 0;
2583}
2584
2585drm_intel_bo *
2586drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2587{
2588	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2589	int ret;
2590	uint32_t handle;
2591	drm_intel_bo_gem *bo_gem;
2592	struct drm_i915_gem_get_tiling get_tiling;
2593	drmMMListHead *list;
2594
2595	pthread_mutex_lock(&bufmgr_gem->lock);
2596	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2597	if (ret) {
2598		DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2599		pthread_mutex_unlock(&bufmgr_gem->lock);
2600		return NULL;
2601	}
2602
2603	/*
2604	 * See if the kernel has already returned this buffer to us. Just as
2605	 * for named buffers, we must not create two bo's pointing at the same
2606	 * kernel object
2607	 */
2608	for (list = bufmgr_gem->named.next;
2609	     list != &bufmgr_gem->named;
2610	     list = list->next) {
2611		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2612		if (bo_gem->gem_handle == handle) {
2613			drm_intel_gem_bo_reference(&bo_gem->bo);
2614			pthread_mutex_unlock(&bufmgr_gem->lock);
2615			return &bo_gem->bo;
2616		}
2617	}
2618
2619	bo_gem = calloc(1, sizeof(*bo_gem));
2620	if (!bo_gem) {
2621		pthread_mutex_unlock(&bufmgr_gem->lock);
2622		return NULL;
2623	}
2624	/* Determine size of bo.  The fd-to-handle ioctl really should
2625	 * return the size, but it doesn't.  If we have kernel 3.12 or
2626	 * later, we can lseek on the prime fd to get the size.  Older
2627	 * kernels will just fail, in which case we fall back to the
2628	 * provided (estimated or guess size). */
2629	ret = lseek(prime_fd, 0, SEEK_END);
2630	if (ret != -1)
2631		bo_gem->bo.size = ret;
2632	else
2633		bo_gem->bo.size = size;
2634
2635	bo_gem->bo.handle = handle;
2636	bo_gem->bo.bufmgr = bufmgr;
2637
2638	bo_gem->gem_handle = handle;
2639
2640	atomic_set(&bo_gem->refcount, 1);
2641
2642	bo_gem->name = "prime";
2643	bo_gem->validate_index = -1;
2644	bo_gem->reloc_tree_fences = 0;
2645	bo_gem->used_as_reloc_target = false;
2646	bo_gem->has_error = false;
2647	bo_gem->reusable = false;
2648	bo_gem->use_48b_address_range = false;
2649
2650	DRMINITLISTHEAD(&bo_gem->vma_list);
2651	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2652	pthread_mutex_unlock(&bufmgr_gem->lock);
2653
2654	memclear(get_tiling);
2655	get_tiling.handle = bo_gem->gem_handle;
2656	ret = drmIoctl(bufmgr_gem->fd,
2657		       DRM_IOCTL_I915_GEM_GET_TILING,
2658		       &get_tiling);
2659	if (ret != 0) {
2660		DBG("create_from_prime: failed to get tiling: %s\n", strerror(errno));
2661		drm_intel_gem_bo_unreference(&bo_gem->bo);
2662		return NULL;
2663	}
2664	bo_gem->tiling_mode = get_tiling.tiling_mode;
2665	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2666	/* XXX stride is unknown */
2667	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2668
2669	return &bo_gem->bo;
2670}
2671
2672int
2673drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2674{
2675	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2676	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2677
2678	pthread_mutex_lock(&bufmgr_gem->lock);
2679        if (DRMLISTEMPTY(&bo_gem->name_list))
2680                DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2681	pthread_mutex_unlock(&bufmgr_gem->lock);
2682
2683	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2684			       DRM_CLOEXEC, prime_fd) != 0)
2685		return -errno;
2686
2687	bo_gem->reusable = false;
2688
2689	return 0;
2690}
2691
2692static int
2693drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2694{
2695	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2696	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2697	int ret;
2698
2699	if (!bo_gem->global_name) {
2700		struct drm_gem_flink flink;
2701
2702		memclear(flink);
2703		flink.handle = bo_gem->gem_handle;
2704
2705		pthread_mutex_lock(&bufmgr_gem->lock);
2706
2707		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2708		if (ret != 0) {
2709			pthread_mutex_unlock(&bufmgr_gem->lock);
2710			return -errno;
2711		}
2712
2713		bo_gem->global_name = flink.name;
2714		bo_gem->reusable = false;
2715
2716                if (DRMLISTEMPTY(&bo_gem->name_list))
2717                        DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2718		pthread_mutex_unlock(&bufmgr_gem->lock);
2719	}
2720
2721	*name = bo_gem->global_name;
2722	return 0;
2723}
2724
2725/**
2726 * Enables unlimited caching of buffer objects for reuse.
2727 *
2728 * This is potentially very memory expensive, as the cache at each bucket
2729 * size is only bounded by how many buffers of that size we've managed to have
2730 * in flight at once.
2731 */
2732void
2733drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2734{
2735	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2736
2737	bufmgr_gem->bo_reuse = true;
2738}
2739
2740/**
2741 * Enable use of fenced reloc type.
2742 *
2743 * New code should enable this to avoid unnecessary fence register
2744 * allocation.  If this option is not enabled, all relocs will have fence
2745 * register allocated.
2746 */
2747void
2748drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2749{
2750	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2751
2752	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2753		bufmgr_gem->fenced_relocs = true;
2754}
2755
2756/**
2757 * Return the additional aperture space required by the tree of buffer objects
2758 * rooted at bo.
2759 */
2760static int
2761drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2762{
2763	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2764	int i;
2765	int total = 0;
2766
2767	if (bo == NULL || bo_gem->included_in_check_aperture)
2768		return 0;
2769
2770	total += bo->size;
2771	bo_gem->included_in_check_aperture = true;
2772
2773	for (i = 0; i < bo_gem->reloc_count; i++)
2774		total +=
2775		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2776							reloc_target_info[i].bo);
2777
2778	return total;
2779}
2780
2781/**
2782 * Count the number of buffers in this list that need a fence reg
2783 *
2784 * If the count is greater than the number of available regs, we'll have
2785 * to ask the caller to resubmit a batch with fewer tiled buffers.
2786 *
2787 * This function over-counts if the same buffer is used multiple times.
2788 */
2789static unsigned int
2790drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2791{
2792	int i;
2793	unsigned int total = 0;
2794
2795	for (i = 0; i < count; i++) {
2796		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2797
2798		if (bo_gem == NULL)
2799			continue;
2800
2801		total += bo_gem->reloc_tree_fences;
2802	}
2803	return total;
2804}
2805
2806/**
2807 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2808 * for the next drm_intel_bufmgr_check_aperture_space() call.
2809 */
2810static void
2811drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2812{
2813	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2814	int i;
2815
2816	if (bo == NULL || !bo_gem->included_in_check_aperture)
2817		return;
2818
2819	bo_gem->included_in_check_aperture = false;
2820
2821	for (i = 0; i < bo_gem->reloc_count; i++)
2822		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2823							   reloc_target_info[i].bo);
2824}
2825
2826/**
2827 * Return a conservative estimate for the amount of aperture required
2828 * for a collection of buffers. This may double-count some buffers.
2829 */
2830static unsigned int
2831drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2832{
2833	int i;
2834	unsigned int total = 0;
2835
2836	for (i = 0; i < count; i++) {
2837		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2838		if (bo_gem != NULL)
2839			total += bo_gem->reloc_tree_size;
2840	}
2841	return total;
2842}
2843
2844/**
2845 * Return the amount of aperture needed for a collection of buffers.
2846 * This avoids double counting any buffers, at the cost of looking
2847 * at every buffer in the set.
2848 */
2849static unsigned int
2850drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2851{
2852	int i;
2853	unsigned int total = 0;
2854
2855	for (i = 0; i < count; i++) {
2856		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2857		/* For the first buffer object in the array, we get an
2858		 * accurate count back for its reloc_tree size (since nothing
2859		 * had been flagged as being counted yet).  We can save that
2860		 * value out as a more conservative reloc_tree_size that
2861		 * avoids double-counting target buffers.  Since the first
2862		 * buffer happens to usually be the batch buffer in our
2863		 * callers, this can pull us back from doing the tree
2864		 * walk on every new batch emit.
2865		 */
2866		if (i == 0) {
2867			drm_intel_bo_gem *bo_gem =
2868			    (drm_intel_bo_gem *) bo_array[i];
2869			bo_gem->reloc_tree_size = total;
2870		}
2871	}
2872
2873	for (i = 0; i < count; i++)
2874		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2875	return total;
2876}
2877
2878/**
2879 * Return -1 if the batchbuffer should be flushed before attempting to
2880 * emit rendering referencing the buffers pointed to by bo_array.
2881 *
2882 * This is required because if we try to emit a batchbuffer with relocations
2883 * to a tree of buffers that won't simultaneously fit in the aperture,
2884 * the rendering will return an error at a point where the software is not
2885 * prepared to recover from it.
2886 *
2887 * However, we also want to emit the batchbuffer significantly before we reach
2888 * the limit, as a series of batchbuffers each of which references buffers
2889 * covering almost all of the aperture means that at each emit we end up
2890 * waiting to evict a buffer from the last rendering, and we get synchronous
2891 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2892 * get better parallelism.
2893 */
2894static int
2895drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2896{
2897	drm_intel_bufmgr_gem *bufmgr_gem =
2898	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2899	unsigned int total = 0;
2900	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2901	int total_fences;
2902
2903	/* Check for fence reg constraints if necessary */
2904	if (bufmgr_gem->available_fences) {
2905		total_fences = drm_intel_gem_total_fences(bo_array, count);
2906		if (total_fences > bufmgr_gem->available_fences)
2907			return -ENOSPC;
2908	}
2909
2910	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2911
2912	if (total > threshold)
2913		total = drm_intel_gem_compute_batch_space(bo_array, count);
2914
2915	if (total > threshold) {
2916		DBG("check_space: overflowed available aperture, "
2917		    "%dkb vs %dkb\n",
2918		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2919		return -ENOSPC;
2920	} else {
2921		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2922		    (int)bufmgr_gem->gtt_size / 1024);
2923		return 0;
2924	}
2925}
2926
2927/*
2928 * Disable buffer reuse for objects which are shared with the kernel
2929 * as scanout buffers
2930 */
2931static int
2932drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2933{
2934	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2935
2936	bo_gem->reusable = false;
2937	return 0;
2938}
2939
2940static int
2941drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2942{
2943	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2944
2945	return bo_gem->reusable;
2946}
2947
2948static int
2949_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2950{
2951	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2952	int i;
2953
2954	for (i = 0; i < bo_gem->reloc_count; i++) {
2955		if (bo_gem->reloc_target_info[i].bo == target_bo)
2956			return 1;
2957		if (bo == bo_gem->reloc_target_info[i].bo)
2958			continue;
2959		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2960						target_bo))
2961			return 1;
2962	}
2963
2964	for (i = 0; i< bo_gem->softpin_target_count; i++) {
2965		if (bo_gem->softpin_target[i] == target_bo)
2966			return 1;
2967		if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
2968			return 1;
2969	}
2970
2971	return 0;
2972}
2973
2974/** Return true if target_bo is referenced by bo's relocation tree. */
2975static int
2976drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2977{
2978	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2979
2980	if (bo == NULL || target_bo == NULL)
2981		return 0;
2982	if (target_bo_gem->used_as_reloc_target)
2983		return _drm_intel_gem_bo_references(bo, target_bo);
2984	return 0;
2985}
2986
2987static void
2988add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2989{
2990	unsigned int i = bufmgr_gem->num_buckets;
2991
2992	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2993
2994	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2995	bufmgr_gem->cache_bucket[i].size = size;
2996	bufmgr_gem->num_buckets++;
2997}
2998
2999static void
3000init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3001{
3002	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3003
3004	/* OK, so power of two buckets was too wasteful of memory.
3005	 * Give 3 other sizes between each power of two, to hopefully
3006	 * cover things accurately enough.  (The alternative is
3007	 * probably to just go for exact matching of sizes, and assume
3008	 * that for things like composited window resize the tiled
3009	 * width/height alignment and rounding of sizes to pages will
3010	 * get us useful cache hit rates anyway)
3011	 */
3012	add_bucket(bufmgr_gem, 4096);
3013	add_bucket(bufmgr_gem, 4096 * 2);
3014	add_bucket(bufmgr_gem, 4096 * 3);
3015
3016	/* Initialize the linked lists for BO reuse cache. */
3017	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3018		add_bucket(bufmgr_gem, size);
3019
3020		add_bucket(bufmgr_gem, size + size * 1 / 4);
3021		add_bucket(bufmgr_gem, size + size * 2 / 4);
3022		add_bucket(bufmgr_gem, size + size * 3 / 4);
3023	}
3024}
3025
3026void
3027drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3028{
3029	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3030
3031	bufmgr_gem->vma_max = limit;
3032
3033	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3034}
3035
3036/**
3037 * Get the PCI ID for the device.  This can be overridden by setting the
3038 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3039 */
3040static int
3041get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3042{
3043	char *devid_override;
3044	int devid = 0;
3045	int ret;
3046	drm_i915_getparam_t gp;
3047
3048	if (geteuid() == getuid()) {
3049		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3050		if (devid_override) {
3051			bufmgr_gem->no_exec = true;
3052			return strtod(devid_override, NULL);
3053		}
3054	}
3055
3056	memclear(gp);
3057	gp.param = I915_PARAM_CHIPSET_ID;
3058	gp.value = &devid;
3059	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3060	if (ret) {
3061		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3062		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3063	}
3064	return devid;
3065}
3066
3067int
3068drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3069{
3070	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3071
3072	return bufmgr_gem->pci_device;
3073}
3074
3075/**
3076 * Sets the AUB filename.
3077 *
3078 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3079 * for it to have any effect.
3080 */
3081void
3082drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3083				      const char *filename)
3084{
3085}
3086
3087/**
3088 * Sets up AUB dumping.
3089 *
3090 * This is a trace file format that can be used with the simulator.
3091 * Packets are emitted in a format somewhat like GPU command packets.
3092 * You can set up a GTT and upload your objects into the referenced
3093 * space, then send off batchbuffers and get BMPs out the other end.
3094 */
3095void
3096drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3097{
3098	fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3099		"Use intel_aubdump from intel-gpu-tools instead.  Install intel-gpu-tools,\n"
3100		"then run (for example)\n\n"
3101		"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3102		"See the intel_aubdump man page for more details.\n");
3103}
3104
3105drm_intel_context *
3106drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3107{
3108	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3109	struct drm_i915_gem_context_create create;
3110	drm_intel_context *context = NULL;
3111	int ret;
3112
3113	context = calloc(1, sizeof(*context));
3114	if (!context)
3115		return NULL;
3116
3117	memclear(create);
3118	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3119	if (ret != 0) {
3120		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3121		    strerror(errno));
3122		free(context);
3123		return NULL;
3124	}
3125
3126	context->ctx_id = create.ctx_id;
3127	context->bufmgr = bufmgr;
3128
3129	return context;
3130}
3131
3132void
3133drm_intel_gem_context_destroy(drm_intel_context *ctx)
3134{
3135	drm_intel_bufmgr_gem *bufmgr_gem;
3136	struct drm_i915_gem_context_destroy destroy;
3137	int ret;
3138
3139	if (ctx == NULL)
3140		return;
3141
3142	memclear(destroy);
3143
3144	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3145	destroy.ctx_id = ctx->ctx_id;
3146	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3147		       &destroy);
3148	if (ret != 0)
3149		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3150			strerror(errno));
3151
3152	free(ctx);
3153}
3154
3155int
3156drm_intel_get_reset_stats(drm_intel_context *ctx,
3157			  uint32_t *reset_count,
3158			  uint32_t *active,
3159			  uint32_t *pending)
3160{
3161	drm_intel_bufmgr_gem *bufmgr_gem;
3162	struct drm_i915_reset_stats stats;
3163	int ret;
3164
3165	if (ctx == NULL)
3166		return -EINVAL;
3167
3168	memclear(stats);
3169
3170	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3171	stats.ctx_id = ctx->ctx_id;
3172	ret = drmIoctl(bufmgr_gem->fd,
3173		       DRM_IOCTL_I915_GET_RESET_STATS,
3174		       &stats);
3175	if (ret == 0) {
3176		if (reset_count != NULL)
3177			*reset_count = stats.reset_count;
3178
3179		if (active != NULL)
3180			*active = stats.batch_active;
3181
3182		if (pending != NULL)
3183			*pending = stats.batch_pending;
3184	}
3185
3186	return ret;
3187}
3188
3189int
3190drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3191		   uint32_t offset,
3192		   uint64_t *result)
3193{
3194	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3195	struct drm_i915_reg_read reg_read;
3196	int ret;
3197
3198	memclear(reg_read);
3199	reg_read.offset = offset;
3200
3201	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3202
3203	*result = reg_read.val;
3204	return ret;
3205}
3206
3207int
3208drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3209{
3210	drm_i915_getparam_t gp;
3211	int ret;
3212
3213	memclear(gp);
3214	gp.value = (int*)subslice_total;
3215	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3216	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3217	if (ret)
3218		return -errno;
3219
3220	return 0;
3221}
3222
3223int
3224drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3225{
3226	drm_i915_getparam_t gp;
3227	int ret;
3228
3229	memclear(gp);
3230	gp.value = (int*)eu_total;
3231	gp.param = I915_PARAM_EU_TOTAL;
3232	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3233	if (ret)
3234		return -errno;
3235
3236	return 0;
3237}
3238
3239/**
3240 * Annotate the given bo for use in aub dumping.
3241 *
3242 * \param annotations is an array of drm_intel_aub_annotation objects
3243 * describing the type of data in various sections of the bo.  Each
3244 * element of the array specifies the type and subtype of a section of
3245 * the bo, and the past-the-end offset of that section.  The elements
3246 * of \c annotations must be sorted so that ending_offset is
3247 * increasing.
3248 *
3249 * \param count is the number of elements in the \c annotations array.
3250 * If \c count is zero, then \c annotations will not be dereferenced.
3251 *
3252 * Annotations are copied into a private data structure, so caller may
3253 * re-use the memory pointed to by \c annotations after the call
3254 * returns.
3255 *
3256 * Annotations are stored for the lifetime of the bo; to reset to the
3257 * default state (no annotations), call this function with a \c count
3258 * of zero.
3259 */
3260void
3261drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3262					 drm_intel_aub_annotation *annotations,
3263					 unsigned count)
3264{
3265}
3266
3267static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3268static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3269
3270static drm_intel_bufmgr_gem *
3271drm_intel_bufmgr_gem_find(int fd)
3272{
3273	drm_intel_bufmgr_gem *bufmgr_gem;
3274
3275	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3276		if (bufmgr_gem->fd == fd) {
3277			atomic_inc(&bufmgr_gem->refcount);
3278			return bufmgr_gem;
3279		}
3280	}
3281
3282	return NULL;
3283}
3284
3285static void
3286drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3287{
3288	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3289
3290	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3291		pthread_mutex_lock(&bufmgr_list_mutex);
3292
3293		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3294			DRMLISTDEL(&bufmgr_gem->managers);
3295			drm_intel_bufmgr_gem_destroy(bufmgr);
3296		}
3297
3298		pthread_mutex_unlock(&bufmgr_list_mutex);
3299	}
3300}
3301
3302/**
3303 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3304 * and manage map buffer objections.
3305 *
3306 * \param fd File descriptor of the opened DRM device.
3307 */
3308drm_intel_bufmgr *
3309drm_intel_bufmgr_gem_init(int fd, int batch_size)
3310{
3311	drm_intel_bufmgr_gem *bufmgr_gem;
3312	struct drm_i915_gem_get_aperture aperture;
3313	drm_i915_getparam_t gp;
3314	int ret, tmp;
3315	bool exec2 = false;
3316
3317	pthread_mutex_lock(&bufmgr_list_mutex);
3318
3319	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3320	if (bufmgr_gem)
3321		goto exit;
3322
3323	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3324	if (bufmgr_gem == NULL)
3325		goto exit;
3326
3327	bufmgr_gem->fd = fd;
3328	atomic_set(&bufmgr_gem->refcount, 1);
3329
3330	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3331		free(bufmgr_gem);
3332		bufmgr_gem = NULL;
3333		goto exit;
3334	}
3335
3336	memclear(aperture);
3337	ret = drmIoctl(bufmgr_gem->fd,
3338		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3339		       &aperture);
3340
3341	if (ret == 0)
3342		bufmgr_gem->gtt_size = aperture.aper_available_size;
3343	else {
3344		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3345			strerror(errno));
3346		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3347		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3348			"May lead to reduced performance or incorrect "
3349			"rendering.\n",
3350			(int)bufmgr_gem->gtt_size / 1024);
3351	}
3352
3353	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3354
3355	if (IS_GEN2(bufmgr_gem->pci_device))
3356		bufmgr_gem->gen = 2;
3357	else if (IS_GEN3(bufmgr_gem->pci_device))
3358		bufmgr_gem->gen = 3;
3359	else if (IS_GEN4(bufmgr_gem->pci_device))
3360		bufmgr_gem->gen = 4;
3361	else if (IS_GEN5(bufmgr_gem->pci_device))
3362		bufmgr_gem->gen = 5;
3363	else if (IS_GEN6(bufmgr_gem->pci_device))
3364		bufmgr_gem->gen = 6;
3365	else if (IS_GEN7(bufmgr_gem->pci_device))
3366		bufmgr_gem->gen = 7;
3367	else if (IS_GEN8(bufmgr_gem->pci_device))
3368		bufmgr_gem->gen = 8;
3369	else if (IS_GEN9(bufmgr_gem->pci_device))
3370		bufmgr_gem->gen = 9;
3371	else {
3372		free(bufmgr_gem);
3373		bufmgr_gem = NULL;
3374		goto exit;
3375	}
3376
3377	if (IS_GEN3(bufmgr_gem->pci_device) &&
3378	    bufmgr_gem->gtt_size > 256*1024*1024) {
3379		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3380		 * be used for tiled blits. To simplify the accounting, just
3381		 * subtract the unmappable part (fixed to 256MB on all known
3382		 * gen3 devices) if the kernel advertises it. */
3383		bufmgr_gem->gtt_size -= 256*1024*1024;
3384	}
3385
3386	memclear(gp);
3387	gp.value = &tmp;
3388
3389	gp.param = I915_PARAM_HAS_EXECBUF2;
3390	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3391	if (!ret)
3392		exec2 = true;
3393
3394	gp.param = I915_PARAM_HAS_BSD;
3395	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3396	bufmgr_gem->has_bsd = ret == 0;
3397
3398	gp.param = I915_PARAM_HAS_BLT;
3399	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3400	bufmgr_gem->has_blt = ret == 0;
3401
3402	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3403	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3404	bufmgr_gem->has_relaxed_fencing = ret == 0;
3405
3406	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3407
3408	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3409	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3410	bufmgr_gem->has_wait_timeout = ret == 0;
3411
3412	gp.param = I915_PARAM_HAS_LLC;
3413	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3414	if (ret != 0) {
3415		/* Kernel does not supports HAS_LLC query, fallback to GPU
3416		 * generation detection and assume that we have LLC on GEN6/7
3417		 */
3418		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3419				IS_GEN7(bufmgr_gem->pci_device));
3420	} else
3421		bufmgr_gem->has_llc = *gp.value;
3422
3423	gp.param = I915_PARAM_HAS_VEBOX;
3424	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3425	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3426
3427	gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3428	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3429	if (ret == 0 && *gp.value > 0)
3430		bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3431
3432	if (bufmgr_gem->gen < 4) {
3433		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3434		gp.value = &bufmgr_gem->available_fences;
3435		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3436		if (ret) {
3437			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3438				errno);
3439			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3440				*gp.value);
3441			bufmgr_gem->available_fences = 0;
3442		} else {
3443			/* XXX The kernel reports the total number of fences,
3444			 * including any that may be pinned.
3445			 *
3446			 * We presume that there will be at least one pinned
3447			 * fence for the scanout buffer, but there may be more
3448			 * than one scanout and the user may be manually
3449			 * pinning buffers. Let's move to execbuffer2 and
3450			 * thereby forget the insanity of using fences...
3451			 */
3452			bufmgr_gem->available_fences -= 2;
3453			if (bufmgr_gem->available_fences < 0)
3454				bufmgr_gem->available_fences = 0;
3455		}
3456	}
3457
3458	if (bufmgr_gem->gen >= 8) {
3459		gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3460		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3461		if (ret == 0 && *gp.value == 3)
3462			bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3463	}
3464
3465	/* Let's go with one relocation per every 2 dwords (but round down a bit
3466	 * since a power of two will mean an extra page allocation for the reloc
3467	 * buffer).
3468	 *
3469	 * Every 4 was too few for the blender benchmark.
3470	 */
3471	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3472
3473	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3474	bufmgr_gem->bufmgr.bo_alloc_for_render =
3475	    drm_intel_gem_bo_alloc_for_render;
3476	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3477	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3478	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3479	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3480	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3481	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3482	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3483	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3484	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3485	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3486	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3487	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3488	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3489	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3490	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3491	/* Use the new one if available */
3492	if (exec2) {
3493		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3494		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3495	} else
3496		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3497	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3498	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3499	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3500	bufmgr_gem->bufmgr.debug = 0;
3501	bufmgr_gem->bufmgr.check_aperture_space =
3502	    drm_intel_gem_check_aperture_space;
3503	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3504	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3505	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3506	    drm_intel_gem_get_pipe_from_crtc_id;
3507	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3508
3509	DRMINITLISTHEAD(&bufmgr_gem->named);
3510	init_cache_buckets(bufmgr_gem);
3511
3512	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3513	bufmgr_gem->vma_max = -1; /* unlimited by default */
3514
3515	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3516
3517exit:
3518	pthread_mutex_unlock(&bufmgr_list_mutex);
3519
3520	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3521}
3522