1#include <stdio.h> 2/* 3 * (c) Copyright 1993, 1994, Silicon Graphics, Inc. 4 * ALL RIGHTS RESERVED 5 * Permission to use, copy, modify, and distribute this software for 6 * any purpose and without fee is hereby granted, provided that the above 7 * copyright notice appear in all copies and that both the copyright notice 8 * and this permission notice appear in supporting documentation, and that 9 * the name of Silicon Graphics, Inc. not be used in advertising 10 * or publicity pertaining to distribution of the software without specific, 11 * written prior permission. 12 * 13 * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS" 14 * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, 15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR 16 * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON 17 * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT, 18 * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY 19 * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, 20 * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF 21 * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN 22 * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON 23 * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE 24 * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE. 25 * 26 * US Government Users Restricted Rights 27 * Use, duplication, or disclosure by the Government is subject to 28 * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph 29 * (c)(1)(ii) of the Rights in Technical Data and Computer Software 30 * clause at DFARS 252.227-7013 and/or in similar or successor 31 * clauses in the FAR or the DOD or NASA FAR Supplement. 32 * Unpublished-- rights reserved under the copyright laws of the 33 * United States. Contractor/manufacturer is Silicon Graphics, 34 * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. 35 * 36 * OpenGL(TM) is a trademark of Silicon Graphics, Inc. 37 */ 38/* 39 * Trackball code: 40 * 41 * Implementation of a virtual trackball. 42 * Implemented by Gavin Bell, lots of ideas from Thant Tessman and 43 * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129. 44 * 45 * Vector manip code: 46 * 47 * Original code from: 48 * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli 49 * 50 * Much mucking with by: 51 * Gavin Bell 52 */ 53#if defined(_MSC_VER) 54#pragma warning (disable:4244) /* disable bogus conversion warnings */ 55#endif 56#include <math.h> 57#include "trackball.h" 58 59/* 60 * This size should really be based on the distance from the center of 61 * rotation to the point on the object underneath the mouse. That 62 * point would then track the mouse as closely as possible. This is a 63 * simple example, though, so that is left as an Exercise for the 64 * Programmer. 65 */ 66#define TRACKBALLSIZE (0.8f) 67 68/* 69 * Local function prototypes (not defined in trackball.h) 70 */ 71static float tb_project_to_sphere(float, float, float); 72static void normalize_quat(float [4]); 73 74static void 75vzero(float v[3]) 76{ 77 v[0] = 0.0; 78 v[1] = 0.0; 79 v[2] = 0.0; 80} 81 82static void 83vset(float v[3], float x, float y, float z) 84{ 85 v[0] = x; 86 v[1] = y; 87 v[2] = z; 88} 89 90static void 91vsub(const float src1[3], const float src2[3], float dst[3]) 92{ 93 dst[0] = src1[0] - src2[0]; 94 dst[1] = src1[1] - src2[1]; 95 dst[2] = src1[2] - src2[2]; 96} 97 98static void 99vcopy(const float v1[3], float v2[3]) 100{ 101 register int i; 102 for (i = 0 ; i < 3 ; i++) 103 v2[i] = v1[i]; 104} 105 106static void 107vcross(const float v1[3], const float v2[3], float cross[3]) 108{ 109 float temp[3]; 110 111 temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]); 112 temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]); 113 temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]); 114 vcopy(temp, cross); 115} 116 117static float 118vlength(const float v[3]) 119{ 120 return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); 121} 122 123static void 124vscale(float v[3], float div) 125{ 126 v[0] *= div; 127 v[1] *= div; 128 v[2] *= div; 129} 130 131static void 132vnormal(float v[3]) 133{ 134 vscale(v,1.0/vlength(v)); 135} 136 137static float 138vdot(const float v1[3], const float v2[3]) 139{ 140 return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; 141} 142 143static void 144vadd(const float src1[3], const float src2[3], float dst[3]) 145{ 146 dst[0] = src1[0] + src2[0]; 147 dst[1] = src1[1] + src2[1]; 148 dst[2] = src1[2] + src2[2]; 149} 150 151/* 152 * Ok, simulate a track-ball. Project the points onto the virtual 153 * trackball, then figure out the axis of rotation, which is the cross 154 * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) 155 * Note: This is a deformed trackball-- is a trackball in the center, 156 * but is deformed into a hyperbolic sheet of rotation away from the 157 * center. This particular function was chosen after trying out 158 * several variations. 159 * 160 * It is assumed that the arguments to this routine are in the range 161 * (-1.0 ... 1.0) 162 */ 163void 164trackball(float q[4], float p1x, float p1y, float p2x, float p2y) 165{ 166 float a[3]; /* Axis of rotation */ 167 float phi; /* how much to rotate about axis */ 168 float p1[3], p2[3], d[3]; 169 float t; 170 171 if (p1x == p2x && p1y == p2y) { 172 /* Zero rotation */ 173 vzero(q); 174 q[3] = 1.0; 175 return; 176 } 177 178 /* 179 * First, figure out z-coordinates for projection of P1 and P2 to 180 * deformed sphere 181 */ 182 vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y)); 183 vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y)); 184 185 /* 186 * Now, we want the cross product of P1 and P2 187 */ 188 vcross(p2,p1,a); 189 190 /* 191 * Figure out how much to rotate around that axis. 192 */ 193 vsub(p1,p2,d); 194 t = vlength(d) / (2.0*TRACKBALLSIZE); 195 196 /* 197 * Avoid problems with out-of-control values... 198 */ 199 if (t > 1.0) t = 1.0; 200 if (t < -1.0) t = -1.0; 201 phi = 2.0 * asin(t); 202 203 axis_to_quat(a,phi,q); 204} 205 206/* 207 * Given an axis and angle, compute quaternion. 208 */ 209void 210axis_to_quat(const float a[3], float phi, float q[4]) 211{ 212 vcopy(a,q); 213 vnormal(q); 214 vscale(q, sin(phi/2.0)); 215 q[3] = cos(phi/2.0); 216} 217 218/* 219 * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet 220 * if we are away from the center of the sphere. 221 */ 222static float 223tb_project_to_sphere(float r, float x, float y) 224{ 225 float d, t, z; 226 227 d = sqrt(x*x + y*y); 228 if (d < r * 0.70710678118654752440) { /* Inside sphere */ 229 z = sqrt(r*r - d*d); 230 } else { /* On hyperbola */ 231 t = r / 1.41421356237309504880; 232 z = t*t / d; 233 } 234 return z; 235} 236 237/* 238 * Given two rotations, e1 and e2, expressed as quaternion rotations, 239 * figure out the equivalent single rotation and stuff it into dest. 240 * 241 * This routine also normalizes the result every RENORMCOUNT times it is 242 * called, to keep error from creeping in. 243 * 244 * NOTE: This routine is written so that q1 or q2 may be the same 245 * as dest (or each other). 246 */ 247 248#define RENORMCOUNT 97 249 250void 251add_quats(const float q1[4], const float q2[4], float dest[4]) 252{ 253 static int count=0; 254 float t1[4], t2[4], t3[4]; 255 float tf[4]; 256 257#if 0 258printf("q1 = %f %f %f %f\n", q1[0], q1[1], q1[2], q1[3]); 259printf("q2 = %f %f %f %f\n", q2[0], q2[1], q2[2], q2[3]); 260#endif 261 262 vcopy(q1,t1); 263 vscale(t1,q2[3]); 264 265 vcopy(q2,t2); 266 vscale(t2,q1[3]); 267 268 vcross(q2,q1,t3); 269 vadd(t1,t2,tf); 270 vadd(t3,tf,tf); 271 tf[3] = q1[3] * q2[3] - vdot(q1,q2); 272 273#if 0 274printf("tf = %f %f %f %f\n", tf[0], tf[1], tf[2], tf[3]); 275#endif 276 277 dest[0] = tf[0]; 278 dest[1] = tf[1]; 279 dest[2] = tf[2]; 280 dest[3] = tf[3]; 281 282 if (++count > RENORMCOUNT) { 283 count = 0; 284 normalize_quat(dest); 285 } 286} 287 288/* 289 * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0 290 * If they don't add up to 1.0, dividing by their magnitued will 291 * renormalize them. 292 * 293 * Note: See the following for more information on quaternions: 294 * 295 * - Shoemake, K., Animating rotation with quaternion curves, Computer 296 * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985. 297 * - Pletinckx, D., Quaternion calculus as a basic tool in computer 298 * graphics, The Visual Computer 5, 2-13, 1989. 299 */ 300static void 301normalize_quat(float q[4]) 302{ 303 int i; 304 float mag; 305 306 mag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); 307 for (i = 0; i < 4; i++) 308 q[i] /= mag; 309} 310 311/* 312 * Build a rotation matrix, given a quaternion rotation. 313 * 314 */ 315void 316build_rotmatrix(float m[4][4], const float q[4]) 317{ 318 m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]); 319 m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]); 320 m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]); 321 m[0][3] = 0.0; 322 323 m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]); 324 m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]); 325 m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]); 326 m[1][3] = 0.0; 327 328 m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]); 329 m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]); 330 m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]); 331 m[2][3] = 0.0; 332 333 m[3][0] = 0.0; 334 m[3][1] = 0.0; 335 m[3][2] = 0.0; 336 m[3][3] = 1.0; 337} 338 339