132001f49Smrg#include <stdio.h>
232001f49Smrg/*
332001f49Smrg * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
432001f49Smrg * ALL RIGHTS RESERVED
532001f49Smrg * Permission to use, copy, modify, and distribute this software for
632001f49Smrg * any purpose and without fee is hereby granted, provided that the above
732001f49Smrg * copyright notice appear in all copies and that both the copyright notice
832001f49Smrg * and this permission notice appear in supporting documentation, and that
932001f49Smrg * the name of Silicon Graphics, Inc. not be used in advertising
1032001f49Smrg * or publicity pertaining to distribution of the software without specific,
1132001f49Smrg * written prior permission.
1232001f49Smrg *
1332001f49Smrg * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
1432001f49Smrg * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
1532001f49Smrg * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
1632001f49Smrg * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
1732001f49Smrg * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
1832001f49Smrg * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
1932001f49Smrg * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
2032001f49Smrg * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
2132001f49Smrg * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
2232001f49Smrg * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
2332001f49Smrg * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
2432001f49Smrg * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
2532001f49Smrg *
2632001f49Smrg * US Government Users Restricted Rights
2732001f49Smrg * Use, duplication, or disclosure by the Government is subject to
2832001f49Smrg * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
2932001f49Smrg * (c)(1)(ii) of the Rights in Technical Data and Computer Software
3032001f49Smrg * clause at DFARS 252.227-7013 and/or in similar or successor
3132001f49Smrg * clauses in the FAR or the DOD or NASA FAR Supplement.
3232001f49Smrg * Unpublished-- rights reserved under the copyright laws of the
3332001f49Smrg * United States.  Contractor/manufacturer is Silicon Graphics,
3432001f49Smrg * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
3532001f49Smrg *
3632001f49Smrg * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
3732001f49Smrg */
3832001f49Smrg/*
3932001f49Smrg * Trackball code:
4032001f49Smrg *
4132001f49Smrg * Implementation of a virtual trackball.
4232001f49Smrg * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
4332001f49Smrg *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
4432001f49Smrg *
4532001f49Smrg * Vector manip code:
4632001f49Smrg *
4732001f49Smrg * Original code from:
4832001f49Smrg * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
4932001f49Smrg *
5032001f49Smrg * Much mucking with by:
5132001f49Smrg * Gavin Bell
5232001f49Smrg */
537ec3b29aSmrg#if defined(_MSC_VER)
5432001f49Smrg#pragma warning (disable:4244)          /* disable bogus conversion warnings */
5532001f49Smrg#endif
5632001f49Smrg#include <math.h>
5732001f49Smrg#include "trackball.h"
5832001f49Smrg
5932001f49Smrg/*
6032001f49Smrg * This size should really be based on the distance from the center of
6132001f49Smrg * rotation to the point on the object underneath the mouse.  That
6232001f49Smrg * point would then track the mouse as closely as possible.  This is a
6332001f49Smrg * simple example, though, so that is left as an Exercise for the
6432001f49Smrg * Programmer.
6532001f49Smrg */
6632001f49Smrg#define TRACKBALLSIZE  (0.8f)
6732001f49Smrg
6832001f49Smrg/*
6932001f49Smrg * Local function prototypes (not defined in trackball.h)
7032001f49Smrg */
7132001f49Smrgstatic float tb_project_to_sphere(float, float, float);
7232001f49Smrgstatic void normalize_quat(float [4]);
7332001f49Smrg
7432001f49Smrgstatic void
7532001f49Smrgvzero(float v[3])
7632001f49Smrg{
7732001f49Smrg    v[0] = 0.0;
7832001f49Smrg    v[1] = 0.0;
7932001f49Smrg    v[2] = 0.0;
8032001f49Smrg}
8132001f49Smrg
8232001f49Smrgstatic void
8332001f49Smrgvset(float v[3], float x, float y, float z)
8432001f49Smrg{
8532001f49Smrg    v[0] = x;
8632001f49Smrg    v[1] = y;
8732001f49Smrg    v[2] = z;
8832001f49Smrg}
8932001f49Smrg
9032001f49Smrgstatic void
9132001f49Smrgvsub(const float src1[3], const float src2[3], float dst[3])
9232001f49Smrg{
9332001f49Smrg    dst[0] = src1[0] - src2[0];
9432001f49Smrg    dst[1] = src1[1] - src2[1];
9532001f49Smrg    dst[2] = src1[2] - src2[2];
9632001f49Smrg}
9732001f49Smrg
9832001f49Smrgstatic void
9932001f49Smrgvcopy(const float v1[3], float v2[3])
10032001f49Smrg{
10132001f49Smrg    register int i;
10232001f49Smrg    for (i = 0 ; i < 3 ; i++)
10332001f49Smrg        v2[i] = v1[i];
10432001f49Smrg}
10532001f49Smrg
10632001f49Smrgstatic void
10732001f49Smrgvcross(const float v1[3], const float v2[3], float cross[3])
10832001f49Smrg{
10932001f49Smrg    float temp[3];
11032001f49Smrg
11132001f49Smrg    temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
11232001f49Smrg    temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
11332001f49Smrg    temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
11432001f49Smrg    vcopy(temp, cross);
11532001f49Smrg}
11632001f49Smrg
11732001f49Smrgstatic float
11832001f49Smrgvlength(const float v[3])
11932001f49Smrg{
12032001f49Smrg    return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
12132001f49Smrg}
12232001f49Smrg
12332001f49Smrgstatic void
12432001f49Smrgvscale(float v[3], float div)
12532001f49Smrg{
12632001f49Smrg    v[0] *= div;
12732001f49Smrg    v[1] *= div;
12832001f49Smrg    v[2] *= div;
12932001f49Smrg}
13032001f49Smrg
13132001f49Smrgstatic void
13232001f49Smrgvnormal(float v[3])
13332001f49Smrg{
13432001f49Smrg    vscale(v,1.0/vlength(v));
13532001f49Smrg}
13632001f49Smrg
13732001f49Smrgstatic float
13832001f49Smrgvdot(const float v1[3], const float v2[3])
13932001f49Smrg{
14032001f49Smrg    return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
14132001f49Smrg}
14232001f49Smrg
14332001f49Smrgstatic void
14432001f49Smrgvadd(const float src1[3], const float src2[3], float dst[3])
14532001f49Smrg{
14632001f49Smrg    dst[0] = src1[0] + src2[0];
14732001f49Smrg    dst[1] = src1[1] + src2[1];
14832001f49Smrg    dst[2] = src1[2] + src2[2];
14932001f49Smrg}
15032001f49Smrg
15132001f49Smrg/*
15232001f49Smrg * Ok, simulate a track-ball.  Project the points onto the virtual
15332001f49Smrg * trackball, then figure out the axis of rotation, which is the cross
15432001f49Smrg * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
15532001f49Smrg * Note:  This is a deformed trackball-- is a trackball in the center,
15632001f49Smrg * but is deformed into a hyperbolic sheet of rotation away from the
15732001f49Smrg * center.  This particular function was chosen after trying out
15832001f49Smrg * several variations.
15932001f49Smrg *
16032001f49Smrg * It is assumed that the arguments to this routine are in the range
16132001f49Smrg * (-1.0 ... 1.0)
16232001f49Smrg */
16332001f49Smrgvoid
16432001f49Smrgtrackball(float q[4], float p1x, float p1y, float p2x, float p2y)
16532001f49Smrg{
16632001f49Smrg    float a[3]; /* Axis of rotation */
16732001f49Smrg    float phi;  /* how much to rotate about axis */
16832001f49Smrg    float p1[3], p2[3], d[3];
16932001f49Smrg    float t;
17032001f49Smrg
17132001f49Smrg    if (p1x == p2x && p1y == p2y) {
17232001f49Smrg        /* Zero rotation */
17332001f49Smrg        vzero(q);
17432001f49Smrg        q[3] = 1.0;
17532001f49Smrg        return;
17632001f49Smrg    }
17732001f49Smrg
17832001f49Smrg    /*
17932001f49Smrg     * First, figure out z-coordinates for projection of P1 and P2 to
18032001f49Smrg     * deformed sphere
18132001f49Smrg     */
18232001f49Smrg    vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
18332001f49Smrg    vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
18432001f49Smrg
18532001f49Smrg    /*
18632001f49Smrg     *  Now, we want the cross product of P1 and P2
18732001f49Smrg     */
18832001f49Smrg    vcross(p2,p1,a);
18932001f49Smrg
19032001f49Smrg    /*
19132001f49Smrg     *  Figure out how much to rotate around that axis.
19232001f49Smrg     */
19332001f49Smrg    vsub(p1,p2,d);
19432001f49Smrg    t = vlength(d) / (2.0*TRACKBALLSIZE);
19532001f49Smrg
19632001f49Smrg    /*
19732001f49Smrg     * Avoid problems with out-of-control values...
19832001f49Smrg     */
19932001f49Smrg    if (t > 1.0) t = 1.0;
20032001f49Smrg    if (t < -1.0) t = -1.0;
20132001f49Smrg    phi = 2.0 * asin(t);
20232001f49Smrg
20332001f49Smrg    axis_to_quat(a,phi,q);
20432001f49Smrg}
20532001f49Smrg
20632001f49Smrg/*
20732001f49Smrg *  Given an axis and angle, compute quaternion.
20832001f49Smrg */
20932001f49Smrgvoid
21032001f49Smrgaxis_to_quat(const float a[3], float phi, float q[4])
21132001f49Smrg{
21232001f49Smrg    vcopy(a,q);
21332001f49Smrg    vnormal(q);
21432001f49Smrg    vscale(q, sin(phi/2.0));
21532001f49Smrg    q[3] = cos(phi/2.0);
21632001f49Smrg}
21732001f49Smrg
21832001f49Smrg/*
21932001f49Smrg * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
22032001f49Smrg * if we are away from the center of the sphere.
22132001f49Smrg */
22232001f49Smrgstatic float
22332001f49Smrgtb_project_to_sphere(float r, float x, float y)
22432001f49Smrg{
22532001f49Smrg    float d, t, z;
22632001f49Smrg
22732001f49Smrg    d = sqrt(x*x + y*y);
22832001f49Smrg    if (d < r * 0.70710678118654752440) {    /* Inside sphere */
22932001f49Smrg        z = sqrt(r*r - d*d);
23032001f49Smrg    } else {           /* On hyperbola */
23132001f49Smrg        t = r / 1.41421356237309504880;
23232001f49Smrg        z = t*t / d;
23332001f49Smrg    }
23432001f49Smrg    return z;
23532001f49Smrg}
23632001f49Smrg
23732001f49Smrg/*
23832001f49Smrg * Given two rotations, e1 and e2, expressed as quaternion rotations,
23932001f49Smrg * figure out the equivalent single rotation and stuff it into dest.
24032001f49Smrg *
24132001f49Smrg * This routine also normalizes the result every RENORMCOUNT times it is
24232001f49Smrg * called, to keep error from creeping in.
24332001f49Smrg *
24432001f49Smrg * NOTE: This routine is written so that q1 or q2 may be the same
24532001f49Smrg * as dest (or each other).
24632001f49Smrg */
24732001f49Smrg
24832001f49Smrg#define RENORMCOUNT 97
24932001f49Smrg
25032001f49Smrgvoid
25132001f49Smrgadd_quats(const float q1[4], const float q2[4], float dest[4])
25232001f49Smrg{
25332001f49Smrg    static int count=0;
25432001f49Smrg    float t1[4], t2[4], t3[4];
25532001f49Smrg    float tf[4];
25632001f49Smrg
25732001f49Smrg#if 0
25832001f49Smrgprintf("q1 = %f %f %f %f\n", q1[0], q1[1], q1[2], q1[3]);
25932001f49Smrgprintf("q2 = %f %f %f %f\n", q2[0], q2[1], q2[2], q2[3]);
26032001f49Smrg#endif
26132001f49Smrg
26232001f49Smrg    vcopy(q1,t1);
26332001f49Smrg    vscale(t1,q2[3]);
26432001f49Smrg
26532001f49Smrg    vcopy(q2,t2);
26632001f49Smrg    vscale(t2,q1[3]);
26732001f49Smrg
26832001f49Smrg    vcross(q2,q1,t3);
26932001f49Smrg    vadd(t1,t2,tf);
27032001f49Smrg    vadd(t3,tf,tf);
27132001f49Smrg    tf[3] = q1[3] * q2[3] - vdot(q1,q2);
27232001f49Smrg
27332001f49Smrg#if 0
27432001f49Smrgprintf("tf = %f %f %f %f\n", tf[0], tf[1], tf[2], tf[3]);
27532001f49Smrg#endif
27632001f49Smrg
27732001f49Smrg    dest[0] = tf[0];
27832001f49Smrg    dest[1] = tf[1];
27932001f49Smrg    dest[2] = tf[2];
28032001f49Smrg    dest[3] = tf[3];
28132001f49Smrg
28232001f49Smrg    if (++count > RENORMCOUNT) {
28332001f49Smrg        count = 0;
28432001f49Smrg        normalize_quat(dest);
28532001f49Smrg    }
28632001f49Smrg}
28732001f49Smrg
28832001f49Smrg/*
28932001f49Smrg * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
29032001f49Smrg * If they don't add up to 1.0, dividing by their magnitued will
29132001f49Smrg * renormalize them.
29232001f49Smrg *
29332001f49Smrg * Note: See the following for more information on quaternions:
29432001f49Smrg *
29532001f49Smrg * - Shoemake, K., Animating rotation with quaternion curves, Computer
29632001f49Smrg *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
29732001f49Smrg * - Pletinckx, D., Quaternion calculus as a basic tool in computer
29832001f49Smrg *   graphics, The Visual Computer 5, 2-13, 1989.
29932001f49Smrg */
30032001f49Smrgstatic void
30132001f49Smrgnormalize_quat(float q[4])
30232001f49Smrg{
30332001f49Smrg    int i;
30432001f49Smrg    float mag;
30532001f49Smrg
30632001f49Smrg    mag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
30732001f49Smrg    for (i = 0; i < 4; i++)
30832001f49Smrg        q[i] /= mag;
30932001f49Smrg}
31032001f49Smrg
31132001f49Smrg/*
31232001f49Smrg * Build a rotation matrix, given a quaternion rotation.
31332001f49Smrg *
31432001f49Smrg */
31532001f49Smrgvoid
31632001f49Smrgbuild_rotmatrix(float m[4][4], const float q[4])
31732001f49Smrg{
31832001f49Smrg    m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
31932001f49Smrg    m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
32032001f49Smrg    m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
32132001f49Smrg    m[0][3] = 0.0;
32232001f49Smrg
32332001f49Smrg    m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
32432001f49Smrg    m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
32532001f49Smrg    m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
32632001f49Smrg    m[1][3] = 0.0;
32732001f49Smrg
32832001f49Smrg    m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
32932001f49Smrg    m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
33032001f49Smrg    m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
33132001f49Smrg    m[2][3] = 0.0;
33232001f49Smrg
33332001f49Smrg    m[3][0] = 0.0;
33432001f49Smrg    m[3][1] = 0.0;
33532001f49Smrg    m[3][2] = 0.0;
33632001f49Smrg    m[3][3] = 1.0;
33732001f49Smrg}
33832001f49Smrg
339