1/* gtf.c Generate mode timings using the GTF Timing Standard 2 * 3 * gcc gtf.c -o gtf -lm -Wall 4 * 5 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * o Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * o Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer 16 * in the documentation and/or other materials provided with the 17 * distribution. 18 * o Neither the name of NVIDIA nor the names of its contributors 19 * may be used to endorse or promote products derived from this 20 * software without specific prior written permission. 21 * 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 25 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 26 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 27 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 * 36 * 37 * 38 * This program is based on the Generalized Timing Formula(GTF TM) 39 * Standard Version: 1.0, Revision: 1.0 40 * 41 * The GTF Document contains the following Copyright information: 42 * 43 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards 44 * Association. Duplication of this document within VESA member 45 * companies for review purposes is permitted. All other rights 46 * reserved. 47 * 48 * While every precaution has been taken in the preparation 49 * of this standard, the Video Electronics Standards Association and 50 * its contributors assume no responsibility for errors or omissions, 51 * and make no warranties, expressed or implied, of functionality 52 * of suitability for any purpose. The sample code contained within 53 * this standard may be used without restriction. 54 * 55 * 56 * 57 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive) 58 * implementation of the GTF Timing Standard, is available at: 59 * 60 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls 61 * 62 * 63 * 64 * This program takes a desired resolution and vertical refresh rate, 65 * and computes mode timings according to the GTF Timing Standard. 66 * These mode timings can then be formatted as an XServer modeline 67 * or a mode description for use by fbset(8). 68 * 69 * 70 * 71 * NOTES: 72 * 73 * The GTF allows for computation of "margins" (the visible border 74 * surrounding the addressable video); on most non-overscan type 75 * systems, the margin period is zero. I've implemented the margin 76 * computations but not enabled it because 1) I don't really have 77 * any experience with this, and 2) neither XServer modelines nor 78 * fbset fb.modes provide an obvious way for margin timings to be 79 * included in their mode descriptions (needs more investigation). 80 * 81 * The GTF provides for computation of interlaced mode timings; 82 * I've implemented the computations but not enabled them, yet. 83 * I should probably enable and test this at some point. 84 * 85 * 86 * 87 * TODO: 88 * 89 * o Add support for interlaced modes. 90 * 91 * o Implement the other portions of the GTF: compute mode timings 92 * given either the desired pixel clock or the desired horizontal 93 * frequency. 94 * 95 * o It would be nice if this were more general purpose to do things 96 * outside the scope of the GTF: like generate double scan mode 97 * timings, for example. 98 * 99 * o Printing digits to the right of the decimal point when the 100 * digits are 0 annoys me. 101 * 102 * o Error checking. 103 * 104 */ 105 106#ifdef HAVE_XORG_CONFIG_H 107# include <xorg-config.h> 108#endif 109 110#include <stdio.h> 111#include <stdlib.h> 112#include <string.h> 113#include <math.h> 114 115#define MARGIN_PERCENT 1.8 /* % of active vertical image */ 116#define CELL_GRAN 8.0 /* assumed character cell granularity */ 117#define MIN_PORCH 1 /* minimum front porch */ 118#define V_SYNC_RQD 3 /* width of vsync in lines */ 119#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */ 120#define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */ 121#define M 600.0 /* blanking formula gradient */ 122#define C 40.0 /* blanking formula offset */ 123#define K 128.0 /* blanking formula scaling factor */ 124#define J 20.0 /* blanking formula scaling factor */ 125 126/* C' and M' are part of the Blanking Duty Cycle computation */ 127 128#define C_PRIME (((C - J) * K/256.0) + J) 129#define M_PRIME (K/256.0 * M) 130 131 132/* struct definitions */ 133 134typedef struct __mode 135{ 136 int hr, hss, hse, hfl; 137 int vr, vss, vse, vfl; 138 float pclk, h_freq, v_freq; 139} mode; 140 141 142typedef struct __options 143{ 144 int x, y; 145 int xorgmode, fbmode; 146 float v_freq; 147} options; 148 149 150 151 152/* prototypes */ 153 154void print_value(int n, char *name, float val); 155void print_xf86_mode (mode *m); 156void print_fb_mode (mode *m); 157mode *vert_refresh (int h_pixels, int v_lines, float freq, 158 int interlaced, int margins); 159options *parse_command_line (int argc, char *argv[]); 160 161 162 163 164/* 165 * print_value() - print the result of the named computation; this is 166 * useful when comparing against the GTF EXCEL spreadsheet. 167 */ 168 169int global_verbose = 0; 170 171void print_value(int n, char *name, float val) 172{ 173 if (global_verbose) { 174 printf("%2d: %-27s: %15f\n", n, name, val); 175 } 176} 177 178 179 180/* print_xf86_mode() - print the XServer modeline, given mode timings. */ 181 182void print_xf86_mode (mode *m) 183{ 184 printf ("\n"); 185 printf (" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n", 186 m->hr, m->vr, m->v_freq, m->h_freq, m->pclk); 187 188 printf (" Modeline \"%dx%d_%.2f\" %.2f" 189 " %d %d %d %d" 190 " %d %d %d %d" 191 " -HSync +Vsync\n\n", 192 m->hr, m->vr, m->v_freq, m->pclk, 193 m->hr, m->hss, m->hse, m->hfl, 194 m->vr, m->vss, m->vse, m->vfl); 195 196} 197 198 199 200/* 201 * print_fb_mode() - print a mode description in fbset(8) format; 202 * see the fb.modes(8) manpage. The timing description used in 203 * this is rather odd; they use "left and right margin" to refer 204 * to the portion of the hblank before and after the sync pulse 205 * by conceptually wrapping the portion of the blank after the pulse 206 * to infront of the visible region; ie: 207 * 208 * 209 * Timing description I'm accustomed to: 210 * 211 * 212 * 213 * <--------1--------> <--2--> <--3--> <--4--> 214 * _________ 215 * |-------------------|_______| |_______ 216 * 217 * R SS SE FL 218 * 219 * 1: visible image 220 * 2: blank before sync (aka front porch) 221 * 3: sync pulse 222 * 4: blank after sync (aka back porch) 223 * R: Resolution 224 * SS: Sync Start 225 * SE: Sync End 226 * FL: Frame Length 227 * 228 * 229 * But the fb.modes format is: 230 * 231 * 232 * <--4--> <--------1--------> <--2--> <--3--> 233 * _________ 234 * _______|-------------------|_______| | 235 * 236 * The fb.modes(8) manpage refers to <4> and <2> as the left and 237 * right "margin" (as well as upper and lower margin in the vertical 238 * direction) -- note that this has nothing to do with the term 239 * "margin" used in the GTF Timing Standard. 240 * 241 * XXX always prints the 32 bit mode -- should I provide a command 242 * line option to specify the bpp? It's simple enough for a user 243 * to edit the mode description after it's generated. 244 */ 245 246void print_fb_mode (mode *m) 247{ 248 printf ("\n"); 249 printf ("mode \"%dx%d %.2fHz 32bit (GTF)\"\n", 250 m->hr, m->vr, m->v_freq); 251 printf (" # PCLK: %.2f MHz, H: %.2f kHz, V: %.2f Hz\n", 252 m->pclk, m->h_freq, m->v_freq); 253 printf (" geometry %d %d %d %d 32\n", 254 m->hr, m->vr, m->hr, m->vr); 255 printf (" timings %d %d %d %d %d %d %d\n", 256 (int) rint(1000000.0/m->pclk),/* pixclock in picoseconds */ 257 m->hfl - m->hse, /* left margin (in pixels) */ 258 m->hss - m->hr, /* right margin (in pixels) */ 259 m->vfl - m->vse, /* upper margin (in pixel lines) */ 260 m->vss - m->vr, /* lower margin (in pixel lines) */ 261 m->hse - m->hss, /* horizontal sync length (pixels) */ 262 m->vse - m->vss); /* vert sync length (pixel lines) */ 263 printf (" hsync low\n"); 264 printf (" vsync high\n"); 265 printf ("endmode\n\n"); 266 267} 268 269 270 271 272/* 273 * vert_refresh() - as defined by the GTF Timing Standard, compute the 274 * Stage 1 Parameters using the vertical refresh frequency. In other 275 * words: input a desired resolution and desired refresh rate, and 276 * output the GTF mode timings. 277 * 278 * XXX All the code is in place to compute interlaced modes, but I don't 279 * feel like testing it right now. 280 * 281 * XXX margin computations are implemented but not tested (nor used by 282 * XServer of fbset mode descriptions, from what I can tell). 283 */ 284 285mode *vert_refresh (int h_pixels, int v_lines, float freq, 286 int interlaced, int margins) 287{ 288 float h_pixels_rnd; 289 float v_lines_rnd; 290 float v_field_rate_rqd; 291 float top_margin; 292 float bottom_margin; 293 float interlace; 294 float h_period_est; 295 float vsync_plus_bp; 296 float v_back_porch; 297 float total_v_lines; 298 float v_field_rate_est; 299 float h_period; 300 float v_field_rate; 301 float v_frame_rate; 302 float left_margin; 303 float right_margin; 304 float total_active_pixels; 305 float ideal_duty_cycle; 306 float h_blank; 307 float total_pixels; 308 float pixel_freq; 309 float h_freq; 310 311 float h_sync; 312 float h_front_porch; 313 float v_odd_front_porch_lines; 314 315 mode *m = (mode*) malloc (sizeof (mode)); 316 317 318 /* 1. In order to give correct results, the number of horizontal 319 * pixels requested is first processed to ensure that it is divisible 320 * by the character size, by rounding it to the nearest character 321 * cell boundary: 322 * 323 * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) 324 */ 325 326 h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN; 327 328 print_value(1, "[H PIXELS RND]", h_pixels_rnd); 329 330 331 /* 2. If interlace is requested, the number of vertical lines assumed 332 * by the calculation must be halved, as the computation calculates 333 * the number of vertical lines per field. In either case, the 334 * number of lines is rounded to the nearest integer. 335 * 336 * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), 337 * ROUND([V LINES],0)) 338 */ 339 340 v_lines_rnd = interlaced ? 341 rint((float) v_lines) / 2.0 : 342 rint((float) v_lines); 343 344 print_value(2, "[V LINES RND]", v_lines_rnd); 345 346 347 /* 3. Find the frame rate required: 348 * 349 * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, 350 * [I/P FREQ RQD]) 351 */ 352 353 v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq); 354 355 print_value(3, "[V FIELD RATE RQD]", v_field_rate_rqd); 356 357 358 /* 4. Find number of lines in Top margin: 359 * 360 * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 361 * ROUND(([MARGIN%]/100*[V LINES RND]),0), 362 * 0) 363 */ 364 365 top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0); 366 367 print_value(4, "[TOP MARGIN (LINES)]", top_margin); 368 369 370 /* 5. Find number of lines in Bottom margin: 371 * 372 * [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 373 * ROUND(([MARGIN%]/100*[V LINES RND]),0), 374 * 0) 375 */ 376 377 bottom_margin = margins ? rint(MARGIN_PERCENT/100.0 * v_lines_rnd) : (0.0); 378 379 print_value(5, "[BOT MARGIN (LINES)]", bottom_margin); 380 381 382 /* 6. If interlace is required, then set variable [INTERLACE]=0.5: 383 * 384 * [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) 385 */ 386 387 interlace = interlaced ? 0.5 : 0.0; 388 389 print_value(6, "[INTERLACE]", interlace); 390 391 392 /* 7. Estimate the Horizontal period 393 * 394 * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / 395 * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 396 * [MIN PORCH RND]+[INTERLACE]) * 1000000 397 */ 398 399 h_period_est = (((1.0/v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP/1000000.0)) 400 / (v_lines_rnd + (2*top_margin) + MIN_PORCH + interlace) 401 * 1000000.0); 402 403 print_value(7, "[H PERIOD EST]", h_period_est); 404 405 406 /* 8. Find the number of lines in V sync + back porch: 407 * 408 * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) 409 */ 410 411 vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP/h_period_est); 412 413 print_value(8, "[V SYNC+BP]", vsync_plus_bp); 414 415 416 /* 9. Find the number of lines in V back porch alone: 417 * 418 * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] 419 * 420 * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? 421 */ 422 423 v_back_porch = vsync_plus_bp - V_SYNC_RQD; 424 425 print_value(9, "[V BACK PORCH]", v_back_porch); 426 427 428 /* 10. Find the total number of lines in Vertical field period: 429 * 430 * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + 431 * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + 432 * [MIN PORCH RND] 433 */ 434 435 total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp + 436 interlace + MIN_PORCH; 437 438 print_value(10, "[TOTAL V LINES]", total_v_lines); 439 440 441 /* 11. Estimate the Vertical field frequency: 442 * 443 * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 444 */ 445 446 v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0; 447 448 print_value(11, "[V FIELD RATE EST]", v_field_rate_est); 449 450 451 /* 12. Find the actual horizontal period: 452 * 453 * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) 454 */ 455 456 h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est); 457 458 print_value(12, "[H PERIOD]", h_period); 459 460 461 /* 13. Find the actual Vertical field frequency: 462 * 463 * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 464 */ 465 466 v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0; 467 468 print_value(13, "[V FIELD RATE]", v_field_rate); 469 470 471 /* 14. Find the Vertical frame frequency: 472 * 473 * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) 474 */ 475 476 v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate; 477 478 print_value(14, "[V FRAME RATE]", v_frame_rate); 479 480 481 /* 15. Find number of pixels in left margin: 482 * 483 * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 484 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 485 * [CELL GRAN RND]),0)) * [CELL GRAN RND], 486 * 0)) 487 */ 488 489 left_margin = margins ? 490 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 491 0.0; 492 493 print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin); 494 495 496 /* 16. Find number of pixels in right margin: 497 * 498 * [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 499 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 500 * [CELL GRAN RND]),0)) * [CELL GRAN RND], 501 * 0)) 502 */ 503 504 right_margin = margins ? 505 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 506 0.0; 507 508 print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin); 509 510 511 /* 17. Find total number of active pixels in image and left and right 512 * margins: 513 * 514 * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + 515 * [RIGHT MARGIN (PIXELS)] 516 */ 517 518 total_active_pixels = h_pixels_rnd + left_margin + right_margin; 519 520 print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels); 521 522 523 /* 18. Find the ideal blanking duty cycle from the blanking duty cycle 524 * equation: 525 * 526 * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) 527 */ 528 529 ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0); 530 531 print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle); 532 533 534 /* 19. Find the number of pixels in the blanking time to the nearest 535 * double character cell: 536 * 537 * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * 538 * [IDEAL DUTY CYCLE] / 539 * (100-[IDEAL DUTY CYCLE]) / 540 * (2*[CELL GRAN RND])), 0)) 541 * * (2*[CELL GRAN RND]) 542 */ 543 544 h_blank = rint(total_active_pixels * 545 ideal_duty_cycle / 546 (100.0 - ideal_duty_cycle) / 547 (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN); 548 549 print_value(19, "[H BLANK (PIXELS)]", h_blank); 550 551 552 /* 20. Find total number of pixels: 553 * 554 * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] 555 */ 556 557 total_pixels = total_active_pixels + h_blank; 558 559 print_value(20, "[TOTAL PIXELS]", total_pixels); 560 561 562 /* 21. Find pixel clock frequency: 563 * 564 * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] 565 */ 566 567 pixel_freq = total_pixels / h_period; 568 569 print_value(21, "[PIXEL FREQ]", pixel_freq); 570 571 572 /* 22. Find horizontal frequency: 573 * 574 * [H FREQ] = 1000 / [H PERIOD] 575 */ 576 577 h_freq = 1000.0 / h_period; 578 579 print_value(22, "[H FREQ]", h_freq); 580 581 582 583 /* Stage 1 computations are now complete; I should really pass 584 the results to another function and do the Stage 2 585 computations, but I only need a few more values so I'll just 586 append the computations here for now */ 587 588 589 590 /* 17. Find the number of pixels in the horizontal sync period: 591 * 592 * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / 593 * [CELL GRAN RND]),0))*[CELL GRAN RND] 594 */ 595 596 h_sync = rint(H_SYNC_PERCENT/100.0 * total_pixels / CELL_GRAN) * CELL_GRAN; 597 598 print_value(17, "[H SYNC (PIXELS)]", h_sync); 599 600 601 /* 18. Find the number of pixels in the horizontal front porch period: 602 * 603 * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] 604 */ 605 606 h_front_porch = (h_blank / 2.0) - h_sync; 607 608 print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch); 609 610 611 /* 36. Find the number of lines in the odd front porch period: 612 * 613 * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) 614 */ 615 616 v_odd_front_porch_lines = MIN_PORCH + interlace; 617 618 print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines); 619 620 621 /* finally, pack the results in the mode struct */ 622 623 m->hr = (int) (h_pixels_rnd); 624 m->hss = (int) (h_pixels_rnd + h_front_porch); 625 m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync); 626 m->hfl = (int) (total_pixels); 627 628 m->vr = (int) (v_lines_rnd); 629 m->vss = (int) (v_lines_rnd + v_odd_front_porch_lines); 630 m->vse = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD); 631 m->vfl = (int) (total_v_lines); 632 633 m->pclk = pixel_freq; 634 m->h_freq = h_freq; 635 m->v_freq = freq; 636 637 return m; 638 639} 640 641 642 643 644/* 645 * parse_command_line() - parse the command line and return an 646 * alloced structure containing the results. On error print usage 647 * and return NULL. 648 */ 649 650options *parse_command_line (int argc, char *argv[]) 651{ 652 int n; 653 654 options *o = (options *) calloc (1, sizeof (options)); 655 656 if (argc < 4) goto bad_option; 657 658 o->x = atoi (argv[1]); 659 o->y = atoi (argv[2]); 660 o->v_freq = atof (argv[3]); 661 662 /* XXX should check for errors in the above */ 663 664 n = 4; 665 666 while (n < argc) { 667 if ((strcmp (argv[n], "-v") == 0) || 668 (strcmp (argv[n], "--verbose") == 0)) { 669 global_verbose = 1; 670 } else if ((strcmp (argv[n], "-f") == 0) || 671 (strcmp (argv[n], "--fbmode") == 0)) { 672 o->fbmode = 1; 673 } else if ((strcmp (argv[n], "-x") == 0) || 674 (strcmp (argv[n], "--xorgmode") == 0) || 675 (strcmp (argv[n], "--xf86mode") == 0)) { 676 o->xorgmode = 1; 677 } else { 678 goto bad_option; 679 } 680 681 n++; 682 } 683 684 /* if neither xorgmode nor fbmode were requested, default to 685 xorgmode */ 686 687 if (!o->fbmode && !o->xorgmode) o->xorgmode = 1; 688 689 return o; 690 691 bad_option: 692 693 fprintf (stderr, "\n"); 694 fprintf (stderr, "usage: %s x y refresh [-v|--verbose] " 695 "[-f|--fbmode] [-x|--xorgmode]\n", argv[0]); 696 697 fprintf (stderr, "\n"); 698 699 fprintf (stderr, " x : the desired horizontal " 700 "resolution (required)\n"); 701 fprintf (stderr, " y : the desired vertical " 702 "resolution (required)\n"); 703 fprintf (stderr, " refresh : the desired refresh " 704 "rate (required)\n"); 705 fprintf (stderr, " -v|--verbose : enable verbose printouts " 706 "(traces each step of the computation)\n"); 707 fprintf (stderr, " -f|--fbmode : output an fbset(8)-style mode " 708 "description\n"); 709 fprintf (stderr, " -x|--xorgmode : output an "__XSERVERNAME__"-style mode " 710 "description (this is the default\n" 711 " if no mode description is requested)\n"); 712 713 fprintf (stderr, "\n"); 714 715 free (o); 716 return NULL; 717 718} 719 720 721 722int main (int argc, char *argv[]) 723{ 724 mode *m; 725 options *o; 726 727 o = parse_command_line (argc, argv); 728 if (!o) exit (1); 729 730 m = vert_refresh (o->x, o->y, o->v_freq, 0, 0); 731 if (!m) exit (1); 732 733 if (o->xorgmode) 734 print_xf86_mode(m); 735 736 if (o->fbmode) 737 print_fb_mode(m); 738 739 return 0; 740 741} 742