Home | History | Annotate | Download | only in mount_nilfs
History log of /src/sbin/mount_nilfs/mount_nilfs.c
RevisionDateAuthorComments
 1.4  16-Oct-2019  maya Switch files copyright Reinoud Zandijk from BSD 4 clause to BSD 2 clause.

OK'd by reinoud in email (from 4 Feb 2019).
 1.3  21-Feb-2016  christos branches: 1.3.16;
Add MOPT_{REL,NO}ATIME as supported by the underlying filesystems.
 1.2  19-Oct-2013  christos fix unused variable warnings.
 1.1  18-Jul-2009  reinoud branches: 1.1.6; 1.1.12;
Import read-only part of the NiLFS (v2) implementation for NetBSD. It has been
tested with a DEBUG+DIAGNOSTIC+LOCKDEBUG kernel. To summerise NiLFS, i'll
repeat my posting to tech-kern here:

NiLFS stands for New implementation of Logging File System; LFS done
right they claim :) It is at version 2 now and is being developed by NTT, the
Japanese telecom company and recently put into the linux source tree. See
http://www.nilfs.org. The on-disc format is not completely frozen and i expect
at least one minor revision to come in time.

The benefits of NiLFS are build-in fine-grained checkpointing, persistent
snapshots, multiple mounts and very large file and media support. Every
checkpoint can be transformed into a snapshot and v.v. It is said to perform
very well on flash media since it is not overwriting pieces apart from a
incidental update of the superblock, but that might change. It is accompanied
by a cleaner to clean up the segments and recover lost space.

My work is not a port of the linux code; its a new implementation. Porting the
code would be more work since its very linux oriented and never written to be
ported outside linux. The goal is to be fully interchangable. The code is non
intrusive to other parts of the kernel. It is also very light-weight.

The current state of the code is read-only access to both clean and dirty
NiLFS partitions. On mounting a dirty partition it rolls forward the log to
the last checkpoint. Full read-write support is however planned!

Just as the linux code, mount_nilfs allows for the `head' to be mounted
read/write and allows multiple read-only snapshots/checkpoint mounts next to
it.

By allowing the RW mount at a different snapshot for read-write it should be
possible eventually to revert back to a previous state; i.e. try to upgrade a
system and being able to revert to the exact state prior to the upgrade.

Compared to other FS's its pretty light-weight, suitable for embedded use and
on flash media. The read-only code is currently 17kb object code on
NetBSD/i386. I doubt the read-write code will surpass the 50 or 60. Compared
this to FFS being 156kb, UDF being 84 kb and NFS being 130kb. Run-time memory
usage is most likely not very different from other uses though maybe a bit
higher than FFS.
 1.1.12.1  20-Aug-2014  tls Rebase to HEAD as of a few days ago.
 1.1.6.1  22-May-2014  yamt sync with head.

for a reference, the tree before this commit was tagged
as yamt-pagecache-tag8.

this commit was splitted into small chunks to avoid
a limitation of cvs. ("Protocol error: too many arguments")
 1.3.16.1  13-Apr-2020  martin Mostly merge changes from HEAD upto 20200411

RSS XML Feed