Home | History | Annotate | Download | only in quad

Lines Matching defs:v1

59  *	v = 2^n v1  *  v0
63 * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0
64 * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0
66 * Now add 2^n u1 v1 to the first term and subtract it from the middle,
70 * uv = (2^2n + 2^n) (u1 v1) +
71 * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) +
76 * uv = (2^2n + 2^n) (u1 v1) + [u1v1 = high]
77 * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid]
80 * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
82 * of (u1 - u0) or (v0 - v1) may be negative.)
116 #define v1 v.ul[H]
121 * u1, u0, v1, and v0 will be directly accessible through the
133 if (u1 == 0 && v1 == 0) {
135 * An (I hope) important optimization occurs when u1 and v1
153 if (v0 >= v1)
154 vdiff = v0 - v1;
156 vdiff = v1 - v0, negmid ^= 1;
159 high = u1 * v1;
171 #undef v1
195 u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
202 v1 = HHALF(v);
208 if (u1 == 0 && v1 == 0)
215 if (v0 >= v1)
216 vdiff = v0 - v1;
218 vdiff = v1 - v0, neg ^= 1;
221 high = u1 * v1;