Lines Matching refs:pi
42 * method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
154 * Multiples of pi/2 expressed as the sum of three doubles,
156 * trailing: n * pi/2 , n = 0, 1, 2, ..., 29
159 * middle: n * pi/2 , n = 0, 1, 2, ..., 29
162 * leading: n * pi/2 , n = 0, 1, 2, ..., 29
166 * leading[n] := (n * pi/2) rounded,
167 * middle[n] := (n * pi/2 - leading[n]) rounded,
168 * trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
171 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
172 .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
173 .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
174 .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
175 .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
176 .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
177 .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
178 .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
179 .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
180 .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
181 .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
182 .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
183 .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
184 .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
185 .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
186 .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
187 .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
188 .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
189 .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
190 .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
191 .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
192 .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
193 .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
194 .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
195 .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
196 .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
197 .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
198 .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
199 .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
200 .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
203 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
204 .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
205 .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
206 .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
207 .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
208 .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
209 .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
210 .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
211 .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
212 .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
213 .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
214 .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
215 .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
216 .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
217 .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
218 .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
219 .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
220 .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
221 .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
222 .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
223 .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
224 .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
225 .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
226 .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
227 .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
228 .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
229 .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
230 .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
231 .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
232 .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
235 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
236 .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
237 .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
238 .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
239 .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
240 .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
241 .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
242 .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
243 .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
244 .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
245 .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
246 .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
247 .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
248 .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
249 .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
250 .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
251 .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
252 .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
253 .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
254 .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
255 .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
256 .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
257 .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
258 .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
259 .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
260 .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
261 .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
262 .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
263 .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
264 .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
274 cvtrdl %r0,%r0 # n = nearest int to ((2/pi)*|x|) rnded
275 subd2 leading[%r0],%r3 # p = (|x| - leading n*pi/2) exactly
276 subd3 middle[%r0],%r3,%r1 # q = (p - middle n*pi/2) rounded
278 subd2 middle[%r0],%r3 # r = r - middle n*pi/2
279 subd2 trailing[%r0],%r3 # r = r - trailing n*pi/2 rounded
289 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
295 /* bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */
308 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
310 * machine integer multiples of pi/2 using continued fractions.
328 * Currently this code is set up for pi/2 argument reduction.
330 * also serve as a pi/4 argument reduction code.
381 * used to obtain the needed portion of 2/pi .
391 * obtain the correct portion of 2/pi .
396 * Move the needed 128 bits of 2/pi into
420 * slice of 2/pi in %r11 - %r8 .
513 /* extzv $29,$3,%r10,%r0 ...used for pi/4 reduction -S.McD */
518 /* bicl2 $0xe0000000,%r10 ...used for pi/4 reduction -S.McD */
532 /* bitl $0x10000000,%r10 ...used for pi/4 reduction -S.McD */
537 /* subl3 %r10,$0x1fffffff,%r10 ...used for pi/4 reduction -S.McD */
545 * Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
626 * fraction by pi/2 .
642 * Move pi/2 into %r3/%r2 .
646 * Multiply the fraction by the portion of pi/2
652 * Multiply the fraction by the portion of pi/2
790 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
796 * bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */