Home | History | Annotate | Download | only in noieee_src

Lines Matching defs:y0

67 /* double j0(double x), y0(double x)
92 * Method -- y0(x):
95 * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
96 * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
97 * We use the following function to approximate y0,
98 * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
104 * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
106 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
109 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
166 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
211 y0(double x)
214 /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
237 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
254 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)