Lines Matching defs:y1
67 /* double j1(double x), y1(double x)
77 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
93 * Method -- y1(x):
94 * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
97 * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
98 * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
99 * We use the following function to approximate y1,
100 * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
104 * Note: For tiny x, 1/x dominate y1 and hence
105 * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
107 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
172 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
212 y1(double x)
215 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
249 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))