Lines Matching refs:MOD
4935 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
4963 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
4967 # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
5637 # k = N mod 2, so in particular, k = 0 or 1. #
6746 # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
6857 # 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
6903 # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
7141 and.l &0x3F,%d1 # D0 is J = N mod 64
7237 and.l &0x3F,%d1 # D0 is J = N mod 64
7305 and.l &0x3F,%d1 # D0 is J = N mod 64
9350 # smod(): computes the fp MOD of the input values X,Y. #
9368 # signQ := signX EOR signY. Record whether MOD or REM #
9378 # Step 3. Perform MOD(X,Y) #
9385 # Step 4. At this point, R = X - QY = MOD(X,Y). Set #
9387 # MOD is requested, go to Step 6. #
9389 # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
9390 # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
9546 #..expo(X) < expo(Y). Thus X = mod(X,Y)