Lines Matching refs:POINT
5213 # extended denorms are handled through another entry point.
5284 #--continuation point from REDUCEX
5545 #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
5548 #--US THE DESIRED VALUE IN FLOATING POINT.
5976 #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
5979 #--US THE DESIRED VALUE IN FLOATING POINT.
6249 #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
6491 #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
6728 # To avoid the use of floating-point comparisons, a #
7111 #--entry point for EXP(X), here X is finite, non-zero, and not NaN's
7261 #--entry point for EXP(X), X is denormalized
7274 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
7500 #--entry point for EXPM1(X), here X is denormalized
8221 #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
8263 fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
8286 #--AN RE-ENTRY POINT FOR LOGNP1
8345 #--THIS IS AN RE-ENTRY POINT FOR LOGNP1
8389 #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
8449 #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
8561 #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
8679 # Notes: Default means round-to-nearest mode, no floating-point #
8693 # Notes: Default means round-to-nearest mode, no floating-point #
8706 # Notes: Default means round-to-nearest mode, no floating-point #
8720 # Notes: Default means round-to-nearest mode, no floating-point #
8746 #--entry point for Log10(X), X is normalized
8762 #--entry point for Log10(X), X is denormalized
8774 #--entry point for Log2(X), X is normalized
8807 #--entry point for Log2(X), X is denormalized
8993 #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
9080 #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
9090 #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
9204 #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
9385 # Step 4. At this point, R = X - QY = MOD(X,Y). Set #
9403 # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
9553 #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
9558 #..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
9564 #..At this point, R = Y
9580 #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
9590 #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
10220 # f(x)=x, this is the entry point. #