Home | History | Annotate | Download | only in dist

Lines Matching refs:Pi

561 PI:	long		0x40000000,0xC90FDAA2,0x2168C235,0x00000000
4932 # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
4934 # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
4956 # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
4960 # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
4962 # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
4983 # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
5050 cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
5054 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5058 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5060 lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5201 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5260 cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
5265 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5270 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5272 lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5486 # yes; create 2**16383*PI/2
5491 # create low half of 2**16383*PI/2 at FP_SCR1
5508 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
5528 #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
5529 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
5531 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
5534 mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
5535 sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
5539 mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
5542 fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
5561 add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
5634 # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
5636 # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
5657 # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
5690 #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
5691 #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
5779 cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
5784 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5787 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5789 lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5885 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5917 # yes; create 2**16383*PI/2
5922 # create low half of 2**16383*PI/2 at FP_SCR1
5939 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
5959 #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
5960 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
5962 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
5965 mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
5966 sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
5970 mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
5973 fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
5992 add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
6082 # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
6414 #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
6415 #--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
6524 # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
6573 #--|X| = 1, ASIN(X) = +- PI/2.
6625 # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
6668 #--|X| = 1, ACOS(X) = 0 OR PI
6673 #Returns PI and inexact exception
6675 fmov.x PI(%pc),%fp0 # load PI
6684 #--ACOS(X) = PI/2 FOR DENORMALIZED X
10599 # spi_2(): Return signed PI/2 according to sign of src operand. #
10607 # ld_ppi2(): return positive PI/2.
10612 fmov.x ppiby2(%pc),%fp0 # load +pi/2
10616 # ld_mpi2(): return negative PI/2.
10621 fmov.x mpiby2(%pc),%fp0 # load -pi/2