Lines Matching refs:PI
581 PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
5038 # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
5040 # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
5062 # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
5066 # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
5068 # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
5089 # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
5156 cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
5160 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5164 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5166 lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5307 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5366 cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
5371 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5376 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5378 lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5592 # yes; create 2**16383*PI/2
5597 # create low half of 2**16383*PI/2 at FP_SCR1
5614 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
5634 #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
5635 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
5637 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
5640 mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
5641 sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
5645 mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
5648 fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
5667 add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
5740 # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
5742 # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
5763 # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
5796 #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
5797 #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
5885 cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
5890 #--THIS IS THE USUAL CASE, |X| <= 15 PI.
5893 fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
5895 lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
5991 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
6023 # yes; create 2**16383*PI/2
6028 # create low half of 2**16383*PI/2 at FP_SCR1
6045 #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
6065 #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
6066 #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
6068 #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
6071 mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
6072 sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
6076 mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
6079 fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
6098 add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
6188 # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
6520 #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
6521 #--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
6630 # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
6679 #--|X| = 1, ASIN(X) = +- PI/2.
6731 # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
6774 #--|X| = 1, ACOS(X) = 0 OR PI
6779 #Returns PI and inexact exception
6781 fmov.x PI(%pc),%fp0 # load PI
6790 #--ACOS(X) = PI/2 FOR DENORMALIZED X
9348 tst.b %d1 # if zero, offset is to pi
9349 beq.b pi_tbl # it is pi
9363 # the answer is PI rounded to the proper precision.
9372 lea.l PIRN(%pc),%a0 # yes; load PI RN table addr
9378 lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr
9381 lea.l PIRP(%pc),%a0 # load PI RP table addr
9493 PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
9494 PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi
9495 PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
10618 # spi_2(): Return signed PI/2 according to sign of src operand. #
10626 # ld_ppi2(): return positive PI/2.
10631 fmov.x ppiby2(%pc),%fp0 # load +pi/2
10635 # ld_mpi2(): return negative PI/2.
10640 fmov.x mpiby2(%pc),%fp0 # load -pi/2