Lines Matching refs:Step
5587 #--case, reduce argument by one remainder step to make subsequent reduction
6018 #--case, reduce argument by one remainder step to make subsequent reduction
6169 # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
6171 # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
6177 # Step 3. Approximate arctan(u) by a polynomial poly. #
6179 # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
6182 # Step 5. If |X| >= 16, go to Step 7. #
6184 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
6186 # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
6819 # Step 1. Set ans := 1.0 #
6821 # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
6828 # Step 1. Filter out extreme cases of input argument. #
6829 # 1.1 If |X| >= 2^(-65), go to Step 1.3. #
6830 # 1.2 Go to Step 7. #
6831 # 1.3 If |X| < 16380 log(2), go to Step 2. #
6832 # 1.4 Go to Step 8. #
6842 # 16380 log(2) used in Step 1.3 is also in the compact #
6843 # form. Thus taking the branch to Step 2 guarantees #
6846 # 16380 log(2) and the branch to Step 9 is taken. #
6848 # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
6872 # Step 3. Calculate X - N*log2/64. #
6885 # after Step 3.2. #
6897 # This bound will be used in Step 4. #
6899 # Step 4. Approximate exp(R)-1 by a polynomial #
6914 # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
6926 # Step 6. Reconstruction of exp(X) #
6946 # Step 7. Return 1 + X. #
6953 # in Step 7.1 to avoid unnecessary trapping. (Although #
6959 # Step 8. Handle exp(X) where |X| >= 16380log2. #
6960 # 8.1 If |X| > 16480 log2, go to Step 9. #
6969 # 8.7 Go to Step 3. #
6972 # Step 9. Handle exp(X), |X| > 16480 log2. #
6987 # Step 1. Set ans := 0 #
6989 # Step 2. Return ans := X + ans. Exit. #
6996 # Step 1. Check |X| #
6997 # 1.1 If |X| >= 1/4, go to Step 1.3. #
6998 # 1.2 Go to Step 7. #
6999 # 1.3 If |X| < 70 log(2), go to Step 2. #
7000 # 1.4 Go to Step 10. #
7005 # the comparisons, see the notes on Step 1 of setox. #
7007 # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
7016 # Notes: See the notes on Step 2 of setox. #
7018 # Step 3. Calculate X - N*log2/64. #
7023 # Notes: Applying the analysis of Step 3 of setox in this case #
7027 # Step 4. Approximate exp(R)-1 by a polynomial #
7042 # Step 5. Compute 2^(J/64)*p by #
7051 # be exploited in Step 6 below. The total relative error #
7055 # Step 6. Reconstruction of exp(X)-1 #
7057 # 6.1 If M <= 63, go to Step 6.3. #
7067 # Step 7. exp(X)-1 for |X| < 1/4. #
7068 # 7.1 If |X| >= 2^(-65), go to Step 9. #
7069 # 7.2 Go to Step 8. #
7071 # Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
7085 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
7104 # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
7106 # practical purposes. Therefore, go to Step 1 of setox. #
7219 #--Step 1.
7234 #--Step 2.
7256 #--Step 3.
7265 #--Step 4.
7299 #--Step 5
7310 #--Step 6
7322 #--Step 7
7329 #--Step 8
7357 bra.w EXPCONT1 # go back to Step 3
7360 #--Step 9
7382 #--Step 1.
7383 #--Step 1.1
7391 #--Step 1.3
7399 #--Step 2.
7418 #--Step 3.
7428 #--Step 4.
7471 #--Step 5
7476 #--Step 6
7477 #--Step 6.1
7481 #--Step 6.2 M >= 64
7488 #--Step 6.3 M <= 63
7492 #--Step 6.4 M <= -4
7498 #--Step 6.5 -3 <= M <= 63
7505 #--Step 6.6
7511 #--Step 7 |X| < 1/4.
7516 #--Step 8 |X| < 2^(-65)
7519 #--Step 8.2
7530 #--Step 8.3
7543 #--Step 9 exp(X)-1 by a simple polynomial
7594 #--Step 10 |X| > 70 log2
7598 #--Step 10.2
7607 #--Step 0.
8096 # Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
8098 # move on to Step 2. #
8100 # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
8105 # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
8108 # Step 4. Reconstruct #
8114 # Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
8116 # to Step 2. #
8118 # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
8119 # in Step 2 of the algorithm for LOGN and compute #
8129 # Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
8783 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8788 # Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
8791 # Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
8797 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8802 # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
8804 # Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
8810 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8815 # Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
8818 # Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
8824 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8829 # Step 1. If X is not an integer power of two, i.e., X != 2^k, #
8830 # go to Step 3. #
8832 # Step 2. Return k. #
8837 # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
8839 # Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
9725 # Step 1. Save and strip signs of X and Y: signX := sign(X), #
9730 # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
9732 # R := X, go to Step 4. #
9737 # Step 3. Perform MOD(X,Y) #
9738 # 3.1 If R = Y, go to Step 9. #
9740 # 3.3 If j = 0, go to Step 4. #
9742 # Step 3.1. #
9744 # Step 4. At this point, R = X - QY = MOD(X,Y). Set #
9745 # Last_Subtract := false (used in Step 7 below). If #
9746 # MOD is requested, go to Step 6. #
9748 # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
9750 # Step 6. #
9752 # Q := Q + 1, Y := signY*Y }. Go to Step 6. #
9756 # Step 6. R := signX*R. #
9758 # Step 7. If Last_Subtract = true, R := R - Y. #
9760 # Step 8. Return signQ, last 7 bits of Q, and R as required. #
9762 # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
21883 # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize