Home | History | Annotate | Line # | Download | only in ar5212
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar2316.c,v 1.3 2013/09/12 11:44:08 martin Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 
     24 #include "ar5212/ar5212.h"
     25 #include "ar5212/ar5212reg.h"
     26 #include "ar5212/ar5212phy.h"
     27 
     28 #include "ah_eeprom_v3.h"
     29 
     30 #define AH_5212_2316
     31 #include "ar5212/ar5212.ini"
     32 
     33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34 
     35 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
     36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
     37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
     38 
     39 struct ar2316State {
     40 	RF_HAL_FUNCS	base;		/* public state, must be first */
     41 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
     42 
     43 	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
     44 	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
     45 	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
     46 	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
     47 	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
     48 
     49 	/*
     50 	 * Private state for reduced stack usage.
     51 	 */
     52 	/* filled out Vpd table for all pdGains (chanL) */
     53 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     54 			    [MAX_PWR_RANGE_IN_HALF_DB];
     55 	/* filled out Vpd table for all pdGains (chanR) */
     56 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     57 			    [MAX_PWR_RANGE_IN_HALF_DB];
     58 	/* filled out Vpd table for all pdGains (interpolated) */
     59 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     60 			    [MAX_PWR_RANGE_IN_HALF_DB];
     61 };
     62 #define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
     63 
     64 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     65 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     66 
     67 static void
     68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     69 	int regWrites)
     70 {
     71 	struct ath_hal_5212 *ahp = AH5212(ah);
     72 
     73 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
     74 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
     75 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
     76 
     77 	/* For AP51 */
     78         if (!ahp->ah_cwCalRequire) {
     79 		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
     80         } else {
     81 		ahp->ah_cwCalRequire = AH_FALSE;
     82         }
     83 }
     84 
     85 /*
     86  * Take the MHz channel value and set the Channel value
     87  *
     88  * ASSUMES: Writes enabled to analog bus
     89  */
     90 static HAL_BOOL
     91 ar2316SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     92 {
     93 	uint32_t channelSel  = 0;
     94 	uint32_t bModeSynth  = 0;
     95 	uint32_t aModeRefSel = 0;
     96 	uint32_t reg32       = 0;
     97 
     98 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     99 
    100 	if (chan->channel < 4800) {
    101 		uint32_t txctl;
    102 
    103 		if (((chan->channel - 2192) % 5) == 0) {
    104 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
    105 			bModeSynth = 0;
    106 		} else if (((chan->channel - 2224) % 5) == 0) {
    107 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
    108 			bModeSynth = 1;
    109 		} else {
    110 			HALDEBUG(ah, HAL_DEBUG_ANY,
    111 			    "%s: invalid channel %u MHz\n",
    112 			    __func__, chan->channel);
    113 			return AH_FALSE;
    114 		}
    115 
    116 		channelSel = (channelSel << 2) & 0xff;
    117 		channelSel = ath_hal_reverseBits(channelSel, 8);
    118 
    119 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    120 		if (chan->channel == 2484) {
    121 			/* Enable channel spreading for channel 14 */
    122 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    123 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    124 		} else {
    125 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    126 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    127 		}
    128 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    129 		channelSel = ath_hal_reverseBits(
    130 			((chan->channel - 4800) / 20 << 2), 8);
    131 		aModeRefSel = ath_hal_reverseBits(3, 2);
    132 	} else if ((chan->channel % 10) == 0) {
    133 		channelSel = ath_hal_reverseBits(
    134 			((chan->channel - 4800) / 10 << 1), 8);
    135 		aModeRefSel = ath_hal_reverseBits(2, 2);
    136 	} else if ((chan->channel % 5) == 0) {
    137 		channelSel = ath_hal_reverseBits(
    138 			(chan->channel - 4800) / 5, 8);
    139 		aModeRefSel = ath_hal_reverseBits(1, 2);
    140 	} else {
    141 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    142 		    __func__, chan->channel);
    143 		return AH_FALSE;
    144 	}
    145 
    146 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    147 			(1 << 12) | 0x1;
    148 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    149 
    150 	reg32 >>= 8;
    151 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    152 
    153 	AH_PRIVATE(ah)->ah_curchan = chan;
    154 	return AH_TRUE;
    155 }
    156 
    157 /*
    158  * Reads EEPROM header info from device structure and programs
    159  * all rf registers
    160  *
    161  * REQUIRES: Access to the analog rf device
    162  */
    163 static HAL_BOOL
    164 ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    165 {
    166 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    167 	int i;								    \
    168 	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
    169 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
    170 } while (0)
    171 	struct ath_hal_5212 *ahp = AH5212(ah);
    172 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    173 	uint16_t ob2GHz = 0, db2GHz = 0;
    174 	struct ar2316State *priv = AR2316(ah);
    175 	int regWrites = 0;
    176 
    177 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    178 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    179 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    180 
    181 	HALASSERT(priv != AH_NULL);
    182 
    183 	/* Setup rf parameters */
    184 	switch (chan->channelFlags & CHANNEL_ALL) {
    185 	case CHANNEL_B:
    186 		ob2GHz = ee->ee_obFor24;
    187 		db2GHz = ee->ee_dbFor24;
    188 		break;
    189 	case CHANNEL_G:
    190 	case CHANNEL_108G:
    191 		ob2GHz = ee->ee_obFor24g;
    192 		db2GHz = ee->ee_dbFor24g;
    193 		break;
    194 	default:
    195 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    196 		    __func__, chan->channelFlags);
    197 		return AH_FALSE;
    198 	}
    199 
    200 	/* Bank 1 Write */
    201 	RF_BANK_SETUP(priv, 1, 1);
    202 
    203 	/* Bank 2 Write */
    204 	RF_BANK_SETUP(priv, 2, modesIndex);
    205 
    206 	/* Bank 3 Write */
    207 	RF_BANK_SETUP(priv, 3, modesIndex);
    208 
    209 	/* Bank 6 Write */
    210 	RF_BANK_SETUP(priv, 6, modesIndex);
    211 
    212 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
    213 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
    214 
    215 	/* Bank 7 Setup */
    216 	RF_BANK_SETUP(priv, 7, modesIndex);
    217 
    218 	/* Write Analog registers */
    219 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
    220 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
    221 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
    222 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
    223 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
    224 
    225 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    226 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    227 
    228 	return AH_TRUE;
    229 #undef	RF_BANK_SETUP
    230 }
    231 
    232 /*
    233  * Return a reference to the requested RF Bank.
    234  */
    235 static uint32_t *
    236 ar2316GetRfBank(struct ath_hal *ah, int bank)
    237 {
    238 	struct ar2316State *priv = AR2316(ah);
    239 
    240 	HALASSERT(priv != AH_NULL);
    241 	switch (bank) {
    242 	case 1: return priv->Bank1Data;
    243 	case 2: return priv->Bank2Data;
    244 	case 3: return priv->Bank3Data;
    245 	case 6: return priv->Bank6Data;
    246 	case 7: return priv->Bank7Data;
    247 	}
    248 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    249 	    __func__, bank);
    250 	return AH_NULL;
    251 }
    252 
    253 /*
    254  * Return indices surrounding the value in sorted integer lists.
    255  *
    256  * NB: the input list is assumed to be sorted in ascending order
    257  */
    258 static void
    259 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    260                           uint32_t *vlo, uint32_t *vhi)
    261 {
    262 	int16_t target = v;
    263 	const int16_t *ep = lp+listSize;
    264 	const int16_t *tp;
    265 
    266 	/*
    267 	 * Check first and last elements for out-of-bounds conditions.
    268 	 */
    269 	if (target < lp[0]) {
    270 		*vlo = *vhi = 0;
    271 		return;
    272 	}
    273 	if (target >= ep[-1]) {
    274 		*vlo = *vhi = listSize - 1;
    275 		return;
    276 	}
    277 
    278 	/* look for value being near or between 2 values in list */
    279 	for (tp = lp; tp < ep; tp++) {
    280 		/*
    281 		 * If value is close to the current value of the list
    282 		 * then target is not between values, it is one of the values
    283 		 */
    284 		if (*tp == target) {
    285 			*vlo = *vhi = tp - (const int16_t *) lp;
    286 			return;
    287 		}
    288 		/*
    289 		 * Look for value being between current value and next value
    290 		 * if so return these 2 values
    291 		 */
    292 		if (target < tp[1]) {
    293 			*vlo = tp - (const int16_t *) lp;
    294 			*vhi = *vlo + 1;
    295 			return;
    296 		}
    297 	}
    298 }
    299 
    300 /*
    301  * Fill the Vpdlist for indices Pmax-Pmin
    302  */
    303 static HAL_BOOL
    304 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    305 		   const int16_t *pwrList, const int16_t *VpdList,
    306 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    307 {
    308 	uint16_t ii, kk;
    309 	int16_t currPwr = (int16_t)(2*Pmin);
    310 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    311 	uint32_t  idxL = 0, idxR = 0;
    312 
    313 	ii = 0;
    314 
    315 	if (numIntercepts < 2)
    316 		return AH_FALSE;
    317 
    318 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    319 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
    320 					 &(idxL), &(idxR));
    321 		if (idxR < 1)
    322 			idxR = 1;			/* extrapolate below */
    323 		if (idxL == (uint32_t)(numIntercepts - 1))
    324 			idxL = numIntercepts - 2;	/* extrapolate above */
    325 		if (pwrList[idxL] == pwrList[idxR])
    326 			kk = VpdList[idxL];
    327 		else
    328 			kk = (uint16_t)
    329 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    330 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    331 				 (pwrList[idxR] - pwrList[idxL]));
    332 		retVpdList[pdGainIdx][ii] = kk;
    333 		ii++;
    334 		currPwr += 2;				/* half dB steps */
    335 	}
    336 
    337 	return AH_TRUE;
    338 }
    339 
    340 /*
    341  * Returns interpolated or the scaled up interpolated value
    342  */
    343 static int16_t
    344 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    345 	int16_t targetLeft, int16_t targetRight)
    346 {
    347 	int16_t rv;
    348 
    349 	if (srcRight != srcLeft) {
    350 		rv = ((target - srcLeft)*targetRight +
    351 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    352 	} else {
    353 		rv = targetLeft;
    354 	}
    355 	return rv;
    356 }
    357 
    358 /*
    359  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    360  * Called by ar2316SetPowerTable()
    361  */
    362 static int
    363 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    364 		const RAW_DATA_STRUCT_2316 *pRawDataset,
    365 		uint16_t pdGainOverlap_t2,
    366 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    367 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    368 {
    369 	struct ar2316State *priv = AR2316(ah);
    370 #define	VpdTable_L	priv->vpdTable_L
    371 #define	VpdTable_R	priv->vpdTable_R
    372 #define	VpdTable_I	priv->vpdTable_I
    373 	uint32_t ii, jj, kk;
    374 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    375 	uint32_t idxL = 0, idxR = 0;
    376 	uint32_t numPdGainsUsed = 0;
    377 	/*
    378 	 * If desired to support -ve power levels in future, just
    379 	 * change pwr_I_0 to signed 5-bits.
    380 	 */
    381 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    382 	/* to accomodate -ve power levels later on. */
    383 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    384 	/* to accomodate -ve power levels later on */
    385 	uint16_t numVpd = 0;
    386 	uint16_t Vpd_step;
    387 	int16_t tmpVal ;
    388 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    389 
    390 	/* Get upper lower index */
    391 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    392 				 pRawDataset->numChannels, &(idxL), &(idxR));
    393 
    394 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    395 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    396 		/* work backwards 'cause highest pdGain for lowest power */
    397 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    398 		if (numVpd > 0) {
    399 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    400 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    401 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    402 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    403 			}
    404 			Pmin_t2[numPdGainsUsed] = (int16_t)
    405 				(Pmin_t2[numPdGainsUsed] / 2);
    406 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    407 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    408 				Pmax_t2[numPdGainsUsed] =
    409 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    410 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    411 			ar2316FillVpdTable(
    412 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    413 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    414 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    415 					   );
    416 			ar2316FillVpdTable(
    417 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    418 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    419 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    420 					   );
    421 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    422 				VpdTable_I[numPdGainsUsed][kk] =
    423 					interpolate_signed(
    424 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    425 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    426 			}
    427 			/* fill VpdTable_I for this pdGain */
    428 			numPdGainsUsed++;
    429 		}
    430 		/* if this pdGain is used */
    431 	}
    432 
    433 	*pMinCalPower = Pmin_t2[0];
    434 	kk = 0; /* index for the final table */
    435 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    436 		if (ii == (numPdGainsUsed - 1))
    437 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    438 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    439 		else
    440 			pPdGainBoundaries[ii] = (uint16_t)
    441 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    442 		if (pPdGainBoundaries[ii] > 63) {
    443 			HALDEBUG(ah, HAL_DEBUG_ANY,
    444 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    445 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    446 			pPdGainBoundaries[ii] = 63;
    447 		}
    448 
    449 		/* Find starting index for this pdGain */
    450 		if (ii == 0)
    451 			ss = 0; /* for the first pdGain, start from index 0 */
    452 		else
    453 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    454 				pdGainOverlap_t2;
    455 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    456 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    457 		/*
    458 		 *-ve ss indicates need to extrapolate data below for this pdGain
    459 		 */
    460 		while (ss < 0) {
    461 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    462 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    463 			ss++;
    464 		}
    465 
    466 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    467 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    468 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    469 
    470 		while (ss < (int16_t)maxIndex)
    471 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    472 
    473 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    474 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    475 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    476 		/*
    477 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    478 		 * have to extrapolate
    479 		 */
    480 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    481 			while(ss < (int16_t)tgtIndex) {
    482 				tmpVal = (uint16_t)
    483 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    484 					 (ss-maxIndex)*Vpd_step);
    485 				pPDADCValues[kk++] = (tmpVal > 127) ?
    486 					127 : tmpVal;
    487 				ss++;
    488 			}
    489 		}				/* extrapolated above */
    490 	}					/* for all pdGainUsed */
    491 
    492 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    493 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    494 		ii++;
    495 	}
    496 	while (kk < 128) {
    497 		pPDADCValues[kk] = pPDADCValues[kk-1];
    498 		kk++;
    499 	}
    500 
    501 	return numPdGainsUsed;
    502 #undef VpdTable_L
    503 #undef VpdTable_R
    504 #undef VpdTable_I
    505 }
    506 
    507 static HAL_BOOL
    508 ar2316SetPowerTable(struct ath_hal *ah,
    509 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    510 	uint16_t *rfXpdGain)
    511 {
    512 	struct ath_hal_5212 *ahp = AH5212(ah);
    513 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    514 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
    515 	uint16_t pdGainOverlap_t2;
    516 	int16_t minCalPower2316_t2;
    517 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    518 	uint16_t gainBoundaries[4];
    519 	uint32_t reg32, regoffset;
    520 	int i, numPdGainsUsed;
    521 #ifndef AH_USE_INIPDGAIN
    522 	uint32_t tpcrg1;
    523 #endif
    524 
    525 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    526 	    __func__, chan->channel,chan->channelFlags);
    527 
    528 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    529 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    530 	else if (IS_CHAN_B(chan))
    531 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    532 	else {
    533 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    534 		return AH_FALSE;
    535 	}
    536 
    537 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    538 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    539 
    540 	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
    541 		chan->channel, pRawDataset, pdGainOverlap_t2,
    542 		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
    543 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    544 
    545 #ifdef AH_USE_INIPDGAIN
    546 	/*
    547 	 * Use pd_gains curve from eeprom; Atheros always uses
    548 	 * the default curve from the ini file but some vendors
    549 	 * (e.g. Zcomax) want to override this curve and not
    550 	 * honoring their settings results in tx power 5dBm low.
    551 	 */
    552 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    553 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    554 #else
    555 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    556 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    557 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    558 	switch (numPdGainsUsed) {
    559 	case 3:
    560 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    561 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    562 		/* fall thru... */
    563 	case 2:
    564 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    565 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    566 		/* fall thru... */
    567 	case 1:
    568 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    569 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    570 		break;
    571 	}
    572 #ifdef AH_DEBUG
    573 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    574 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    575 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    576 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    577 #endif
    578 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    579 #endif
    580 
    581 	/*
    582 	 * Note the pdadc table may not start at 0 dBm power, could be
    583 	 * negative or greater than 0.  Need to offset the power
    584 	 * values by the amount of minPower for griffin
    585 	 */
    586 	if (minCalPower2316_t2 != 0)
    587 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
    588 	else
    589 		ahp->ah_txPowerIndexOffset = 0;
    590 
    591 	/* Finally, write the power values into the baseband power table */
    592 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    593 	for (i = 0; i < 32; i++) {
    594 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    595 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    596 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    597 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    598 		OS_REG_WRITE(ah, regoffset, reg32);
    599 		regoffset += 4;
    600 	}
    601 
    602 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    603 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    604 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    605 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    606 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    607 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    608 
    609 	return AH_TRUE;
    610 }
    611 
    612 static int16_t
    613 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
    614 {
    615 	uint32_t ii,jj;
    616 	uint16_t Pmin=0,numVpd;
    617 
    618 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    619 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    620 		/* work backwards 'cause highest pdGain for lowest power */
    621 		numVpd = data->pDataPerPDGain[jj].numVpd;
    622 		if (numVpd > 0) {
    623 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    624 			return(Pmin);
    625 		}
    626 	}
    627 	return(Pmin);
    628 }
    629 
    630 static int16_t
    631 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
    632 {
    633 	uint32_t ii;
    634 	uint16_t Pmax=0,numVpd;
    635 
    636 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    637 		/* work forwards cuase lowest pdGain for highest power */
    638 		numVpd = data->pDataPerPDGain[ii].numVpd;
    639 		if (numVpd > 0) {
    640 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    641 			return(Pmax);
    642 		}
    643 	}
    644 	return(Pmax);
    645 }
    646 
    647 static HAL_BOOL
    648 ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    649 	int16_t *maxPow, int16_t *minPow)
    650 {
    651 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    652 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
    653 	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
    654 	uint16_t numChannels;
    655 	int totalD,totalF, totalMin,last, i;
    656 
    657 	*maxPow = 0;
    658 
    659 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    660 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    661 	else if (IS_CHAN_B(chan))
    662 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    663 	else
    664 		return(AH_FALSE);
    665 
    666 	numChannels = pRawDataset->numChannels;
    667 	data = pRawDataset->pDataPerChannel;
    668 
    669 	/* Make sure the channel is in the range of the TP values
    670 	 *  (freq piers)
    671 	 */
    672 	if (numChannels < 1)
    673 		return(AH_FALSE);
    674 
    675 	if ((chan->channel < data[0].channelValue) ||
    676 	    (chan->channel > data[numChannels-1].channelValue)) {
    677 		if (chan->channel < data[0].channelValue) {
    678 			*maxPow = ar2316GetMaxPower(ah, &data[0]);
    679 			*minPow = ar2316GetMinPower(ah, &data[0]);
    680 			return(AH_TRUE);
    681 		} else {
    682 			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
    683 			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
    684 			return(AH_TRUE);
    685 		}
    686 	}
    687 
    688 	/* Linearly interpolate the power value now */
    689 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    690 	     last = i++);
    691 	totalD = data[i].channelValue - data[last].channelValue;
    692 	if (totalD > 0) {
    693 		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
    694 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    695 				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
    696 		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
    697 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    698 				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
    699 		return(AH_TRUE);
    700 	} else {
    701 		if (chan->channel == data[i].channelValue) {
    702 			*maxPow = ar2316GetMaxPower(ah, &data[i]);
    703 			*minPow = ar2316GetMinPower(ah, &data[i]);
    704 			return(AH_TRUE);
    705 		} else
    706 			return(AH_FALSE);
    707 	}
    708 }
    709 
    710 /*
    711  * Free memory for analog bank scratch buffers
    712  */
    713 static void
    714 ar2316RfDetach(struct ath_hal *ah)
    715 {
    716 	struct ath_hal_5212 *ahp = AH5212(ah);
    717 
    718 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    719 	ath_hal_free(ahp->ah_rfHal);
    720 	ahp->ah_rfHal = AH_NULL;
    721 }
    722 
    723 /*
    724  * Allocate memory for private state.
    725  * Scratch Buffer will be reinitialized every reset so no need to zero now
    726  */
    727 static HAL_BOOL
    728 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    729 {
    730 	struct ath_hal_5212 *ahp = AH5212(ah);
    731 	struct ar2316State *priv;
    732 
    733 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    734 
    735 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    736 	priv = ath_hal_malloc(sizeof(struct ar2316State));
    737 	if (priv == AH_NULL) {
    738 		HALDEBUG(ah, HAL_DEBUG_ANY,
    739 		    "%s: cannot allocate private state\n", __func__);
    740 		*status = HAL_ENOMEM;		/* XXX */
    741 		return AH_FALSE;
    742 	}
    743 	priv->base.rfDetach		= ar2316RfDetach;
    744 	priv->base.writeRegs		= ar2316WriteRegs;
    745 	priv->base.getRfBank		= ar2316GetRfBank;
    746 	priv->base.setChannel		= ar2316SetChannel;
    747 	priv->base.setRfRegs		= ar2316SetRfRegs;
    748 	priv->base.setPowerTable	= ar2316SetPowerTable;
    749 	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
    750 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    751 
    752 	ahp->ah_pcdacTable = priv->pcdacTable;
    753 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    754 	ahp->ah_rfHal = &priv->base;
    755 
    756 	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
    757 
    758 	return AH_TRUE;
    759 }
    760 
    761 static HAL_BOOL
    762 ar2316Probe(struct ath_hal *ah)
    763 {
    764 	return IS_2316(ah);
    765 }
    766 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
    767