Home | History | Annotate | Line # | Download | only in pci
      1 /* $NetBSD: if_vge.c,v 1.89 2024/07/05 04:31:51 rin Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.89 2024/07/05 04:31:51 rin Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers (VGE_DATABUF_HIADDR). If you only have a 32-bit system,
     79  * then this isn't an issue, but if you have a 64-bit system and more than
     80  * 4GB of memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Furthermore, the descriptors must also all reside within the same 32-bit
     84  * 'segment' (see VGE_TXDESC_HIADDR).
     85  *
     86  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     87  * and sample NICs for testing.
     88  */
     89 
     90 
     91 #include <sys/param.h>
     92 #include <sys/endian.h>
     93 #include <sys/systm.h>
     94 #include <sys/device.h>
     95 #include <sys/sockio.h>
     96 #include <sys/mbuf.h>
     97 #include <sys/kernel.h>
     98 #include <sys/socket.h>
     99 
    100 #include <net/if.h>
    101 #include <net/if_arp.h>
    102 #include <net/if_ether.h>
    103 #include <net/if_dl.h>
    104 #include <net/if_media.h>
    105 
    106 #include <net/bpf.h>
    107 
    108 #include <sys/bus.h>
    109 
    110 #include <dev/mii/mii.h>
    111 #include <dev/mii/miivar.h>
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/pci/if_vgereg.h>
    118 
    119 #define VGE_IFQ_MAXLEN		64
    120 
    121 #define VGE_RING_ALIGN		256
    122 
    123 #define VGE_NTXDESC		256
    124 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    125 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    126 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    127 
    128 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    129 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    130 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    131 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    132 
    133 #define VGE_ADDR_LO(y)		BUS_ADDR_LO32(y)
    134 #define VGE_ADDR_HI(y)		BUS_ADDR_HI32(y)
    135 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    136 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    137 
    138 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    139 
    140 /*
    141  * Mbuf adjust factor to force 32-bit alignment of IP header.
    142  * Drivers should pad ETHER_ALIGN bytes when setting up a
    143  * RX mbuf so the upper layers get the IP header properly aligned
    144  * past the 14-byte Ethernet header.
    145  *
    146  * See also comment in vge_encap().
    147  */
    148 
    149 #ifdef __NO_STRICT_ALIGNMENT
    150 #define VGE_RX_BUFSIZE		MCLBYTES
    151 #else
    152 #define VGE_RX_PAD		sizeof(uint32_t)
    153 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    154 #endif
    155 
    156 /*
    157  * Control structures are DMA'd to the vge chip. We allocate them in
    158  * a single clump that maps to a single DMA segment to make several things
    159  * easier.
    160  */
    161 struct vge_control_data {
    162 	/* TX descriptors */
    163 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    164 	/* RX descriptors */
    165 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    166 	/* dummy data for TX padding */
    167 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    168 };
    169 
    170 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    171 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    172 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    173 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    174 
    175 /*
    176  * Software state for TX jobs.
    177  */
    178 struct vge_txsoft {
    179 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    180 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    181 };
    182 
    183 /*
    184  * Software state for RX jobs.
    185  */
    186 struct vge_rxsoft {
    187 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    188 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    189 };
    190 
    191 
    192 struct vge_softc {
    193 	device_t		sc_dev;
    194 
    195 	bus_space_tag_t		sc_bst;		/* bus space tag */
    196 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    197 	bus_dma_tag_t		sc_dmat;
    198 
    199 	struct ethercom		sc_ethercom;	/* interface info */
    200 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    201 
    202 	void			*sc_intrhand;
    203 	struct mii_data		sc_mii;
    204 	uint8_t			sc_type;
    205 	u_short			sc_if_flags;
    206 	int			sc_link;
    207 	int			sc_camidx;
    208 	callout_t		sc_timeout;
    209 
    210 	bus_dmamap_t		sc_cddmamap;
    211 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    212 
    213 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    214 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    215 	struct vge_control_data	*sc_control_data;
    216 #define sc_txdescs		sc_control_data->vcd_txdescs
    217 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    218 
    219 	int			sc_tx_prodidx;
    220 	int			sc_tx_considx;
    221 	int			sc_tx_free;
    222 
    223 	struct mbuf		*sc_rx_mhead;
    224 	struct mbuf		*sc_rx_mtail;
    225 	int			sc_rx_prodidx;
    226 	int			sc_rx_consumed;
    227 
    228 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    229 	uint32_t		sc_saved_maps[5];	/* pci data */
    230 	uint32_t		sc_saved_biosaddr;
    231 	uint8_t			sc_saved_intline;
    232 	uint8_t			sc_saved_cachelnsz;
    233 	uint8_t			sc_saved_lattimer;
    234 };
    235 
    236 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    237 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    238 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    239 
    240 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    241 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    242 	    VGE_CDTXOFF(idx),						\
    243 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    244 	    (ops))
    245 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    VGE_CDTXOFF(idx) +						\
    248 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    249 	    sizeof(struct vge_txfrag) * (nsegs),			\
    250 	    (ops))
    251 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    252 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    253 	    VGE_CDRXOFF(idx),						\
    254 	    sizeof(struct vge_rxdesc),					\
    255 	    (ops))
    256 
    257 /*
    258  * register space access macros
    259  */
    260 #define CSR_WRITE_4(sc, reg, val)	\
    261 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    262 #define CSR_WRITE_2(sc, reg, val)	\
    263 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    264 #define CSR_WRITE_1(sc, reg, val)	\
    265 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    266 
    267 #define CSR_READ_4(sc, reg)		\
    268 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    269 #define CSR_READ_2(sc, reg)		\
    270 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    271 #define CSR_READ_1(sc, reg)		\
    272 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    273 
    274 #define CSR_SETBIT_1(sc, reg, x)	\
    275 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    276 #define CSR_SETBIT_2(sc, reg, x)	\
    277 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    278 #define CSR_SETBIT_4(sc, reg, x)	\
    279 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    280 
    281 #define CSR_CLRBIT_1(sc, reg, x)	\
    282 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    283 #define CSR_CLRBIT_2(sc, reg, x)	\
    284 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    285 #define CSR_CLRBIT_4(sc, reg, x)	\
    286 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    287 
    288 #define VGE_TIMEOUT		10000
    289 
    290 #define VGE_PCI_LOIO		 0x10
    291 #define VGE_PCI_LOMEM		 0x14
    292 
    293 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    294 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    295 
    296 static int vge_ifflags_cb(struct ethercom *);
    297 
    298 static int vge_match(device_t, cfdata_t, void *);
    299 static void vge_attach(device_t, device_t, void *);
    300 
    301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    302 
    303 static int vge_allocmem(struct vge_softc *);
    304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    305 #ifndef __NO_STRICT_ALIGNMENT
    306 static inline void vge_fixup_rx(struct mbuf *);
    307 #endif
    308 static void vge_rxeof(struct vge_softc *);
    309 static void vge_txeof(struct vge_softc *);
    310 static int vge_intr(void *);
    311 static void vge_tick(void *);
    312 static void vge_start(struct ifnet *);
    313 static int vge_ioctl(struct ifnet *, u_long, void *);
    314 static int vge_init(struct ifnet *);
    315 static void vge_stop(struct ifnet *, int);
    316 static void vge_watchdog(struct ifnet *);
    317 #if VGE_POWER_MANAGEMENT
    318 static int vge_suspend(device_t);
    319 static int vge_resume(device_t);
    320 #endif
    321 static bool vge_shutdown(device_t, int);
    322 
    323 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    324 
    325 static void vge_miipoll_start(struct vge_softc *);
    326 static void vge_miipoll_stop(struct vge_softc *);
    327 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
    328 static int vge_miibus_writereg(device_t, int, int, uint16_t);
    329 static void vge_miibus_statchg(struct ifnet *);
    330 
    331 static void vge_cam_clear(struct vge_softc *);
    332 static int vge_cam_set(struct vge_softc *, uint8_t *);
    333 static void	vge_clrwol(struct vge_softc *);
    334 static void vge_setmulti(struct vge_softc *);
    335 static void vge_reset(struct vge_softc *);
    336 
    337 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    338     vge_match, vge_attach, NULL, NULL);
    339 
    340 static inline void
    341 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    342 {
    343 
    344 	f->tf_addrlo = htole32((uint32_t)daddr);
    345 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    346 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    347 	else
    348 		f->tf_addrhi = 0;
    349 }
    350 
    351 static inline void
    352 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    353 {
    354 
    355 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    356 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    357 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    358 	else
    359 		rxd->rd_addrhi = 0;
    360 }
    361 
    362 /*
    363  * Read a word of data stored in the EEPROM at address 'addr.'
    364  */
    365 static uint16_t
    366 vge_read_eeprom(struct vge_softc *sc, int addr)
    367 {
    368 	int i;
    369 	uint16_t word = 0;
    370 
    371 	/*
    372 	 * Enter EEPROM embedded programming mode. In order to
    373 	 * access the EEPROM at all, we first have to set the
    374 	 * EELOAD bit in the CHIPCFG2 register.
    375 	 */
    376 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    377 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
    378 
    379 	/* Select the address of the word we want to read */
    380 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    381 
    382 	/* Issue read command */
    383 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    384 
    385 	/* Wait for the done bit to be set. */
    386 	for (i = 0; i < VGE_TIMEOUT; i++) {
    387 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    388 			break;
    389 	}
    390 
    391 	if (i == VGE_TIMEOUT) {
    392 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
    393 		return 0;
    394 	}
    395 
    396 	/* Read the result */
    397 	word = CSR_READ_2(sc, VGE_EERDDAT);
    398 
    399 	/* Turn off EEPROM access mode. */
    400 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
    401 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    402 
    403 	return word;
    404 }
    405 
    406 static void
    407 vge_miipoll_stop(struct vge_softc *sc)
    408 {
    409 	int i;
    410 
    411 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    412 
    413 	for (i = 0; i < VGE_TIMEOUT; i++) {
    414 		DELAY(1);
    415 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    416 			break;
    417 	}
    418 
    419 	if (i == VGE_TIMEOUT) {
    420 		printf("%s: failed to idle MII autopoll\n",
    421 		    device_xname(sc->sc_dev));
    422 	}
    423 }
    424 
    425 static void
    426 vge_miipoll_start(struct vge_softc *sc)
    427 {
    428 	int i;
    429 
    430 	/* First, make sure we're idle. */
    431 
    432 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    433 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    434 
    435 	for (i = 0; i < VGE_TIMEOUT; i++) {
    436 		DELAY(1);
    437 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    438 			break;
    439 	}
    440 
    441 	if (i == VGE_TIMEOUT) {
    442 		printf("%s: failed to idle MII autopoll\n",
    443 		    device_xname(sc->sc_dev));
    444 		return;
    445 	}
    446 
    447 	/* Now enable auto poll mode. */
    448 
    449 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    450 
    451 	/* And make sure it started. */
    452 
    453 	for (i = 0; i < VGE_TIMEOUT; i++) {
    454 		DELAY(1);
    455 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    456 			break;
    457 	}
    458 
    459 	if (i == VGE_TIMEOUT) {
    460 		printf("%s: failed to start MII autopoll\n",
    461 		    device_xname(sc->sc_dev));
    462 	}
    463 }
    464 
    465 static int
    466 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    467 {
    468 	struct vge_softc *sc;
    469 	int i, s;
    470 	int rv = 0;
    471 
    472 	sc = device_private(dev);
    473 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    474 		return -1;
    475 
    476 	s = splnet();
    477 	vge_miipoll_stop(sc);
    478 
    479 	/* Specify the register we want to read. */
    480 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    481 
    482 	/* Issue read command. */
    483 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    484 
    485 	/* Wait for the read command bit to self-clear. */
    486 	for (i = 0; i < VGE_TIMEOUT; i++) {
    487 		DELAY(1);
    488 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    489 			break;
    490 	}
    491 
    492 	if (i == VGE_TIMEOUT) {
    493 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
    494 		rv = ETIMEDOUT;
    495 	} else
    496 		*val = CSR_READ_2(sc, VGE_MIIDATA);
    497 
    498 	vge_miipoll_start(sc);
    499 	splx(s);
    500 
    501 	return rv;
    502 }
    503 
    504 static int
    505 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    506 {
    507 	struct vge_softc *sc;
    508 	int i, s, rv = 0;
    509 
    510 	sc = device_private(dev);
    511 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    512 		return -1;
    513 
    514 	s = splnet();
    515 	vge_miipoll_stop(sc);
    516 
    517 	/* Specify the register we want to write. */
    518 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    519 
    520 	/* Specify the data we want to write. */
    521 	CSR_WRITE_2(sc, VGE_MIIDATA, val);
    522 
    523 	/* Issue write command. */
    524 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    525 
    526 	/* Wait for the write command bit to self-clear. */
    527 	for (i = 0; i < VGE_TIMEOUT; i++) {
    528 		DELAY(1);
    529 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    530 			break;
    531 	}
    532 
    533 	if (i == VGE_TIMEOUT) {
    534 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
    535 		rv = ETIMEDOUT;
    536 	}
    537 
    538 	vge_miipoll_start(sc);
    539 	splx(s);
    540 
    541 	return rv;
    542 }
    543 
    544 static void
    545 vge_cam_clear(struct vge_softc *sc)
    546 {
    547 	int i;
    548 
    549 	/*
    550 	 * Turn off all the mask bits. This tells the chip
    551 	 * that none of the entries in the CAM filter are valid.
    552 	 * desired entries will be enabled as we fill the filter in.
    553 	 */
    554 
    555 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    556 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    557 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    558 	for (i = 0; i < 8; i++)
    559 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    560 
    561 	/* Clear the VLAN filter too. */
    562 
    563 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
    564 	for (i = 0; i < 8; i++)
    565 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    566 
    567 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    568 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    569 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    570 
    571 	sc->sc_camidx = 0;
    572 }
    573 
    574 static int
    575 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    576 {
    577 	int i, error;
    578 
    579 	error = 0;
    580 
    581 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    582 		return ENOSPC;
    583 
    584 	/* Select the CAM data page. */
    585 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    586 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    587 
    588 	/* Set the filter entry we want to update and enable writing. */
    589 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    590 
    591 	/* Write the address to the CAM registers */
    592 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    593 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    594 
    595 	/* Issue a write command. */
    596 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    597 
    598 	/* Wake for it to clear. */
    599 	for (i = 0; i < VGE_TIMEOUT; i++) {
    600 		DELAY(1);
    601 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    602 			break;
    603 	}
    604 
    605 	if (i == VGE_TIMEOUT) {
    606 		printf("%s: setting CAM filter failed\n",
    607 		    device_xname(sc->sc_dev));
    608 		error = EIO;
    609 		goto fail;
    610 	}
    611 
    612 	/* Select the CAM mask page. */
    613 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    614 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    615 
    616 	/* Set the mask bit that enables this filter. */
    617 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    618 	    1 << (sc->sc_camidx & 7));
    619 
    620 	sc->sc_camidx++;
    621 
    622  fail:
    623 	/* Turn off access to CAM. */
    624 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    625 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    626 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    627 
    628 	return error;
    629 }
    630 
    631 /*
    632  * Program the multicast filter. We use the 64-entry CAM filter
    633  * for perfect filtering. If there's more than 64 multicast addresses,
    634  * we use the hash filter instead.
    635  */
    636 static void
    637 vge_setmulti(struct vge_softc *sc)
    638 {
    639 	struct ethercom *ec = &sc->sc_ethercom;
    640 	struct ifnet *ifp = &ec->ec_if;
    641 	int error;
    642 	uint32_t h, hashes[2] = { 0, 0 };
    643 	struct ether_multi *enm;
    644 	struct ether_multistep step;
    645 
    646 	error = 0;
    647 
    648 	/* First, zot all the multicast entries. */
    649 	vge_cam_clear(sc);
    650 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    651 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    652 	ifp->if_flags &= ~IFF_ALLMULTI;
    653 
    654 	/*
    655 	 * If the user wants allmulti or promisc mode, enable reception
    656 	 * of all multicast frames.
    657 	 */
    658 	if (ifp->if_flags & IFF_PROMISC) {
    659  allmulti:
    660 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    661 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    662 		ifp->if_flags |= IFF_ALLMULTI;
    663 		return;
    664 	}
    665 
    666 	/* Now program new ones */
    667 	ETHER_LOCK(ec);
    668 	ETHER_FIRST_MULTI(step, ec, enm);
    669 	while (enm != NULL) {
    670 		/*
    671 		 * If multicast range, fall back to ALLMULTI.
    672 		 */
    673 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    674 		    ETHER_ADDR_LEN) != 0) {
    675 			ETHER_UNLOCK(ec);
    676 			goto allmulti;
    677 		}
    678 
    679 		error = vge_cam_set(sc, enm->enm_addrlo);
    680 		if (error)
    681 			break;
    682 
    683 		ETHER_NEXT_MULTI(step, enm);
    684 	}
    685 	ETHER_UNLOCK(ec);
    686 
    687 	/* If there were too many addresses, use the hash filter. */
    688 	if (error) {
    689 		vge_cam_clear(sc);
    690 
    691 		ETHER_LOCK(ec);
    692 		ETHER_FIRST_MULTI(step, ec, enm);
    693 		while (enm != NULL) {
    694 			/*
    695 			 * If multicast range, fall back to ALLMULTI.
    696 			 */
    697 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    698 			    ETHER_ADDR_LEN) != 0) {
    699 				ETHER_UNLOCK(ec);
    700 				goto allmulti;
    701 			}
    702 
    703 			h = ether_crc32_be(enm->enm_addrlo,
    704 			    ETHER_ADDR_LEN) >> 26;
    705 			hashes[h >> 5] |= 1 << (h & 0x1f);
    706 
    707 			ETHER_NEXT_MULTI(step, enm);
    708 		}
    709 		ETHER_UNLOCK(ec);
    710 
    711 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    712 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    713 	}
    714 }
    715 
    716 static void
    717 vge_reset(struct vge_softc *sc)
    718 {
    719 	int i;
    720 
    721 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    722 
    723 	for (i = 0; i < VGE_TIMEOUT; i++) {
    724 		DELAY(5);
    725 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    726 			break;
    727 	}
    728 
    729 	if (i == VGE_TIMEOUT) {
    730 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
    731 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    732 		DELAY(2000);
    733 	}
    734 
    735 	DELAY(5000);
    736 
    737 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    738 
    739 	for (i = 0; i < VGE_TIMEOUT; i++) {
    740 		DELAY(5);
    741 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    742 			break;
    743 	}
    744 
    745 	if (i == VGE_TIMEOUT) {
    746 		printf("%s: EEPROM reload timed out\n",
    747 		    device_xname(sc->sc_dev));
    748 		return;
    749 	}
    750 
    751 	/*
    752 	 * On some machine, the first read data from EEPROM could be
    753 	 * messed up, so read one dummy data here to avoid the mess.
    754 	 */
    755 	(void)vge_read_eeprom(sc, 0);
    756 
    757 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    758 }
    759 
    760 /*
    761  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    762  * IDs against our list and return a device name if we find a match.
    763  */
    764 static int
    765 vge_match(device_t parent, cfdata_t match, void *aux)
    766 {
    767 	struct pci_attach_args *pa = aux;
    768 
    769 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    770 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    771 		return 1;
    772 
    773 	return 0;
    774 }
    775 
    776 static int
    777 vge_allocmem(struct vge_softc *sc)
    778 {
    779 	int error;
    780 	int nseg;
    781 	int i;
    782 	bus_dma_segment_t seg;
    783 
    784 	/*
    785 	 * Allocate memory for control data.
    786 	 *
    787 	 * NOTE: This must all fit within the same 4GB segment.  The
    788 	 * "boundary" argument to bus_dmamem_alloc() will end up as
    789 	 * 4GB on 64-bit platforms and 0 ("no boundary constraint") on
    790 	 * 32-bit platformds.
    791 	 */
    792 
    793 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    794 	     VGE_RING_ALIGN,
    795 	     (bus_size_t)(1ULL << 32),
    796 	     &seg, 1, &nseg, BUS_DMA_NOWAIT);
    797 	if (error) {
    798 		aprint_error_dev(sc->sc_dev,
    799 		    "could not allocate control data dma memory\n");
    800 		goto fail_1;
    801 	}
    802 
    803 	/* Map the memory to kernel VA space */
    804 
    805 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    806 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    807 	    BUS_DMA_NOWAIT);
    808 	if (error) {
    809 		aprint_error_dev(sc->sc_dev,
    810 		    "could not map control data dma memory\n");
    811 		goto fail_2;
    812 	}
    813 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    814 
    815 	/*
    816 	 * Create map for control data.
    817 	 */
    818 	error = bus_dmamap_create(sc->sc_dmat,
    819 	    sizeof(struct vge_control_data), 1,
    820 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    821 	    &sc->sc_cddmamap);
    822 	if (error) {
    823 		aprint_error_dev(sc->sc_dev,
    824 		    "could not create control data dmamap\n");
    825 		goto fail_3;
    826 	}
    827 
    828 	/* Load the map for the control data. */
    829 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    830 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    831 	    BUS_DMA_NOWAIT);
    832 	if (error) {
    833 		aprint_error_dev(sc->sc_dev,
    834 		    "could not load control data dma memory\n");
    835 		goto fail_4;
    836 	}
    837 
    838 	/* Create DMA maps for TX buffers */
    839 
    840 	for (i = 0; i < VGE_NTXDESC; i++) {
    841 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    842 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    843 		    &sc->sc_txsoft[i].txs_dmamap);
    844 		if (error) {
    845 			aprint_error_dev(sc->sc_dev,
    846 			    "can't create DMA map for TX descs\n");
    847 			goto fail_5;
    848 		}
    849 	}
    850 
    851 	/* Create DMA maps for RX buffers */
    852 
    853 	for (i = 0; i < VGE_NRXDESC; i++) {
    854 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    855 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    856 		    &sc->sc_rxsoft[i].rxs_dmamap);
    857 		if (error) {
    858 			aprint_error_dev(sc->sc_dev,
    859 			    "can't create DMA map for RX descs\n");
    860 			goto fail_6;
    861 		}
    862 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    863 	}
    864 
    865 	return 0;
    866 
    867  fail_6:
    868 	for (i = 0; i < VGE_NRXDESC; i++) {
    869 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    870 			bus_dmamap_destroy(sc->sc_dmat,
    871 			    sc->sc_rxsoft[i].rxs_dmamap);
    872 	}
    873  fail_5:
    874 	for (i = 0; i < VGE_NTXDESC; i++) {
    875 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    876 			bus_dmamap_destroy(sc->sc_dmat,
    877 			    sc->sc_txsoft[i].txs_dmamap);
    878 	}
    879 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    880  fail_4:
    881 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    882  fail_3:
    883 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    884 	    sizeof(struct vge_control_data));
    885  fail_2:
    886 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    887  fail_1:
    888 	return ENOMEM;
    889 }
    890 
    891 /*
    892  * Attach the interface. Allocate softc structures, do ifmedia
    893  * setup and ethernet/BPF attach.
    894  */
    895 static void
    896 vge_attach(device_t parent, device_t self, void *aux)
    897 {
    898 	uint8_t	*eaddr;
    899 	struct vge_softc *sc = device_private(self);
    900 	struct ifnet *ifp;
    901 	struct mii_data * const mii = &sc->sc_mii;
    902 	struct pci_attach_args *pa = aux;
    903 	pci_chipset_tag_t pc = pa->pa_pc;
    904 	const char *intrstr;
    905 	pci_intr_handle_t ih;
    906 	uint16_t val;
    907 	char intrbuf[PCI_INTRSTR_LEN];
    908 
    909 	sc->sc_dev = self;
    910 
    911 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
    912 
    913 	/* Make sure bus-mastering is enabled */
    914 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    915 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    916 	    PCI_COMMAND_MASTER_ENABLE);
    917 
    918 	/*
    919 	 * Map control/status registers.
    920 	 */
    921 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    922 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    923 		aprint_error_dev(self, "couldn't map memory\n");
    924 		return;
    925 	}
    926 
    927 	/*
    928 	 * Map and establish our interrupt.
    929 	 */
    930 	if (pci_intr_map(pa, &ih)) {
    931 		aprint_error_dev(self, "unable to map interrupt\n");
    932 		return;
    933 	}
    934 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    935 	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
    936 	    sc, device_xname(self));
    937 	if (sc->sc_intrhand == NULL) {
    938 		aprint_error_dev(self, "unable to establish interrupt");
    939 		if (intrstr != NULL)
    940 			aprint_error(" at %s", intrstr);
    941 		aprint_error("\n");
    942 		return;
    943 	}
    944 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    945 
    946 	/* Reset the adapter. */
    947 	vge_reset(sc);
    948 
    949 	/*
    950 	 * Get station address from the EEPROM.
    951 	 */
    952 	eaddr = sc->sc_eaddr;
    953 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    954 	eaddr[0] = val & 0xff;
    955 	eaddr[1] = val >> 8;
    956 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    957 	eaddr[2] = val & 0xff;
    958 	eaddr[3] = val >> 8;
    959 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    960 	eaddr[4] = val & 0xff;
    961 	eaddr[5] = val >> 8;
    962 
    963 	aprint_normal_dev(self, "Ethernet address %s\n",
    964 	    ether_sprintf(eaddr));
    965 
    966 	/* Clear WOL and take hardware from powerdown. */
    967 	vge_clrwol(sc);
    968 
    969 	/*
    970 	 * The hardware supports 64-bit DMA addresses, but it's a little
    971 	 * complicated (see large comment about the hardware near the top
    972 	 * of the file).  TL;DR -- restrict ourselves to 48-bit.
    973 	 */
    974 	if (pci_dma64_available(pa)) {
    975 		if (bus_dmatag_subregion(pa->pa_dmat64,
    976 					 0,
    977 					 (bus_addr_t)__MASK(48),
    978 					 &sc->sc_dmat,
    979 					 BUS_DMA_WAITOK) != 0) {
    980 			aprint_error_dev(self,
    981 			    "WARNING: failed to restrict dma range,"
    982 			    " falling back to parent bus dma range\n");
    983 			sc->sc_dmat = pa->pa_dmat64;
    984 		}
    985 	} else {
    986 		sc->sc_dmat = pa->pa_dmat;
    987 	}
    988 
    989 	if (vge_allocmem(sc) != 0)
    990 		return;
    991 
    992 	ifp = &sc->sc_ethercom.ec_if;
    993 	ifp->if_softc = sc;
    994 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    995 	ifp->if_mtu = ETHERMTU;
    996 	ifp->if_baudrate = IF_Gbps(1);
    997 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    998 	ifp->if_ioctl = vge_ioctl;
    999 	ifp->if_start = vge_start;
   1000 	ifp->if_init = vge_init;
   1001 	ifp->if_stop = vge_stop;
   1002 
   1003 	/*
   1004 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1005 	 * Ethernet frames.
   1006 	 */
   1007 	sc->sc_ethercom.ec_capabilities |=
   1008 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1009 	    ETHERCAP_VLAN_HWTAGGING;
   1010 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   1011 
   1012 	/*
   1013 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1014 	 */
   1015 	ifp->if_capabilities |=
   1016 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1017 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1018 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1019 
   1020 #ifdef DEVICE_POLLING
   1021 #ifdef IFCAP_POLLING
   1022 	ifp->if_capabilities |= IFCAP_POLLING;
   1023 #endif
   1024 #endif
   1025 	ifp->if_watchdog = vge_watchdog;
   1026 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1027 	IFQ_SET_READY(&ifp->if_snd);
   1028 
   1029 	/*
   1030 	 * Initialize our media structures and probe the MII.
   1031 	 */
   1032 	mii->mii_ifp = ifp;
   1033 	mii->mii_readreg = vge_miibus_readreg;
   1034 	mii->mii_writereg = vge_miibus_writereg;
   1035 	mii->mii_statchg = vge_miibus_statchg;
   1036 
   1037 	sc->sc_ethercom.ec_mii = mii;
   1038 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
   1039 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1040 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1041 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   1042 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   1043 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   1044 	} else
   1045 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1046 
   1047 	/*
   1048 	 * Attach the interface.
   1049 	 */
   1050 	if_attach(ifp);
   1051 	if_deferred_start_init(ifp, NULL);
   1052 	ether_ifattach(ifp, eaddr);
   1053 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
   1054 
   1055 	callout_init(&sc->sc_timeout, 0);
   1056 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1057 
   1058 	/*
   1059 	 * Make sure the interface is shutdown during reboot.
   1060 	 */
   1061 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
   1062 		pmf_class_network_register(self, ifp);
   1063 	else
   1064 		aprint_error_dev(self, "couldn't establish power handler\n");
   1065 }
   1066 
   1067 static int
   1068 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1069 {
   1070 	struct mbuf *m_new;
   1071 	struct vge_rxdesc *rxd;
   1072 	struct vge_rxsoft *rxs;
   1073 	bus_dmamap_t map;
   1074 	int i;
   1075 #ifdef DIAGNOSTIC
   1076 	uint32_t rd_sts;
   1077 #endif
   1078 
   1079 	m_new = NULL;
   1080 	if (m == NULL) {
   1081 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1082 		if (m_new == NULL)
   1083 			return ENOBUFS;
   1084 
   1085 		MCLGET(m_new, M_DONTWAIT);
   1086 		if ((m_new->m_flags & M_EXT) == 0) {
   1087 			m_freem(m_new);
   1088 			return ENOBUFS;
   1089 		}
   1090 
   1091 		m = m_new;
   1092 	} else
   1093 		m->m_data = m->m_ext.ext_buf;
   1094 
   1095 
   1096 	/*
   1097 	 * This is part of an evil trick to deal with non-x86 platforms.
   1098 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1099 	 * boundaries, but that will hose non-x86 machines. To get around
   1100 	 * this, we leave some empty space at the start of each buffer
   1101 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1102 	 * to achieve word alignment. This is slightly more efficient
   1103 	 * than allocating a new buffer, copying the contents, and
   1104 	 * discarding the old buffer.
   1105 	 */
   1106 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1107 #ifndef __NO_STRICT_ALIGNMENT
   1108 	m->m_data += VGE_RX_PAD;
   1109 #endif
   1110 	rxs = &sc->sc_rxsoft[idx];
   1111 	map = rxs->rxs_dmamap;
   1112 
   1113 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1114 		goto out;
   1115 
   1116 	rxd = &sc->sc_rxdescs[idx];
   1117 
   1118 #ifdef DIAGNOSTIC
   1119 	/* If this descriptor is still owned by the chip, bail. */
   1120 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1121 	rd_sts = le32toh(rxd->rd_sts);
   1122 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1123 	if (rd_sts & VGE_RDSTS_OWN) {
   1124 		panic("%s: tried to map busy RX descriptor",
   1125 		    device_xname(sc->sc_dev));
   1126 	}
   1127 #endif
   1128 
   1129 	rxs->rxs_mbuf = m;
   1130 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1131 	    BUS_DMASYNC_PREREAD);
   1132 
   1133 	rxd->rd_buflen =
   1134 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1135 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1136 	rxd->rd_sts = 0;
   1137 	rxd->rd_ctl = 0;
   1138 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1139 
   1140 	/*
   1141 	 * Note: the manual fails to document the fact that for
   1142 	 * proper operation, the driver needs to replentish the RX
   1143 	 * DMA ring 4 descriptors at a time (rather than one at a
   1144 	 * time, like most chips). We can allocate the new buffers
   1145 	 * but we should not set the OWN bits until we're ready
   1146 	 * to hand back 4 of them in one shot.
   1147 	 */
   1148 
   1149 #define VGE_RXCHUNK 4
   1150 	sc->sc_rx_consumed++;
   1151 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1152 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1153 			KASSERT(i >= 0);
   1154 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1155 			VGE_RXDESCSYNC(sc, i,
   1156 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1157 		}
   1158 		sc->sc_rx_consumed = 0;
   1159 	}
   1160 
   1161 	return 0;
   1162  out:
   1163 	m_freem(m_new);
   1164 	return ENOMEM;
   1165 }
   1166 
   1167 #ifndef __NO_STRICT_ALIGNMENT
   1168 static inline void
   1169 vge_fixup_rx(struct mbuf *m)
   1170 {
   1171 	int i;
   1172 	uint16_t *src, *dst;
   1173 
   1174 	src = mtod(m, uint16_t *);
   1175 	dst = src - 1;
   1176 
   1177 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1178 		*dst++ = *src++;
   1179 
   1180 	m->m_data -= ETHER_ALIGN;
   1181 }
   1182 #endif
   1183 
   1184 /*
   1185  * RX handler. We support the reception of jumbo frames that have
   1186  * been fragmented across multiple 2K mbuf cluster buffers.
   1187  */
   1188 static void
   1189 vge_rxeof(struct vge_softc *sc)
   1190 {
   1191 	struct mbuf *m;
   1192 	struct ifnet *ifp;
   1193 	int idx, total_len, lim;
   1194 	struct vge_rxdesc *cur_rxd;
   1195 	struct vge_rxsoft *rxs;
   1196 	uint32_t rxstat, rxctl;
   1197 
   1198 	ifp = &sc->sc_ethercom.ec_if;
   1199 	lim = 0;
   1200 
   1201 	/* Invalidate the descriptor memory */
   1202 
   1203 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1204 		cur_rxd = &sc->sc_rxdescs[idx];
   1205 
   1206 		VGE_RXDESCSYNC(sc, idx,
   1207 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1208 		rxstat = le32toh(cur_rxd->rd_sts);
   1209 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1210 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1211 			break;
   1212 		}
   1213 
   1214 		rxctl = le32toh(cur_rxd->rd_ctl);
   1215 		rxs = &sc->sc_rxsoft[idx];
   1216 		m = rxs->rxs_mbuf;
   1217 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1218 
   1219 		/* Invalidate the RX mbuf and unload its map */
   1220 
   1221 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1222 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1223 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1224 
   1225 		/*
   1226 		 * If the 'start of frame' bit is set, this indicates
   1227 		 * either the first fragment in a multi-fragment receive,
   1228 		 * or an intermediate fragment. Either way, we want to
   1229 		 * accumulate the buffers.
   1230 		 */
   1231 		if (rxstat & VGE_RXPKT_SOF) {
   1232 			m->m_len = VGE_RX_BUFSIZE;
   1233 			if (sc->sc_rx_mhead == NULL)
   1234 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1235 			else {
   1236 				m->m_flags &= ~M_PKTHDR;
   1237 				sc->sc_rx_mtail->m_next = m;
   1238 				sc->sc_rx_mtail = m;
   1239 			}
   1240 			vge_newbuf(sc, idx, NULL);
   1241 			continue;
   1242 		}
   1243 
   1244 		/*
   1245 		 * Bad/error frames will have the RXOK bit cleared.
   1246 		 * However, there's one error case we want to allow:
   1247 		 * if a VLAN tagged frame arrives and the chip can't
   1248 		 * match it against the CAM filter, it considers this
   1249 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1250 		 * We don't want to drop the frame though: our VLAN
   1251 		 * filtering is done in software.
   1252 		 */
   1253 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1254 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1255 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1256 			if_statinc(ifp, if_ierrors);
   1257 			/*
   1258 			 * If this is part of a multi-fragment packet,
   1259 			 * discard all the pieces.
   1260 			 */
   1261 			if (sc->sc_rx_mhead != NULL) {
   1262 				m_freem(sc->sc_rx_mhead);
   1263 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1264 			}
   1265 			vge_newbuf(sc, idx, m);
   1266 			continue;
   1267 		}
   1268 
   1269 		/*
   1270 		 * If allocating a replacement mbuf fails,
   1271 		 * reload the current one.
   1272 		 */
   1273 
   1274 		if (vge_newbuf(sc, idx, NULL)) {
   1275 			if_statinc(ifp, if_ierrors);
   1276 			if (sc->sc_rx_mhead != NULL) {
   1277 				m_freem(sc->sc_rx_mhead);
   1278 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1279 			}
   1280 			vge_newbuf(sc, idx, m);
   1281 			continue;
   1282 		}
   1283 
   1284 		if (sc->sc_rx_mhead != NULL) {
   1285 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1286 			/*
   1287 			 * Special case: if there's 4 bytes or less
   1288 			 * in this buffer, the mbuf can be discarded:
   1289 			 * the last 4 bytes is the CRC, which we don't
   1290 			 * care about anyway.
   1291 			 */
   1292 			if (m->m_len <= ETHER_CRC_LEN) {
   1293 				sc->sc_rx_mtail->m_len -=
   1294 				    (ETHER_CRC_LEN - m->m_len);
   1295 				m_freem(m);
   1296 			} else {
   1297 				m->m_len -= ETHER_CRC_LEN;
   1298 				m->m_flags &= ~M_PKTHDR;
   1299 				sc->sc_rx_mtail->m_next = m;
   1300 			}
   1301 			m = sc->sc_rx_mhead;
   1302 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1303 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1304 		} else
   1305 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1306 
   1307 #ifndef __NO_STRICT_ALIGNMENT
   1308 		vge_fixup_rx(m);
   1309 #endif
   1310 		m_set_rcvif(m, ifp);
   1311 
   1312 		/* Do RX checksumming if enabled */
   1313 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1314 
   1315 			/* Check IP header checksum */
   1316 			if (rxctl & VGE_RDCTL_IPPKT)
   1317 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1318 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1319 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1320 		}
   1321 
   1322 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1323 			/* Check UDP checksum */
   1324 			if (rxctl & VGE_RDCTL_TCPPKT)
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1326 
   1327 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1329 		}
   1330 
   1331 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1332 			/* Check UDP checksum */
   1333 			if (rxctl & VGE_RDCTL_UDPPKT)
   1334 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1335 
   1336 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1337 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1338 		}
   1339 
   1340 		if (rxstat & VGE_RDSTS_VTAG) {
   1341 			/*
   1342 			 * We use bswap16() here because:
   1343 			 * On LE machines, tag is stored in BE as stream data.
   1344 			 * On BE machines, tag is stored in BE as stream data
   1345 			 *  but it was already swapped by le32toh() above.
   1346 			 */
   1347 			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
   1348 		}
   1349 
   1350 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1351 
   1352 		lim++;
   1353 		if (lim == VGE_NRXDESC)
   1354 			break;
   1355 	}
   1356 
   1357 	sc->sc_rx_prodidx = idx;
   1358 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1359 }
   1360 
   1361 static void
   1362 vge_txeof(struct vge_softc *sc)
   1363 {
   1364 	struct ifnet *ifp;
   1365 	struct vge_txsoft *txs;
   1366 	uint32_t txstat;
   1367 	int idx;
   1368 
   1369 	ifp = &sc->sc_ethercom.ec_if;
   1370 
   1371 	for (idx = sc->sc_tx_considx;
   1372 	    sc->sc_tx_free < VGE_NTXDESC;
   1373 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1374 		VGE_TXDESCSYNC(sc, idx,
   1375 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1376 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1377 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1378 		if (txstat & VGE_TDSTS_OWN) {
   1379 			break;
   1380 		}
   1381 
   1382 		txs = &sc->sc_txsoft[idx];
   1383 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1384 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1385 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1386 		m_freem(txs->txs_mbuf);
   1387 		txs->txs_mbuf = NULL;
   1388 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1389 		if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
   1390 			if_statinc_ref(ifp, nsr, if_collisions);
   1391 		if (txstat & VGE_TDSTS_TXERR)
   1392 			if_statinc_ref(ifp, nsr, if_oerrors);
   1393 		else
   1394 			if_statinc_ref(ifp, nsr, if_opackets);
   1395 		IF_STAT_PUTREF(ifp);
   1396 	}
   1397 
   1398 	sc->sc_tx_considx = idx;
   1399 
   1400 	/*
   1401 	 * If not all descriptors have been released reaped yet,
   1402 	 * reload the timer so that we will eventually get another
   1403 	 * interrupt that will cause us to re-enter this routine.
   1404 	 * This is done in case the transmitter has gone idle.
   1405 	 */
   1406 	if (sc->sc_tx_free < VGE_NTXDESC)
   1407 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1408 	else
   1409 		ifp->if_timer = 0;
   1410 }
   1411 
   1412 static void
   1413 vge_tick(void *arg)
   1414 {
   1415 	struct vge_softc *sc;
   1416 	struct ifnet *ifp;
   1417 	struct mii_data *mii;
   1418 	int s;
   1419 
   1420 	sc = arg;
   1421 	ifp = &sc->sc_ethercom.ec_if;
   1422 	mii = &sc->sc_mii;
   1423 
   1424 	s = splnet();
   1425 
   1426 	callout_schedule(&sc->sc_timeout, hz);
   1427 
   1428 	mii_tick(mii);
   1429 	if (sc->sc_link) {
   1430 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1431 			sc->sc_link = 0;
   1432 	} else {
   1433 		if (mii->mii_media_status & IFM_ACTIVE &&
   1434 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1435 			sc->sc_link = 1;
   1436 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1437 				vge_start(ifp);
   1438 		}
   1439 	}
   1440 
   1441 	splx(s);
   1442 }
   1443 
   1444 static int
   1445 vge_intr(void *arg)
   1446 {
   1447 	struct vge_softc *sc;
   1448 	struct ifnet *ifp;
   1449 	uint32_t status;
   1450 	int claim;
   1451 
   1452 	sc = arg;
   1453 	claim = 0;
   1454 	if (sc->sc_suspended) {
   1455 		return claim;
   1456 	}
   1457 
   1458 	ifp = &sc->sc_ethercom.ec_if;
   1459 
   1460 	if ((ifp->if_flags & IFF_UP) == 0) {
   1461 		return claim;
   1462 	}
   1463 
   1464 	/* Disable interrupts */
   1465 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1466 
   1467 	for (;;) {
   1468 
   1469 		status = CSR_READ_4(sc, VGE_ISR);
   1470 		/* If the card has gone away the read returns 0xffffffff. */
   1471 		if (status == 0xFFFFFFFF)
   1472 			break;
   1473 
   1474 		if (status) {
   1475 			claim = 1;
   1476 			CSR_WRITE_4(sc, VGE_ISR, status);
   1477 		}
   1478 
   1479 		if ((status & VGE_INTRS) == 0)
   1480 			break;
   1481 
   1482 		if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
   1483 			vge_rxeof(sc);
   1484 
   1485 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
   1486 			vge_rxeof(sc);
   1487 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1488 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1489 		}
   1490 
   1491 		if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
   1492 			vge_txeof(sc);
   1493 
   1494 		if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
   1495 			vge_init(ifp);
   1496 
   1497 		if (status & VGE_ISR_LINKSTS)
   1498 			vge_tick(sc);
   1499 	}
   1500 
   1501 	/* Re-enable interrupts */
   1502 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1503 
   1504 	if (claim)
   1505 		if_schedule_deferred_start(ifp);
   1506 
   1507 	return claim;
   1508 }
   1509 
   1510 static int
   1511 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1512 {
   1513 	struct vge_txsoft *txs;
   1514 	struct vge_txdesc *txd;
   1515 	struct vge_txfrag *f;
   1516 	struct mbuf *m_new;
   1517 	bus_dmamap_t map;
   1518 	int m_csumflags, seg, error, flags;
   1519 	size_t sz;
   1520 	uint32_t td_sts, td_ctl;
   1521 
   1522 	KASSERT(sc->sc_tx_free > 0);
   1523 
   1524 	txd = &sc->sc_txdescs[idx];
   1525 
   1526 #ifdef DIAGNOSTIC
   1527 	/* If this descriptor is still owned by the chip, bail. */
   1528 	VGE_TXDESCSYNC(sc, idx,
   1529 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1530 	td_sts = le32toh(txd->td_sts);
   1531 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1532 	if (td_sts & VGE_TDSTS_OWN) {
   1533 		return ENOBUFS;
   1534 	}
   1535 #endif
   1536 
   1537 	/*
   1538 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1539 	 * updated by m_defrag()
   1540 	 */
   1541 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1542 
   1543 	txs = &sc->sc_txsoft[idx];
   1544 	map = txs->txs_dmamap;
   1545 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1546 
   1547 	/* If too many segments to map, coalesce */
   1548 	if (error == EFBIG ||
   1549 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1550 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1551 		m_new = m_defrag(m_head, M_DONTWAIT);
   1552 		if (m_new == NULL)
   1553 			return EFBIG;
   1554 
   1555 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1556 		    m_new, BUS_DMA_NOWAIT);
   1557 		if (error) {
   1558 			m_freem(m_new);
   1559 			return error;
   1560 		}
   1561 
   1562 		m_head = m_new;
   1563 	} else if (error)
   1564 		return error;
   1565 
   1566 	txs->txs_mbuf = m_head;
   1567 
   1568 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1569 	    BUS_DMASYNC_PREWRITE);
   1570 
   1571 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1572 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1573 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1574 	}
   1575 
   1576 	/* Argh. This chip does not autopad short frames */
   1577 	sz = m_head->m_pkthdr.len;
   1578 	if (sz < ETHER_PAD_LEN) {
   1579 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1580 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1581 		sz = ETHER_PAD_LEN;
   1582 		seg++;
   1583 	}
   1584 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1585 
   1586 	/*
   1587 	 * When telling the chip how many segments there are, we
   1588 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1589 	 * know why.
   1590 	 */
   1591 	seg++;
   1592 
   1593 	flags = 0;
   1594 	if (m_csumflags & M_CSUM_IPv4)
   1595 		flags |= VGE_TDCTL_IPCSUM;
   1596 	if (m_csumflags & M_CSUM_TCPv4)
   1597 		flags |= VGE_TDCTL_TCPCSUM;
   1598 	if (m_csumflags & M_CSUM_UDPv4)
   1599 		flags |= VGE_TDCTL_UDPCSUM;
   1600 	td_sts = sz << 16;
   1601 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1602 
   1603 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1604 		td_ctl |= VGE_TDCTL_JUMBO;
   1605 
   1606 	/*
   1607 	 * Set up hardware VLAN tagging.
   1608 	 */
   1609 	if (vlan_has_tag(m_head)) {
   1610 		/*
   1611 		 * No need htons() here since vge(4) chip assumes
   1612 		 * that tags are written in little endian and
   1613 		 * we already use htole32() here.
   1614 		 */
   1615 		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
   1616 	}
   1617 	txd->td_ctl = htole32(td_ctl);
   1618 	txd->td_sts = htole32(td_sts);
   1619 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1620 
   1621 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1622 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1623 
   1624 	sc->sc_tx_free--;
   1625 
   1626 	return 0;
   1627 }
   1628 
   1629 /*
   1630  * Main transmit routine.
   1631  */
   1632 
   1633 static void
   1634 vge_start(struct ifnet *ifp)
   1635 {
   1636 	struct vge_softc *sc;
   1637 	struct vge_txsoft *txs;
   1638 	struct mbuf *m_head;
   1639 	int idx, pidx, ofree, error;
   1640 
   1641 	sc = ifp->if_softc;
   1642 
   1643 	if (!sc->sc_link ||
   1644 	    (ifp->if_flags & IFF_RUNNING) == 0) {
   1645 		return;
   1646 	}
   1647 
   1648 	m_head = NULL;
   1649 	idx = sc->sc_tx_prodidx;
   1650 	pidx = VGE_PREV_TXDESC(idx);
   1651 	ofree = sc->sc_tx_free;
   1652 
   1653 	/*
   1654 	 * Loop through the send queue, setting up transmit descriptors
   1655 	 * until we drain the queue, or use up all available transmit
   1656 	 * descriptors.
   1657 	 */
   1658 	while (sc->sc_tx_free != 0) {
   1659 		/* Grab a packet off the queue. */
   1660 		IFQ_POLL(&ifp->if_snd, m_head);
   1661 		if (m_head == NULL)
   1662 			break;
   1663 
   1664 		txs = &sc->sc_txsoft[idx];
   1665 		KASSERT(txs->txs_mbuf == NULL);
   1666 
   1667 		if ((error = vge_encap(sc, m_head, idx))) {
   1668 			if (error == EFBIG) {
   1669 				printf("%s: Tx packet consumes too many "
   1670 				    "DMA segments, dropping...\n",
   1671 				    device_xname(sc->sc_dev));
   1672 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1673 				m_freem(m_head);
   1674 				continue;
   1675 			}
   1676 
   1677 			/*
   1678 			 * Short on resources, just stop for now.
   1679 			 */
   1680 			break;
   1681 		}
   1682 
   1683 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1684 
   1685 		/*
   1686 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1687 		 */
   1688 
   1689 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1690 		    htole16(VGE_TXDESC_Q);
   1691 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1692 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1693 
   1694 		if (txs->txs_mbuf != m_head) {
   1695 			m_freem(m_head);
   1696 			m_head = txs->txs_mbuf;
   1697 		}
   1698 
   1699 		pidx = idx;
   1700 		idx = VGE_NEXT_TXDESC(idx);
   1701 
   1702 		/*
   1703 		 * If there's a BPF listener, bounce a copy of this frame
   1704 		 * to him.
   1705 		 */
   1706 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1707 	}
   1708 
   1709 	if (sc->sc_tx_free < ofree) {
   1710 		/* TX packet queued */
   1711 
   1712 		sc->sc_tx_prodidx = idx;
   1713 
   1714 		/* Issue a transmit command. */
   1715 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1716 
   1717 		/*
   1718 		 * Use the countdown timer for interrupt moderation.
   1719 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1720 		 * countdown timer, which will begin counting until it hits
   1721 		 * the value in the SSTIMER register, and then trigger an
   1722 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1723 		 * the timer count is reloaded. Only when the transmitter
   1724 		 * is idle will the timer hit 0 and an interrupt fire.
   1725 		 */
   1726 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1727 
   1728 		/*
   1729 		 * Set a timeout in case the chip goes out to lunch.
   1730 		 */
   1731 		ifp->if_timer = 5;
   1732 	}
   1733 }
   1734 
   1735 static int
   1736 vge_init(struct ifnet *ifp)
   1737 {
   1738 	struct vge_softc *sc;
   1739 	int i, rc = 0;
   1740 
   1741 	sc = ifp->if_softc;
   1742 
   1743 	/*
   1744 	 * Cancel pending I/O and free all RX/TX buffers.
   1745 	 */
   1746 	vge_stop(ifp, 0);
   1747 	vge_reset(sc);
   1748 
   1749 	/* Initialize the RX descriptors and mbufs. */
   1750 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1751 	sc->sc_rx_consumed = 0;
   1752 	for (i = 0; i < VGE_NRXDESC; i++) {
   1753 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1754 			printf("%s: unable to allocate or map rx buffer\n",
   1755 			    device_xname(sc->sc_dev));
   1756 			return 1; /* XXX */
   1757 		}
   1758 	}
   1759 	sc->sc_rx_prodidx = 0;
   1760 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1761 
   1762 	/* Initialize the  TX descriptors and mbufs. */
   1763 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1764 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1765 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1766 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1767 	for (i = 0; i < VGE_NTXDESC; i++)
   1768 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1769 
   1770 	sc->sc_tx_prodidx = 0;
   1771 	sc->sc_tx_considx = 0;
   1772 	sc->sc_tx_free = VGE_NTXDESC;
   1773 
   1774 	/* Set our station address */
   1775 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1776 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1777 
   1778 	/*
   1779 	 * Set receive FIFO threshold. Also allow transmission and
   1780 	 * reception of VLAN tagged frames.
   1781 	 */
   1782 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
   1783 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);
   1784 
   1785 	/* Set DMA burst length */
   1786 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1787 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1788 
   1789 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);
   1790 
   1791 	/* Set collision backoff algorithm */
   1792 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
   1793 	    VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
   1794 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFFSET);
   1795 
   1796 	/* Disable LPSEL field in priority resolution */
   1797 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1798 
   1799 	/*
   1800 	 * Load the addresses of the DMA queues into the chip.
   1801 	 * Note that we only use one transmit queue.
   1802 	 */
   1803 
   1804 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(VGE_CDTXADDR(sc, 0)));
   1805 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1806 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1807 
   1808 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1809 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1810 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1811 
   1812 	/* Enable and wake up the RX descriptor queue */
   1813 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1814 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1815 
   1816 	/* Enable the TX descriptor queue */
   1817 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1818 
   1819 	/* Set up the receive filter -- allow large frames for VLANs. */
   1820 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);
   1821 
   1822 	/* If we want promiscuous mode, set the allframes bit. */
   1823 	if (ifp->if_flags & IFF_PROMISC) {
   1824 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1825 	}
   1826 
   1827 	/* Set capture broadcast bit to capture broadcast frames. */
   1828 	if (ifp->if_flags & IFF_BROADCAST) {
   1829 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1830 	}
   1831 
   1832 	/* Set multicast bit to capture multicast frames. */
   1833 	if (ifp->if_flags & IFF_MULTICAST) {
   1834 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1835 	}
   1836 
   1837 	/* Init the cam filter. */
   1838 	vge_cam_clear(sc);
   1839 
   1840 	/* Init the multicast filter. */
   1841 	vge_setmulti(sc);
   1842 
   1843 	/* Enable flow control */
   1844 
   1845 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1846 
   1847 	/* Enable jumbo frame reception (if desired) */
   1848 
   1849 	/* Start the MAC. */
   1850 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1851 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1852 	CSR_WRITE_1(sc, VGE_CRS0,
   1853 	    VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);
   1854 
   1855 	/*
   1856 	 * Configure one-shot timer for microsecond
   1857 	 * resolution and load it for 500 usecs.
   1858 	 */
   1859 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1860 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1861 
   1862 	/*
   1863 	 * Configure interrupt moderation for receive. Enable
   1864 	 * the holdoff counter and load it, and set the RX
   1865 	 * suppression count to the number of descriptors we
   1866 	 * want to allow before triggering an interrupt.
   1867 	 * The holdoff timer is in units of 20 usecs.
   1868 	 */
   1869 
   1870 #ifdef notyet
   1871 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1872 	/* Select the interrupt holdoff timer page. */
   1873 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1874 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1875 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1876 
   1877 	/* Enable use of the holdoff timer. */
   1878 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1879 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1880 
   1881 	/* Select the RX suppression threshold page. */
   1882 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1883 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1884 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1885 
   1886 	/* Restore the page select bits. */
   1887 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1888 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1889 #endif
   1890 
   1891 #ifdef DEVICE_POLLING
   1892 	/*
   1893 	 * Disable interrupts if we are polling.
   1894 	 */
   1895 	if (ifp->if_flags & IFF_POLLING) {
   1896 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1897 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1898 	} else	/* otherwise ... */
   1899 #endif /* DEVICE_POLLING */
   1900 	{
   1901 	/*
   1902 	 * Enable interrupts.
   1903 	 */
   1904 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1905 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1906 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1907 	}
   1908 
   1909 	if ((rc = ether_mediachange(ifp)) != 0)
   1910 		goto out;
   1911 
   1912 	ifp->if_flags |= IFF_RUNNING;
   1913 
   1914 	sc->sc_if_flags = 0;
   1915 	sc->sc_link = 0;
   1916 
   1917 	callout_schedule(&sc->sc_timeout, hz);
   1918 
   1919 out:
   1920 	return rc;
   1921 }
   1922 
   1923 static void
   1924 vge_miibus_statchg(struct ifnet *ifp)
   1925 {
   1926 	struct vge_softc *sc = ifp->if_softc;
   1927 	struct mii_data *mii = &sc->sc_mii;
   1928 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
   1929 	uint8_t dctl;
   1930 
   1931 	/*
   1932 	 * If the user manually selects a media mode, we need to turn
   1933 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1934 	 * user happens to choose a full duplex mode, we also need to
   1935 	 * set the 'force full duplex' bit. This applies only to
   1936 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1937 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1938 	 * always implied, so we turn on the forced mode bit but leave
   1939 	 * the FDX bit cleared.
   1940 	 */
   1941 	dctl = CSR_READ_1(sc, VGE_DIAGCTL);
   1942 
   1943 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   1944 		dctl &= ~VGE_DIAGCTL_MACFORCE;
   1945 		dctl &= ~VGE_DIAGCTL_FDXFORCE;
   1946 	} else {
   1947 		u_int ifmword;
   1948 
   1949 		/* If the link is up, use the current active media. */
   1950 		if ((mii->mii_media_status & IFM_ACTIVE) != 0)
   1951 			ifmword = mii->mii_media_active;
   1952 		else
   1953 			ifmword = ife->ifm_media;
   1954 
   1955 		dctl |= VGE_DIAGCTL_MACFORCE;
   1956 		if ((ifmword & IFM_FDX) != 0)
   1957 			dctl |= VGE_DIAGCTL_FDXFORCE;
   1958 		else
   1959 			dctl &= ~VGE_DIAGCTL_FDXFORCE;
   1960 
   1961 		if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
   1962 			/*
   1963 			 * It means the user setting is not auto but it's
   1964 			 * 1000baseT-FDX or 1000baseT.
   1965 			 */
   1966 			dctl |= VGE_DIAGCTL_GMII;
   1967 		} else
   1968 			dctl &= ~VGE_DIAGCTL_GMII;
   1969 	}
   1970 
   1971 	CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
   1972 }
   1973 
   1974 static int
   1975 vge_ifflags_cb(struct ethercom *ec)
   1976 {
   1977 	struct ifnet *ifp = &ec->ec_if;
   1978 	struct vge_softc *sc = ifp->if_softc;
   1979 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
   1980 
   1981 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   1982 		return ENETRESET;
   1983 	else if ((change & IFF_PROMISC) == 0)
   1984 		return 0;
   1985 
   1986 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   1987 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1988 	else
   1989 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1990 	vge_setmulti(sc);
   1991 	return 0;
   1992 }
   1993 
   1994 static int
   1995 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   1996 {
   1997 	struct vge_softc *sc;
   1998 	int s, error;
   1999 
   2000 	sc = ifp->if_softc;
   2001 	error = 0;
   2002 
   2003 	s = splnet();
   2004 
   2005 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
   2006 		error = 0;
   2007 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2008 			;
   2009 		else if (ifp->if_flags & IFF_RUNNING) {
   2010 			/*
   2011 			 * Multicast list has changed; set the hardware filter
   2012 			 * accordingly.
   2013 			 */
   2014 			vge_setmulti(sc);
   2015 		}
   2016 	}
   2017 	sc->sc_if_flags = ifp->if_flags;
   2018 
   2019 	splx(s);
   2020 	return error;
   2021 }
   2022 
   2023 static void
   2024 vge_watchdog(struct ifnet *ifp)
   2025 {
   2026 	struct vge_softc *sc;
   2027 	int s;
   2028 
   2029 	sc = ifp->if_softc;
   2030 	s = splnet();
   2031 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2032 	if_statinc(ifp, if_oerrors);
   2033 
   2034 	vge_txeof(sc);
   2035 	vge_rxeof(sc);
   2036 
   2037 	vge_init(ifp);
   2038 
   2039 	splx(s);
   2040 }
   2041 
   2042 /*
   2043  * Stop the adapter and free any mbufs allocated to the
   2044  * RX and TX lists.
   2045  */
   2046 static void
   2047 vge_stop(struct ifnet *ifp, int disable)
   2048 {
   2049 	struct vge_softc *sc = ifp->if_softc;
   2050 	struct vge_txsoft *txs;
   2051 	struct vge_rxsoft *rxs;
   2052 	int i, s;
   2053 
   2054 	s = splnet();
   2055 	ifp->if_timer = 0;
   2056 
   2057 	ifp->if_flags &= ~IFF_RUNNING;
   2058 #ifdef DEVICE_POLLING
   2059 	ether_poll_deregister(ifp);
   2060 #endif /* DEVICE_POLLING */
   2061 
   2062 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2063 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2064 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2065 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2066 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2067 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2068 
   2069 	if (sc->sc_rx_mhead != NULL) {
   2070 		m_freem(sc->sc_rx_mhead);
   2071 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2072 	}
   2073 
   2074 	/* Free the TX list buffers. */
   2075 
   2076 	for (i = 0; i < VGE_NTXDESC; i++) {
   2077 		txs = &sc->sc_txsoft[i];
   2078 		if (txs->txs_mbuf != NULL) {
   2079 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2080 			m_freem(txs->txs_mbuf);
   2081 			txs->txs_mbuf = NULL;
   2082 		}
   2083 	}
   2084 
   2085 	/* Free the RX list buffers. */
   2086 
   2087 	for (i = 0; i < VGE_NRXDESC; i++) {
   2088 		rxs = &sc->sc_rxsoft[i];
   2089 		if (rxs->rxs_mbuf != NULL) {
   2090 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2091 			m_freem(rxs->rxs_mbuf);
   2092 			rxs->rxs_mbuf = NULL;
   2093 		}
   2094 	}
   2095 
   2096 	splx(s);
   2097 }
   2098 
   2099 #if VGE_POWER_MANAGEMENT
   2100 /*
   2101  * Device suspend routine.  Stop the interface and save some PCI
   2102  * settings in case the BIOS doesn't restore them properly on
   2103  * resume.
   2104  */
   2105 static int
   2106 vge_suspend(device_t dev)
   2107 {
   2108 	struct vge_softc *sc;
   2109 	int i;
   2110 
   2111 	sc = device_get_softc(dev);
   2112 
   2113 	vge_stop(sc);
   2114 
   2115 	for (i = 0; i < 5; i++)
   2116 		sc->sc_saved_maps[i] =
   2117 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2118 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2119 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2120 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2121 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2122 
   2123 	sc->suspended = 1;
   2124 
   2125 	return 0;
   2126 }
   2127 
   2128 /*
   2129  * Device resume routine.  Restore some PCI settings in case the BIOS
   2130  * doesn't, re-enable busmastering, and restart the interface if
   2131  * appropriate.
   2132  */
   2133 static int
   2134 vge_resume(device_t dev)
   2135 {
   2136 	struct vge_softc *sc;
   2137 	struct ifnet *ifp;
   2138 	int i;
   2139 
   2140 	sc = device_private(dev);
   2141 	ifp = &sc->sc_ethercom.ec_if;
   2142 
   2143 	/* better way to do this? */
   2144 	for (i = 0; i < 5; i++)
   2145 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2146 		    sc->sc_saved_maps[i], 4);
   2147 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2148 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2149 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2150 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2151 
   2152 	/* reenable busmastering */
   2153 	pci_enable_busmaster(dev);
   2154 	pci_enable_io(dev, SYS_RES_MEMORY);
   2155 
   2156 	/* reinitialize interface if necessary */
   2157 	if (ifp->if_flags & IFF_UP)
   2158 		vge_init(sc);
   2159 
   2160 	sc->suspended = 0;
   2161 
   2162 	return 0;
   2163 }
   2164 #endif
   2165 
   2166 /*
   2167  * Stop all chip I/O so that the kernel's probe routines don't
   2168  * get confused by errant DMAs when rebooting.
   2169  */
   2170 static bool
   2171 vge_shutdown(device_t self, int howto)
   2172 {
   2173 	struct vge_softc *sc;
   2174 
   2175 	sc = device_private(self);
   2176 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2177 
   2178 	return true;
   2179 }
   2180 
   2181 static void
   2182 vge_clrwol(struct vge_softc *sc)
   2183 {
   2184 	uint8_t val;
   2185 
   2186 	val = CSR_READ_1(sc, VGE_PWRSTAT);
   2187 	val &= ~VGE_STICKHW_SWPTAG;
   2188 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
   2189 	/* Disable WOL and clear power state indicator. */
   2190 	val = CSR_READ_1(sc, VGE_PWRSTAT);
   2191 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
   2192 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
   2193 
   2194 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
   2195 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2196 
   2197 	/* Clear WOL on pattern match. */
   2198 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
   2199 	/* Disable WOL on magic/unicast packet. */
   2200 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
   2201 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
   2202 	    VGE_WOLCFG_PMEOVR);
   2203 	/* Clear WOL status on pattern match. */
   2204 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
   2205 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
   2206 }
   2207