Home | History | Annotate | Line # | Download | only in ld.elf_so
      1 /*	$NetBSD: tls.c,v 1.23 2024/11/30 01:04:05 christos Exp $	*/
      2 /*-
      3  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Joerg Sonnenberger.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __RCSID("$NetBSD: tls.c,v 1.23 2024/11/30 01:04:05 christos Exp $");
     33 
     34 /*
     35  * Thread-local storage
     36  *
     37  * Reference:
     38  *
     39  *	[ELFTLS] Ulrich Drepper, `ELF Handling For Thread-Local
     40  *	Storage', Version 0.21, 2023-08-22.
     41  *	https://akkadia.org/drepper/tls.pdf
     42  *	https://web.archive.org/web/20240718081934/https://akkadia.org/drepper/tls.pdf
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/ucontext.h>
     47 #include <lwp.h>
     48 #include <stdalign.h>
     49 #include <stddef.h>
     50 #include <string.h>
     51 #include "debug.h"
     52 #include "rtld.h"
     53 
     54 #include <machine/lwp_private.h>
     55 
     56 #if defined(__HAVE_TLS_VARIANT_I) || defined(__HAVE_TLS_VARIANT_II)
     57 
     58 static struct tls_tcb *_rtld_tls_allocate_locked(void);
     59 static void *_rtld_tls_module_allocate(struct tls_tcb *, size_t);
     60 
     61 /*
     62  * DTV offset
     63  *
     64  *	On some architectures (m68k, mips, or1k, powerpc, and riscv),
     65  *	the DTV offsets passed to __tls_get_addr have a bias relative
     66  *	to the start of the DTV, in order to maximize the range of TLS
     67  *	offsets that can be used by instruction encodings with signed
     68  *	displacements.
     69  */
     70 #ifndef TLS_DTV_OFFSET
     71 #define	TLS_DTV_OFFSET	0
     72 #endif
     73 
     74 static size_t _rtld_tls_static_space;	/* Static TLS space allocated */
     75 static size_t _rtld_tls_static_offset;	/* Next offset for static TLS to use */
     76 size_t _rtld_tls_dtv_generation = 1;	/* Bumped on each load of obj w/ TLS */
     77 size_t _rtld_tls_max_index = 1;		/* Max index into up-to-date DTV */
     78 
     79 /*
     80  * DTV -- Dynamic Thread Vector
     81  *
     82  *	The DTV is a per-thread array that maps each module with
     83  *	thread-local storage to a pointer into part of the thread's TCB
     84  *	(thread control block), or dynamically loaded TLS blocks,
     85  *	reserved for that module's storage.
     86  *
     87  *	The TCB itself, struct tls_tcb, has a pointer to the DTV at
     88  *	tcb->tcb_dtv.
     89  *
     90  *	The layout is:
     91  *
     92  *		+---------------+
     93  *		| max index     | -1    max index i for which dtv[i] is alloced
     94  *		+---------------+
     95  *		| generation    |  0    void **dtv points here
     96  *		+---------------+
     97  *		| obj 1 tls ptr |  1    TLS pointer for obj w/ obj->tlsindex 1
     98  *		+---------------+
     99  *		| obj 2 tls ptr |  2    TLS pointer for obj w/ obj->tlsindex 2
    100  *		+---------------+
    101  *		  .
    102  *		  .
    103  *		  .
    104  *
    105  *	The values of obj->tlsindex start at 1; this way,
    106  *	dtv[obj->tlsindex] works, when dtv[0] is the generation.  The
    107  *	TLS pointers go either into the static thread-local storage,
    108  *	for the initial objects (i.e., those loaded at startup), or
    109  *	into TLS blocks dynamically allocated for objects that
    110  *	dynamically loaded by dlopen.
    111  *
    112  *	The generation field is a cache of the global generation number
    113  *	_rtld_tls_dtv_generation, which is bumped every time an object
    114  *	with TLS is loaded in _rtld_map_object, and cached by
    115  *	__tls_get_addr (via _rtld_tls_get_addr) when a newly loaded
    116  *	module lies outside the bounds of the current DTV.
    117  *
    118  *	XXX Why do we keep max index and generation separately?  They
    119  *	appear to be initialized the same, always incremented together,
    120  *	and always stored together.
    121  *
    122  *	XXX Why is this not a struct?
    123  *
    124  *		struct dtv {
    125  *			size_t	dtv_gen;
    126  *			void	*dtv_module[];
    127  *		};
    128  */
    129 #define	DTV_GENERATION(dtv)		((size_t)((dtv)[0]))
    130 #define	DTV_MAX_INDEX(dtv)		((size_t)((dtv)[-1]))
    131 #define	SET_DTV_GENERATION(dtv, val)	(dtv)[0] = (void *)(size_t)(val)
    132 #define	SET_DTV_MAX_INDEX(dtv, val)	(dtv)[-1] = (void *)(size_t)(val)
    133 
    134 /*
    135  * _rtld_tls_get_addr(tcb, idx, offset)
    136  *
    137  *	Slow path for __tls_get_addr (see below), called to allocate
    138  *	TLS space if needed for the object obj with obj->tlsindex idx,
    139  *	at offset, which must be below obj->tlssize.
    140  *
    141  *	This may allocate a DTV if the current one is too old, and it
    142  *	may allocate a dynamically loaded TLS block if there isn't one
    143  *	already allocated for it.
    144  *
    145  *	XXX Why is the first argument passed as `void *tls' instead of
    146  *	just `struct tls_tcb *tcb'?
    147  */
    148 void *
    149 _rtld_tls_get_addr(void *tls, size_t idx, size_t offset)
    150 {
    151 	struct tls_tcb *tcb = tls;
    152 	void **dtv, **new_dtv;
    153 	sigset_t mask;
    154 
    155 	_rtld_exclusive_enter(&mask);
    156 
    157 	dtv = tcb->tcb_dtv;
    158 
    159 	/*
    160 	 * If the generation number has changed, we have to allocate a
    161 	 * new DTV.
    162 	 *
    163 	 * XXX Do we really?  Isn't it enough to check whether idx <=
    164 	 * DTV_MAX_INDEX(dtv)?
    165 	 */
    166 	if (__predict_false(DTV_GENERATION(dtv) != _rtld_tls_dtv_generation)) {
    167 		size_t to_copy = DTV_MAX_INDEX(dtv);
    168 
    169 		/*
    170 		 * "2 +" because the first element is the generation and
    171 		 * the second one is the maximum index.
    172 		 */
    173 		new_dtv = xcalloc((2 + _rtld_tls_max_index) * sizeof(*dtv));
    174 		++new_dtv;		/* advance past DTV_MAX_INDEX */
    175 		if (to_copy > _rtld_tls_max_index)	/* XXX How? */
    176 			to_copy = _rtld_tls_max_index;
    177 		memcpy(new_dtv + 1, dtv + 1, to_copy * sizeof(*dtv));
    178 		xfree(dtv - 1);		/* retreat back to DTV_MAX_INDEX */
    179 		dtv = tcb->tcb_dtv = new_dtv;
    180 		SET_DTV_MAX_INDEX(dtv, _rtld_tls_max_index);
    181 		SET_DTV_GENERATION(dtv, _rtld_tls_dtv_generation);
    182 	}
    183 
    184 	if (__predict_false(dtv[idx] == NULL))
    185 		dtv[idx] = _rtld_tls_module_allocate(tcb, idx);
    186 
    187 	_rtld_exclusive_exit(&mask);
    188 
    189 	return (uint8_t *)dtv[idx] + offset;
    190 }
    191 
    192 /*
    193  * _rtld_tls_initial_allocation()
    194  *
    195  *	Allocate the TCB (thread control block) for the initial thread,
    196  *	once the static TLS space usage has been determined (plus some
    197  *	slop to allow certain special cases like Mesa to be dlopened).
    198  *
    199  *	This must be done _after_ all initial objects (i.e., those
    200  *	loaded at startup, as opposed to objects dynamically loaded by
    201  *	dlopen) have had TLS offsets allocated if need be by
    202  *	_rtld_tls_offset_allocate, and have had relocations processed.
    203  */
    204 void
    205 _rtld_tls_initial_allocation(void)
    206 {
    207 	struct tls_tcb *tcb;
    208 
    209 	_rtld_tls_static_space = _rtld_tls_static_offset +
    210 	    RTLD_STATIC_TLS_RESERVATION;
    211 
    212 #ifndef __HAVE_TLS_VARIANT_I
    213 	_rtld_tls_static_space = roundup2(_rtld_tls_static_space,
    214 	    alignof(max_align_t));
    215 #endif
    216 	dbg(("_rtld_tls_static_space %zu", _rtld_tls_static_space));
    217 
    218 	tcb = _rtld_tls_allocate_locked();
    219 #ifdef __HAVE___LWP_SETTCB
    220 	__lwp_settcb(tcb);
    221 #else
    222 	_lwp_setprivate(tcb);
    223 #endif
    224 }
    225 
    226 /*
    227  * _rtld_tls_allocate_locked()
    228  *
    229  *	Internal subroutine to allocate a TCB (thread control block)
    230  *	for the current thread.
    231  *
    232  *	This allocates a DTV and a TCB that points to it, including
    233  *	static space in the TCB for the TLS of the initial objects.
    234  *	TLS blocks for dynamically loaded objects are allocated lazily.
    235  *
    236  *	Caller must either be single-threaded (at startup via
    237  *	_rtld_tls_initial_allocation) or hold the rtld exclusive lock
    238  *	(via _rtld_tls_allocate).
    239  */
    240 static struct tls_tcb *
    241 _rtld_tls_allocate_locked(void)
    242 {
    243 	Obj_Entry *obj;
    244 	struct tls_tcb *tcb;
    245 	uint8_t *p, *q;
    246 
    247 	p = xcalloc(_rtld_tls_static_space + sizeof(struct tls_tcb));
    248 #ifdef __HAVE_TLS_VARIANT_I
    249 	tcb = (struct tls_tcb *)p;
    250 	p += sizeof(struct tls_tcb);
    251 #else
    252 	p += _rtld_tls_static_space;
    253 	tcb = (struct tls_tcb *)p;
    254 	tcb->tcb_self = tcb;
    255 #endif
    256 	dbg(("lwp %d tls tcb %p", _lwp_self(), tcb));
    257 	/*
    258 	 * "2 +" because the first element is the generation and the second
    259 	 * one is the maximum index.
    260 	 */
    261 	tcb->tcb_dtv = xcalloc(sizeof(*tcb->tcb_dtv) * (2 + _rtld_tls_max_index));
    262 	++tcb->tcb_dtv;		/* advance past DTV_MAX_INDEX */
    263 	SET_DTV_MAX_INDEX(tcb->tcb_dtv, _rtld_tls_max_index);
    264 	SET_DTV_GENERATION(tcb->tcb_dtv, _rtld_tls_dtv_generation);
    265 
    266 	for (obj = _rtld_objlist; obj != NULL; obj = obj->next) {
    267 		if (obj->tls_static) {
    268 #ifdef __HAVE_TLS_VARIANT_I
    269 			q = p + obj->tlsoffset;
    270 #else
    271 			q = p - obj->tlsoffset;
    272 #endif
    273 			dbg(("%s: [lwp %d] tls dtv %p index %zu offset %zu",
    274 			    obj->path, _lwp_self(),
    275 			    q, obj->tlsindex, obj->tlsoffset));
    276 			if (obj->tlsinitsize)
    277 				memcpy(q, obj->tlsinit, obj->tlsinitsize);
    278 			tcb->tcb_dtv[obj->tlsindex] = q;
    279 		}
    280 	}
    281 
    282 	return tcb;
    283 }
    284 
    285 /*
    286  * _rtld_tls_allocate()
    287  *
    288  *	Allocate a TCB (thread control block) for the current thread.
    289  *
    290  *	Called by pthread_create for non-initial threads.  (The initial
    291  *	thread's TCB is allocated by _rtld_tls_initial_allocation.)
    292  */
    293 struct tls_tcb *
    294 _rtld_tls_allocate(void)
    295 {
    296 	struct tls_tcb *tcb;
    297 	sigset_t mask;
    298 
    299 	_rtld_exclusive_enter(&mask);
    300 	tcb = _rtld_tls_allocate_locked();
    301 	_rtld_exclusive_exit(&mask);
    302 
    303 	return tcb;
    304 }
    305 
    306 /*
    307  * _rtld_tls_free(tcb)
    308  *
    309  *	Free a TCB allocated with _rtld_tls_allocate.
    310  *
    311  *	Frees any TLS blocks for dynamically loaded objects that tcb's
    312  *	DTV points to, and frees tcb's DTV, and frees tcb.
    313  */
    314 void
    315 _rtld_tls_free(struct tls_tcb *tcb)
    316 {
    317 	size_t i, max_index;
    318 	uint8_t *p, *p_end;
    319 	sigset_t mask;
    320 
    321 	_rtld_exclusive_enter(&mask);
    322 
    323 #ifdef __HAVE_TLS_VARIANT_I
    324 	p = (uint8_t *)tcb;
    325 #else
    326 	p = (uint8_t *)tcb - _rtld_tls_static_space;
    327 #endif
    328 	p_end = p + _rtld_tls_static_space;
    329 
    330 	max_index = DTV_MAX_INDEX(tcb->tcb_dtv);
    331 	for (i = 1; i <= max_index; ++i) {
    332 		if ((uint8_t *)tcb->tcb_dtv[i] < p ||
    333 		    (uint8_t *)tcb->tcb_dtv[i] >= p_end)
    334 			xfree(tcb->tcb_dtv[i]);
    335 	}
    336 	xfree(tcb->tcb_dtv - 1);	/* retreat back to DTV_MAX_INDEX */
    337 	xfree(p);
    338 
    339 	_rtld_exclusive_exit(&mask);
    340 }
    341 
    342 /*
    343  * _rtld_tls_module_allocate(tcb, idx)
    344  *
    345  *	Allocate thread-local storage in the thread with the given TCB
    346  *	(thread control block) for the object obj whose obj->tlsindex
    347  *	is idx.
    348  *
    349  *	If obj has had space in static TLS reserved (obj->tls_static),
    350  *	return a pointer into that.  Otherwise, allocate a TLS block,
    351  *	mark obj as having a TLS block allocated (obj->tls_dynamic),
    352  *	and return it.
    353  *
    354  *	Called by _rtld_tls_get_addr to get the thread-local storage
    355  *	for an object the first time around.
    356  */
    357 static void *
    358 _rtld_tls_module_allocate(struct tls_tcb *tcb, size_t idx)
    359 {
    360 	Obj_Entry *obj;
    361 	uint8_t *p;
    362 
    363 	for (obj = _rtld_objlist; obj != NULL; obj = obj->next) {
    364 		if (obj->tlsindex == idx)
    365 			break;
    366 	}
    367 	if (obj == NULL) {
    368 		_rtld_error("Module for TLS index %zu missing", idx);
    369 		_rtld_die();
    370 	}
    371 	if (obj->tls_static) {
    372 #ifdef __HAVE_TLS_VARIANT_I
    373 		p = (uint8_t *)tcb + obj->tlsoffset + sizeof(struct tls_tcb);
    374 #else
    375 		p = (uint8_t *)tcb - obj->tlsoffset;
    376 #endif
    377 		return p;
    378 	}
    379 
    380 	p = xmalloc(obj->tlssize);
    381 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
    382 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
    383 
    384 	obj->tls_dynamic = 1;
    385 
    386 	return p;
    387 }
    388 
    389 /*
    390  * _rtld_tls_offset_allocate(obj)
    391  *
    392  *	Allocate a static thread-local storage offset for obj.
    393  *
    394  *	Called by _rtld at startup for all initial objects.  Called
    395  *	also by MD relocation logic, which is allowed (for Mesa) to
    396  *	allocate an additional 64 bytes (RTLD_STATIC_TLS_RESERVATION)
    397  *	of static thread-local storage in dlopened objects.
    398  */
    399 int
    400 _rtld_tls_offset_allocate(Obj_Entry *obj)
    401 {
    402 	size_t offset, next_offset;
    403 
    404 	if (obj->tls_dynamic)
    405 		return -1;
    406 
    407 	if (obj->tls_static)
    408 		return 0;
    409 	if (obj->tlssize == 0) {
    410 		obj->tlsoffset = 0;
    411 		obj->tls_static = 1;
    412 		return 0;
    413 	}
    414 
    415 #ifdef __HAVE_TLS_VARIANT_I
    416 	offset = roundup2(_rtld_tls_static_offset, obj->tlsalign);
    417 	next_offset = offset + obj->tlssize;
    418 #else
    419 	offset = roundup2(_rtld_tls_static_offset + obj->tlssize,
    420 	    obj->tlsalign);
    421 	next_offset = offset;
    422 #endif
    423 
    424 	/*
    425 	 * Check if the static allocation was already done.
    426 	 * This happens if dynamically loaded modules want to use
    427 	 * static TLS space.
    428 	 *
    429 	 * XXX Keep an actual free list and callbacks for initialisation.
    430 	 */
    431 	if (_rtld_tls_static_space) {
    432 		if (obj->tlsinitsize) {
    433 			_rtld_error("%s: Use of initialized "
    434 			    "Thread Local Storage with model initial-exec "
    435 			    "and dlopen is not supported",
    436 			    obj->path);
    437 			return -1;
    438 		}
    439 		if (next_offset > _rtld_tls_static_space) {
    440 			_rtld_error("%s: No space available "
    441 			    "for static Thread Local Storage",
    442 			    obj->path);
    443 			return -1;
    444 		}
    445 	}
    446 	obj->tlsoffset = offset;
    447 	dbg(("%s: static tls offset 0x%zx size %zu\n",
    448 	    obj->path, obj->tlsoffset, obj->tlssize));
    449 	_rtld_tls_static_offset = next_offset;
    450 	obj->tls_static = 1;
    451 
    452 	return 0;
    453 }
    454 
    455 /*
    456  * _rtld_tls_offset_free(obj)
    457  *
    458  *	Free a static thread-local storage offset for obj.
    459  *
    460  *	Called by dlclose (via _rtld_unload_object -> _rtld_obj_free).
    461  *
    462  *	Since static thread-local storage is normally not used by
    463  *	dlopened objects (with the exception of Mesa), this doesn't do
    464  *	anything to recycle the space right now.
    465  */
    466 void
    467 _rtld_tls_offset_free(Obj_Entry *obj)
    468 {
    469 
    470 	/*
    471 	 * XXX See above.
    472 	 */
    473 	obj->tls_static = 0;
    474 	return;
    475 }
    476 
    477 #if defined(__HAVE_COMMON___TLS_GET_ADDR) && defined(RTLD_LOADER)
    478 /*
    479  * __tls_get_addr(tlsindex)
    480  *
    481  *	Symbol directly called by code generated by the compiler for
    482  *	references thread-local storage in the general-dynamic or
    483  *	local-dynamic TLS models (but not initial-exec or local-exec).
    484  *
    485  *	The argument is a pointer to
    486  *
    487  *		struct {
    488  *			unsigned long int ti_module;
    489  *			unsigned long int ti_offset;
    490  *		};
    491  *
    492  *	 as in, e.g., [ELFTLS] Sec. 3.4.3.  This coincides with the
    493  *	 type size_t[2] on all architectures that use this common
    494  *	 __tls_get_addr definition (XXX but why do we write it as
    495  *	 size_t[2]?).
    496  *
    497  *	 ti_module, i.e., arg[0], is the obj->tlsindex assigned at
    498  *	 load-time by _rtld_map_object, and ti_offset, i.e., arg[1], is
    499  *	 assigned at link-time by ld(1), possibly adjusted by
    500  *	 TLS_DTV_OFFSET.
    501  *
    502  *	 Some architectures -- specifically IA-64 -- use a different
    503  *	 calling convention.  Some architectures -- specifically i386
    504  *	 -- also use another entry point ___tls_get_addr (that's three
    505  *	 leading underscores) with a different calling convention.
    506  */
    507 void *
    508 __tls_get_addr(void *arg_)
    509 {
    510 	size_t *arg = (size_t *)arg_;
    511 	void **dtv;
    512 #ifdef __HAVE___LWP_GETTCB_FAST
    513 	struct tls_tcb * const tcb = __lwp_gettcb_fast();
    514 #else
    515 	struct tls_tcb * const tcb = __lwp_getprivate_fast();
    516 #endif
    517 	size_t idx = arg[0], offset = arg[1] + TLS_DTV_OFFSET;
    518 
    519 	dtv = tcb->tcb_dtv;
    520 
    521 	/*
    522 	 * Fast path: access to an already allocated DTV entry.  This
    523 	 * checks the current limit and the entry without needing any
    524 	 * locking.  Entries are only freed on dlclose() and it is an
    525 	 * application bug if code of the module is still running at
    526 	 * that point.
    527 	 */
    528 	if (__predict_true(idx <= DTV_MAX_INDEX(dtv) && dtv[idx] != NULL))
    529 		return (uint8_t *)dtv[idx] + offset;
    530 
    531 	return _rtld_tls_get_addr(tcb, idx, offset);
    532 }
    533 #endif
    534 
    535 #endif /* __HAVE_TLS_VARIANT_I || __HAVE_TLS_VARIANT_II */
    536