Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_age.c,v 1.74 2024/06/29 12:11:11 riastradh Exp $ */
      2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice unmodified, this list of conditions, and the following
     13  *    disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.74 2024/06/29 12:11:11 riastradh Exp $");
     35 
     36 #include "vlan.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/proc.h>
     40 #include <sys/endian.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/queue.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/callout.h>
     49 #include <sys/socket.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 
     56 #ifdef INET
     57 #include <netinet/in.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/in_var.h>
     60 #include <netinet/ip.h>
     61 #endif
     62 
     63 #include <net/if_types.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net/bpf.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 
     71 #include <dev/pci/pcireg.h>
     72 #include <dev/pci/pcivar.h>
     73 #include <dev/pci/pcidevs.h>
     74 
     75 #include <dev/pci/if_agereg.h>
     76 
     77 static int	age_match(device_t, cfdata_t, void *);
     78 static void	age_attach(device_t, device_t, void *);
     79 static int	age_detach(device_t, int);
     80 
     81 static bool	age_resume(device_t, const pmf_qual_t *);
     82 
     83 static int	age_miibus_readreg(device_t, int, int, uint16_t *);
     84 static int	age_miibus_writereg(device_t, int, int, uint16_t);
     85 static void	age_miibus_statchg(struct ifnet *);
     86 
     87 static int	age_init(struct ifnet *);
     88 static int	age_ioctl(struct ifnet *, u_long, void *);
     89 static void	age_start(struct ifnet *);
     90 static void	age_watchdog(struct ifnet *);
     91 static bool	age_shutdown(device_t, int);
     92 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
     93 static int	age_mediachange(struct ifnet *);
     94 
     95 static int	age_intr(void *);
     96 static int	age_dma_alloc(struct age_softc *);
     97 static void	age_dma_free(struct age_softc *);
     98 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
     99 static void	age_phy_reset(struct age_softc *);
    100 
    101 static int	age_encap(struct age_softc *, struct mbuf *);
    102 static void	age_init_tx_ring(struct age_softc *);
    103 static int	age_init_rx_ring(struct age_softc *);
    104 static void	age_init_rr_ring(struct age_softc *);
    105 static void	age_init_cmb_block(struct age_softc *);
    106 static void	age_init_smb_block(struct age_softc *);
    107 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
    108 static void	age_mac_config(struct age_softc *);
    109 static void	age_txintr(struct age_softc *, int);
    110 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
    111 static void	age_rxintr(struct age_softc *, int);
    112 static void	age_tick(void *);
    113 static void	age_reset(struct age_softc *);
    114 static void	age_stop(struct ifnet *, int);
    115 static void	age_stats_update(struct age_softc *);
    116 static void	age_stop_txmac(struct age_softc *);
    117 static void	age_stop_rxmac(struct age_softc *);
    118 static void	age_rxvlan(struct age_softc *sc);
    119 static void	age_rxfilter(struct age_softc *);
    120 
    121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
    122     age_match, age_attach, age_detach, NULL);
    123 
    124 int agedebug = 0;
    125 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
    126 
    127 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
    128 
    129 static int
    130 age_match(device_t dev, cfdata_t match, void *aux)
    131 {
    132 	struct pci_attach_args *pa = aux;
    133 
    134 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
    135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
    136 }
    137 
    138 static void
    139 age_attach(device_t parent, device_t self, void *aux)
    140 {
    141 	struct age_softc *sc = device_private(self);
    142 	struct pci_attach_args *pa = aux;
    143 	pci_intr_handle_t ih;
    144 	const char *intrstr;
    145 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    146 	struct mii_data * const mii = &sc->sc_miibus;
    147 	pcireg_t memtype;
    148 	int error = 0;
    149 	char intrbuf[PCI_INTRSTR_LEN];
    150 
    151 	aprint_naive("\n");
    152 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
    153 
    154 	sc->sc_dev = self;
    155 	sc->sc_pct = pa->pa_pc;
    156 	sc->sc_pcitag = pa->pa_tag;
    157 
    158 	if (pci_dma64_available(pa))
    159 		sc->sc_dmat = pa->pa_dmat64;
    160 	else
    161 		sc->sc_dmat = pa->pa_dmat;
    162 
    163 	/*
    164 	 * Allocate IO memory
    165 	 */
    166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
    167 	switch (memtype) {
    168 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    169 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
    170 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    171 		break;
    172 	default:
    173 		aprint_error_dev(self, "invalid base address register\n");
    174 		break;
    175 	}
    176 
    177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
    178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
    179 		aprint_error_dev(self, "could not map mem space\n");
    180 		return;
    181 	}
    182 
    183 	if (pci_intr_map(pa, &ih) != 0) {
    184 		aprint_error_dev(self, "could not map interrupt\n");
    185 		goto fail;
    186 	}
    187 
    188 	/*
    189 	 * Allocate IRQ
    190 	 */
    191 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    192 	sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
    193 	    age_intr, sc, device_xname(self));
    194 	if (sc->sc_irq_handle == NULL) {
    195 		aprint_error_dev(self, "could not establish interrupt");
    196 		if (intrstr != NULL)
    197 			aprint_error(" at %s", intrstr);
    198 		aprint_error("\n");
    199 		goto fail;
    200 	}
    201 	aprint_normal_dev(self, "%s\n", intrstr);
    202 
    203 	/* Set PHY address. */
    204 	sc->age_phyaddr = AGE_PHY_ADDR;
    205 
    206 	/* Reset PHY. */
    207 	age_phy_reset(sc);
    208 
    209 	/* Reset the ethernet controller. */
    210 	age_reset(sc);
    211 
    212 	/* Get PCI and chip id/revision. */
    213 	sc->age_rev = PCI_REVISION(pa->pa_class);
    214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
    215 	    MASTER_CHIP_REV_SHIFT;
    216 
    217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
    218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
    219 
    220 	if (agedebug) {
    221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
    222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
    223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
    224 	}
    225 
    226 	/* Set max allowable DMA size. */
    227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
    228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
    229 
    230 	/* Allocate DMA stuffs */
    231 	error = age_dma_alloc(sc);
    232 	if (error)
    233 		goto fail;
    234 
    235 	callout_init(&sc->sc_tick_ch, 0);
    236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
    237 
    238 	/* Load station address. */
    239 	age_get_macaddr(sc, sc->sc_enaddr);
    240 
    241 	aprint_normal_dev(self, "Ethernet address %s\n",
    242 	    ether_sprintf(sc->sc_enaddr));
    243 
    244 	ifp->if_softc = sc;
    245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    246 	ifp->if_init = age_init;
    247 	ifp->if_ioctl = age_ioctl;
    248 	ifp->if_start = age_start;
    249 	ifp->if_stop = age_stop;
    250 	ifp->if_watchdog = age_watchdog;
    251 	ifp->if_baudrate = IF_Gbps(1);
    252 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
    253 	IFQ_SET_READY(&ifp->if_snd);
    254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    255 
    256 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
    257 
    258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
    259 				IFCAP_CSUM_TCPv4_Rx |
    260 				IFCAP_CSUM_UDPv4_Rx;
    261 #ifdef AGE_CHECKSUM
    262 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
    263 				IFCAP_CSUM_TCPv4_Tx |
    264 				IFCAP_CSUM_UDPv4_Tx;
    265 #endif
    266 
    267 #if NVLAN > 0
    268 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    269 	sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    270 #endif
    271 
    272 	/* Set up MII bus. */
    273 	mii->mii_ifp = ifp;
    274 	mii->mii_readreg = age_miibus_readreg;
    275 	mii->mii_writereg = age_miibus_writereg;
    276 	mii->mii_statchg = age_miibus_statchg;
    277 
    278 	sc->sc_ec.ec_mii = mii;
    279 	ifmedia_init(&mii->mii_media, 0, age_mediachange, age_mediastatus);
    280 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    281 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
    282 
    283 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    284 		aprint_error_dev(self, "no PHY found!\n");
    285 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    286 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    287 	} else
    288 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    289 
    290 	if_attach(ifp);
    291 	if_deferred_start_init(ifp, NULL);
    292 	ether_ifattach(ifp, sc->sc_enaddr);
    293 
    294 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
    295 		pmf_class_network_register(self, ifp);
    296 	else
    297 		aprint_error_dev(self, "couldn't establish power handler\n");
    298 
    299 	return;
    300 
    301 fail:
    302 	age_dma_free(sc);
    303 	if (sc->sc_irq_handle != NULL) {
    304 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    305 		sc->sc_irq_handle = NULL;
    306 	}
    307 	if (sc->sc_mem_size) {
    308 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    309 		sc->sc_mem_size = 0;
    310 	}
    311 }
    312 
    313 static int
    314 age_detach(device_t self, int flags)
    315 {
    316 	struct age_softc *sc = device_private(self);
    317 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    318 	int s;
    319 
    320 	pmf_device_deregister(self);
    321 	s = splnet();
    322 	age_stop(ifp, 0);
    323 	splx(s);
    324 
    325 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
    326 
    327 	ether_ifdetach(ifp);
    328 	if_detach(ifp);
    329 	age_dma_free(sc);
    330 
    331 	/* Delete all remaining media. */
    332 	ifmedia_fini(&sc->sc_miibus.mii_media);
    333 
    334 	if (sc->sc_irq_handle != NULL) {
    335 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
    336 		sc->sc_irq_handle = NULL;
    337 	}
    338 	if (sc->sc_mem_size) {
    339 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
    340 		sc->sc_mem_size = 0;
    341 	}
    342 	return 0;
    343 }
    344 
    345 /*
    346  *	Read a PHY register on the MII of the L1.
    347  */
    348 static int
    349 age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    350 {
    351 	struct age_softc *sc = device_private(dev);
    352 	uint32_t v;
    353 	int i;
    354 
    355 	if (phy != sc->age_phyaddr)
    356 		return -1;
    357 
    358 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
    359 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    360 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    361 		DELAY(1);
    362 		v = CSR_READ_4(sc, AGE_MDIO);
    363 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    364 			break;
    365 	}
    366 
    367 	if (i == 0) {
    368 		printf("%s: phy read timeout: phy %d, reg %d\n",
    369 			device_xname(sc->sc_dev), phy, reg);
    370 		return ETIMEDOUT;
    371 	}
    372 
    373 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
    374 	return 0;
    375 }
    376 
    377 /*
    378  *	Write a PHY register on the MII of the L1.
    379  */
    380 static int
    381 age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    382 {
    383 	struct age_softc *sc = device_private(dev);
    384 	uint32_t v;
    385 	int i;
    386 
    387 	if (phy != sc->age_phyaddr)
    388 		return -1;
    389 
    390 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
    391 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
    392 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
    393 
    394 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
    395 		DELAY(1);
    396 		v = CSR_READ_4(sc, AGE_MDIO);
    397 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
    398 			break;
    399 	}
    400 
    401 	if (i == 0) {
    402 		printf("%s: phy write timeout: phy %d, reg %d\n",
    403 		    device_xname(sc->sc_dev), phy, reg);
    404 		return ETIMEDOUT;
    405 	}
    406 
    407 	return 0;
    408 }
    409 
    410 /*
    411  *	Callback from MII layer when media changes.
    412  */
    413 static void
    414 age_miibus_statchg(struct ifnet *ifp)
    415 {
    416 	struct age_softc *sc = ifp->if_softc;
    417 	struct mii_data *mii = &sc->sc_miibus;
    418 
    419 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    420 		return;
    421 
    422 	sc->age_flags &= ~AGE_FLAG_LINK;
    423 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
    424 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    425 		case IFM_10_T:
    426 		case IFM_100_TX:
    427 		case IFM_1000_T:
    428 			sc->age_flags |= AGE_FLAG_LINK;
    429 			break;
    430 		default:
    431 			break;
    432 		}
    433 	}
    434 
    435 	/* Stop Rx/Tx MACs. */
    436 	age_stop_rxmac(sc);
    437 	age_stop_txmac(sc);
    438 
    439 	/* Program MACs with resolved speed/duplex/flow-control. */
    440 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
    441 		uint32_t reg;
    442 
    443 		age_mac_config(sc);
    444 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
    445 		/* Restart DMA engine and Tx/Rx MAC. */
    446 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
    447 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
    448 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
    449 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
    450 	}
    451 }
    452 
    453 /*
    454  *	Get the current interface media status.
    455  */
    456 static void
    457 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    458 {
    459 	struct age_softc *sc = ifp->if_softc;
    460 	struct mii_data *mii = &sc->sc_miibus;
    461 
    462 	mii_pollstat(mii);
    463 	ifmr->ifm_status = mii->mii_media_status;
    464 	ifmr->ifm_active = mii->mii_media_active;
    465 }
    466 
    467 /*
    468  *	Set hardware to newly-selected media.
    469  */
    470 static int
    471 age_mediachange(struct ifnet *ifp)
    472 {
    473 	struct age_softc *sc = ifp->if_softc;
    474 	struct mii_data *mii = &sc->sc_miibus;
    475 	int error;
    476 
    477 	if (mii->mii_instance != 0) {
    478 		struct mii_softc *miisc;
    479 
    480 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
    481 			mii_phy_reset(miisc);
    482 	}
    483 	error = mii_mediachg(mii);
    484 
    485 	return error;
    486 }
    487 
    488 static int
    489 age_intr(void *arg)
    490 {
    491 	struct age_softc *sc = arg;
    492 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    493 	struct cmb *cmb;
    494 	uint32_t status;
    495 
    496 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
    497 	if (status == 0 || (status & AGE_INTRS) == 0)
    498 		return 0;
    499 
    500 	cmb = sc->age_rdata.age_cmb_block;
    501 	if (cmb == NULL) {
    502 		/* Happens when bringing up the interface
    503 		 * w/o having a carrier. Ack the interrupt.
    504 		 */
    505 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    506 		return 0;
    507 	}
    508 
    509 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    510 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    511 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    512 	status = le32toh(cmb->intr_status);
    513 	/* ACK/reenable interrupts */
    514 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
    515 	while ((status & AGE_INTRS) != 0) {
    516 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
    517 		    TPD_CONS_SHIFT;
    518 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
    519 		    RRD_PROD_SHIFT;
    520 
    521 		/* Let hardware know CMB was served. */
    522 		cmb->intr_status = 0;
    523 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    524 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    525 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    526 
    527 		if (ifp->if_flags & IFF_RUNNING) {
    528 			if (status & INTR_CMB_RX)
    529 				age_rxintr(sc, sc->age_rr_prod);
    530 
    531 			if (status & INTR_CMB_TX)
    532 				age_txintr(sc, sc->age_tpd_cons);
    533 
    534 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
    535 				if (status & INTR_DMA_RD_TO_RST)
    536 					printf("%s: DMA read error! -- "
    537 					    "resetting\n",
    538 					    device_xname(sc->sc_dev));
    539 				if (status & INTR_DMA_WR_TO_RST)
    540 					printf("%s: DMA write error! -- "
    541 					    "resetting\n",
    542 					    device_xname(sc->sc_dev));
    543 				age_init(ifp);
    544 			}
    545 
    546 			if_schedule_deferred_start(ifp);
    547 
    548 			if (status & INTR_SMB)
    549 				age_stats_update(sc);
    550 		}
    551 		/* check if more interrupts did came in */
    552 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
    553 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
    554 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    555 		status = le32toh(cmb->intr_status);
    556 	}
    557 
    558 	return 1;
    559 }
    560 
    561 static void
    562 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
    563 {
    564 	uint32_t ea[2], reg;
    565 	int i, vpdc;
    566 
    567 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
    568 	if ((reg & SPI_VPD_ENB) != 0) {
    569 		/* Get VPD stored in TWSI EEPROM. */
    570 		reg &= ~SPI_VPD_ENB;
    571 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
    572 	}
    573 
    574 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    575 	    PCI_CAP_VPD, &vpdc, NULL)) {
    576 		/*
    577 		 * PCI VPD capability found, let TWSI reload EEPROM.
    578 		 * This will set Ethernet address of controller.
    579 		 */
    580 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
    581 		    TWSI_CTRL_SW_LD_START);
    582 		for (i = 100; i > 0; i--) {
    583 			DELAY(1000);
    584 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
    585 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
    586 				break;
    587 		}
    588 		if (i == 0)
    589 			printf("%s: reloading EEPROM timeout!\n",
    590 			    device_xname(sc->sc_dev));
    591 	} else {
    592 		if (agedebug)
    593 			printf("%s: PCI VPD capability not found!\n",
    594 			    device_xname(sc->sc_dev));
    595 	}
    596 
    597 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
    598 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
    599 
    600 	eaddr[0] = (ea[1] >> 8) & 0xFF;
    601 	eaddr[1] = (ea[1] >> 0) & 0xFF;
    602 	eaddr[2] = (ea[0] >> 24) & 0xFF;
    603 	eaddr[3] = (ea[0] >> 16) & 0xFF;
    604 	eaddr[4] = (ea[0] >> 8) & 0xFF;
    605 	eaddr[5] = (ea[0] >> 0) & 0xFF;
    606 }
    607 
    608 static void
    609 age_phy_reset(struct age_softc *sc)
    610 {
    611 	uint16_t reg, pn;
    612 	int i, linkup;
    613 
    614 	/* Reset PHY. */
    615 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
    616 	DELAY(2000);
    617 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
    618 	DELAY(2000);
    619 
    620 #define ATPHY_DBG_ADDR		0x1D
    621 #define ATPHY_DBG_DATA		0x1E
    622 #define ATPHY_CDTC		0x16
    623 #define PHY_CDTC_ENB		0x0001
    624 #define PHY_CDTC_POFF		8
    625 #define ATPHY_CDTS		0x1C
    626 #define PHY_CDTS_STAT_OK	0x0000
    627 #define PHY_CDTS_STAT_SHORT	0x0100
    628 #define PHY_CDTS_STAT_OPEN	0x0200
    629 #define PHY_CDTS_STAT_INVAL	0x0300
    630 #define PHY_CDTS_STAT_MASK	0x0300
    631 
    632 	/* Check power saving mode. Magic from Linux. */
    633 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
    634 	for (linkup = 0, pn = 0; pn < 4; pn++) {
    635 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
    636 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
    637 		for (i = 200; i > 0; i--) {
    638 			DELAY(1000);
    639 			age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    640 			    ATPHY_CDTC, &reg);
    641 			if ((reg & PHY_CDTC_ENB) == 0)
    642 				break;
    643 		}
    644 		DELAY(1000);
    645 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    646 		    ATPHY_CDTS, &reg);
    647 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
    648 			linkup++;
    649 			break;
    650 		}
    651 	}
    652 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
    653 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
    654 	if (linkup == 0) {
    655 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    656 		    ATPHY_DBG_ADDR, 0);
    657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    658 		    ATPHY_DBG_DATA, 0x124E);
    659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    660 		    ATPHY_DBG_ADDR, 1);
    661 		age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
    662 		    ATPHY_DBG_DATA, &reg);
    663 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    664 		    ATPHY_DBG_DATA, reg | 0x03);
    665 		/* XXX */
    666 		DELAY(1500 * 1000);
    667 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    668 		    ATPHY_DBG_ADDR, 0);
    669 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
    670 		    ATPHY_DBG_DATA, 0x024E);
    671 	}
    672 
    673 #undef ATPHY_DBG_ADDR
    674 #undef ATPHY_DBG_DATA
    675 #undef ATPHY_CDTC
    676 #undef PHY_CDTC_ENB
    677 #undef PHY_CDTC_POFF
    678 #undef ATPHY_CDTS
    679 #undef PHY_CDTS_STAT_OK
    680 #undef PHY_CDTS_STAT_SHORT
    681 #undef PHY_CDTS_STAT_OPEN
    682 #undef PHY_CDTS_STAT_INVAL
    683 #undef PHY_CDTS_STAT_MASK
    684 }
    685 
    686 static int
    687 age_dma_alloc(struct age_softc *sc)
    688 {
    689 	struct age_txdesc *txd;
    690 	struct age_rxdesc *rxd;
    691 	int nsegs, error, i;
    692 
    693 	/*
    694 	 * Create DMA stuffs for TX ring
    695 	 */
    696 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
    697 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
    698 	if (error) {
    699 		sc->age_cdata.age_tx_ring_map = NULL;
    700 		return ENOBUFS;
    701 	}
    702 
    703 	/* Allocate DMA'able memory for TX ring */
    704 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
    705 	    PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
    706 	    &nsegs, BUS_DMA_NOWAIT);
    707 	if (error) {
    708 		printf("%s: could not allocate DMA'able memory for Tx ring, "
    709 		    "error = %i\n", device_xname(sc->sc_dev), error);
    710 		return error;
    711 	}
    712 
    713 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
    714 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
    715 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    716 	if (error)
    717 		return ENOBUFS;
    718 
    719 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
    720 
    721 	/*  Load the DMA map for Tx ring. */
    722 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
    723 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    724 	if (error) {
    725 		printf("%s: could not load DMA'able memory for Tx ring, "
    726 		    "error = %i\n", device_xname(sc->sc_dev), error);
    727 		bus_dmamem_free(sc->sc_dmat,
    728 		    &sc->age_rdata.age_tx_ring_seg, 1);
    729 		return error;
    730 	}
    731 
    732 	sc->age_rdata.age_tx_ring_paddr =
    733 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
    734 
    735 	/*
    736 	 * Create DMA stuffs for RX ring
    737 	 */
    738 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
    739 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
    740 	if (error) {
    741 		sc->age_cdata.age_rx_ring_map = NULL;
    742 		return ENOBUFS;
    743 	}
    744 
    745 	/* Allocate DMA'able memory for RX ring */
    746 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
    747 	    PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
    748 	    &nsegs, BUS_DMA_NOWAIT);
    749 	if (error) {
    750 		printf("%s: could not allocate DMA'able memory for Rx ring, "
    751 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    752 		return error;
    753 	}
    754 
    755 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
    756 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
    757 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    758 	if (error)
    759 		return ENOBUFS;
    760 
    761 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
    762 
    763 	/* Load the DMA map for Rx ring. */
    764 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
    765 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
    766 	if (error) {
    767 		printf("%s: could not load DMA'able memory for Rx ring, "
    768 		    "error = %i.\n", device_xname(sc->sc_dev), error);
    769 		bus_dmamem_free(sc->sc_dmat,
    770 		    &sc->age_rdata.age_rx_ring_seg, 1);
    771 		return error;
    772 	}
    773 
    774 	sc->age_rdata.age_rx_ring_paddr =
    775 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
    776 
    777 	/*
    778 	 * Create DMA stuffs for RX return ring
    779 	 */
    780 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
    781 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
    782 	if (error) {
    783 		sc->age_cdata.age_rr_ring_map = NULL;
    784 		return ENOBUFS;
    785 	}
    786 
    787 	/* Allocate DMA'able memory for RX return ring */
    788 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
    789 	    PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
    790 	    &nsegs, BUS_DMA_NOWAIT);
    791 	if (error) {
    792 		printf("%s: could not allocate DMA'able memory for Rx "
    793 		    "return ring, error = %i.\n",
    794 		    device_xname(sc->sc_dev), error);
    795 		return error;
    796 	}
    797 
    798 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
    799 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
    800 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    801 	if (error)
    802 		return ENOBUFS;
    803 
    804 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
    805 
    806 	/*  Load the DMA map for Rx return ring. */
    807 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
    808 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
    809 	if (error) {
    810 		printf("%s: could not load DMA'able memory for Rx return ring, "
    811 		    "error = %i\n", device_xname(sc->sc_dev), error);
    812 		bus_dmamem_free(sc->sc_dmat,
    813 		    &sc->age_rdata.age_rr_ring_seg, 1);
    814 		return error;
    815 	}
    816 
    817 	sc->age_rdata.age_rr_ring_paddr =
    818 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
    819 
    820 	/*
    821 	 * Create DMA stuffs for CMB block
    822 	 */
    823 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
    824 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    825 	    &sc->age_cdata.age_cmb_block_map);
    826 	if (error) {
    827 		sc->age_cdata.age_cmb_block_map = NULL;
    828 		return ENOBUFS;
    829 	}
    830 
    831 	/* Allocate DMA'able memory for CMB block */
    832 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
    833 	    PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
    834 	    &nsegs, BUS_DMA_NOWAIT);
    835 	if (error) {
    836 		printf("%s: could not allocate DMA'able memory for "
    837 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
    838 		return error;
    839 	}
    840 
    841 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
    842 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
    843 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    844 	if (error)
    845 		return ENOBUFS;
    846 
    847 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
    848 
    849 	/*  Load the DMA map for CMB block. */
    850 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
    851 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
    852 	    BUS_DMA_NOWAIT);
    853 	if (error) {
    854 		printf("%s: could not load DMA'able memory for CMB block, "
    855 		    "error = %i\n", device_xname(sc->sc_dev), error);
    856 		bus_dmamem_free(sc->sc_dmat,
    857 		    &sc->age_rdata.age_cmb_block_seg, 1);
    858 		return error;
    859 	}
    860 
    861 	sc->age_rdata.age_cmb_block_paddr =
    862 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
    863 
    864 	/*
    865 	 * Create DMA stuffs for SMB block
    866 	 */
    867 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
    868 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
    869 	    &sc->age_cdata.age_smb_block_map);
    870 	if (error) {
    871 		sc->age_cdata.age_smb_block_map = NULL;
    872 		return ENOBUFS;
    873 	}
    874 
    875 	/* Allocate DMA'able memory for SMB block */
    876 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
    877 	    PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
    878 	    &nsegs, BUS_DMA_NOWAIT);
    879 	if (error) {
    880 		printf("%s: could not allocate DMA'able memory for "
    881 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
    882 		return error;
    883 	}
    884 
    885 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
    886 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
    887 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    888 	if (error)
    889 		return ENOBUFS;
    890 
    891 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
    892 
    893 	/*  Load the DMA map for SMB block */
    894 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
    895 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
    896 	    BUS_DMA_NOWAIT);
    897 	if (error) {
    898 		printf("%s: could not load DMA'able memory for SMB block, "
    899 		    "error = %i\n", device_xname(sc->sc_dev), error);
    900 		bus_dmamem_free(sc->sc_dmat,
    901 		    &sc->age_rdata.age_smb_block_seg, 1);
    902 		return error;
    903 	}
    904 
    905 	sc->age_rdata.age_smb_block_paddr =
    906 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
    907 
    908 	/*
    909 	 * All of the memory we allocated above needs to be within
    910 	 * the same 4GB segment.  Make sure this is so.
    911 	 *
    912 	 * XXX We don't care WHAT 4GB segment they're in, just that
    913 	 * XXX they're all in the same one.  Need some bus_dma API
    914 	 * XXX help to make this easier to enforce when we actually
    915 	 * XXX perform the allocation.
    916 	 */
    917 	if (! (AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
    918 	       AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)
    919 
    920 	    && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
    921 	       AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)
    922 
    923 	    && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
    924 	       AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)
    925 
    926 	    && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
    927 	       AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) {
    928 		aprint_error_dev(sc->sc_dev,
    929 		    "control data allocation constraints failed\n");
    930 		return ENOBUFS;
    931 	}
    932 
    933 	/* Create DMA maps for Tx buffers. */
    934 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    935 		txd = &sc->age_cdata.age_txdesc[i];
    936 		txd->tx_m = NULL;
    937 		txd->tx_dmamap = NULL;
    938 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
    939 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
    940 		    &txd->tx_dmamap);
    941 		if (error) {
    942 			txd->tx_dmamap = NULL;
    943 			printf("%s: could not create Tx dmamap, error = %i.\n",
    944 			    device_xname(sc->sc_dev), error);
    945 			return error;
    946 		}
    947 	}
    948 
    949 	/* Create DMA maps for Rx buffers. */
    950 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    951 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
    952 	if (error) {
    953 		sc->age_cdata.age_rx_sparemap = NULL;
    954 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
    955 		    device_xname(sc->sc_dev), error);
    956 		return error;
    957 	}
    958 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    959 		rxd = &sc->age_cdata.age_rxdesc[i];
    960 		rxd->rx_m = NULL;
    961 		rxd->rx_dmamap = NULL;
    962 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    963 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
    964 		if (error) {
    965 			rxd->rx_dmamap = NULL;
    966 			printf("%s: could not create Rx dmamap, error = %i.\n",
    967 			    device_xname(sc->sc_dev), error);
    968 			return error;
    969 		}
    970 	}
    971 
    972 	return 0;
    973 }
    974 
    975 static void
    976 age_dma_free(struct age_softc *sc)
    977 {
    978 	struct age_txdesc *txd;
    979 	struct age_rxdesc *rxd;
    980 	int i;
    981 
    982 	/* Tx buffers */
    983 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
    984 		txd = &sc->age_cdata.age_txdesc[i];
    985 		if (txd->tx_dmamap != NULL) {
    986 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
    987 			txd->tx_dmamap = NULL;
    988 		}
    989 	}
    990 	/* Rx buffers */
    991 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
    992 		rxd = &sc->age_cdata.age_rxdesc[i];
    993 		if (rxd->rx_dmamap != NULL) {
    994 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
    995 			rxd->rx_dmamap = NULL;
    996 		}
    997 	}
    998 	if (sc->age_cdata.age_rx_sparemap != NULL) {
    999 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
   1000 		sc->age_cdata.age_rx_sparemap = NULL;
   1001 	}
   1002 
   1003 	/* Tx ring. */
   1004 	if (sc->age_cdata.age_tx_ring_map != NULL)
   1005 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
   1006 	if (sc->age_cdata.age_tx_ring_map != NULL &&
   1007 	    sc->age_rdata.age_tx_ring != NULL)
   1008 		bus_dmamem_free(sc->sc_dmat,
   1009 		    &sc->age_rdata.age_tx_ring_seg, 1);
   1010 	sc->age_rdata.age_tx_ring = NULL;
   1011 	sc->age_cdata.age_tx_ring_map = NULL;
   1012 
   1013 	/* Rx ring. */
   1014 	if (sc->age_cdata.age_rx_ring_map != NULL)
   1015 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
   1016 	if (sc->age_cdata.age_rx_ring_map != NULL &&
   1017 	    sc->age_rdata.age_rx_ring != NULL)
   1018 		bus_dmamem_free(sc->sc_dmat,
   1019 		    &sc->age_rdata.age_rx_ring_seg, 1);
   1020 	sc->age_rdata.age_rx_ring = NULL;
   1021 	sc->age_cdata.age_rx_ring_map = NULL;
   1022 
   1023 	/* Rx return ring. */
   1024 	if (sc->age_cdata.age_rr_ring_map != NULL)
   1025 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
   1026 	if (sc->age_cdata.age_rr_ring_map != NULL &&
   1027 	    sc->age_rdata.age_rr_ring != NULL)
   1028 		bus_dmamem_free(sc->sc_dmat,
   1029 		    &sc->age_rdata.age_rr_ring_seg, 1);
   1030 	sc->age_rdata.age_rr_ring = NULL;
   1031 	sc->age_cdata.age_rr_ring_map = NULL;
   1032 
   1033 	/* CMB block */
   1034 	if (sc->age_cdata.age_cmb_block_map != NULL)
   1035 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
   1036 	if (sc->age_cdata.age_cmb_block_map != NULL &&
   1037 	    sc->age_rdata.age_cmb_block != NULL)
   1038 		bus_dmamem_free(sc->sc_dmat,
   1039 		    &sc->age_rdata.age_cmb_block_seg, 1);
   1040 	sc->age_rdata.age_cmb_block = NULL;
   1041 	sc->age_cdata.age_cmb_block_map = NULL;
   1042 
   1043 	/* SMB block */
   1044 	if (sc->age_cdata.age_smb_block_map != NULL)
   1045 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
   1046 	if (sc->age_cdata.age_smb_block_map != NULL &&
   1047 	    sc->age_rdata.age_smb_block != NULL)
   1048 		bus_dmamem_free(sc->sc_dmat,
   1049 		    &sc->age_rdata.age_smb_block_seg, 1);
   1050 	sc->age_rdata.age_smb_block = NULL;
   1051 	sc->age_cdata.age_smb_block_map = NULL;
   1052 }
   1053 
   1054 static void
   1055 age_start(struct ifnet *ifp)
   1056 {
   1057 	struct age_softc *sc = ifp->if_softc;
   1058 	struct mbuf *m_head;
   1059 	int enq, error;
   1060 
   1061 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1062 		return;
   1063 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
   1064 		return;
   1065 
   1066 	enq = 0;
   1067 	for (;;) {
   1068 		IFQ_POLL(&ifp->if_snd, m_head);
   1069 		if (m_head == NULL)
   1070 			break;
   1071 
   1072 		/*
   1073 		 * Pack the data into the transmit ring. If we
   1074 		 * don't have room, set the OACTIVE flag and wait
   1075 		 * for the NIC to drain the ring.
   1076 		 */
   1077 		if ((error = age_encap(sc, m_head)) != 0) {
   1078 			if (error == EFBIG) {
   1079 				/* This is fatal for the packet. */
   1080 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1081 				m_freem(m_head);
   1082 				if_statinc(ifp, if_oerrors);
   1083 				continue;
   1084 			}
   1085 			ifp->if_flags |= IFF_OACTIVE;
   1086 			break;
   1087 		}
   1088 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1089 		enq = 1;
   1090 
   1091 		/*
   1092 		 * If there's a BPF listener, bounce a copy of this frame
   1093 		 * to him.
   1094 		 */
   1095 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1096 	}
   1097 
   1098 	if (enq) {
   1099 		/* Update mbox. */
   1100 		AGE_COMMIT_MBOX(sc);
   1101 		/* Set a timeout in case the chip goes out to lunch. */
   1102 		ifp->if_timer = AGE_TX_TIMEOUT;
   1103 	}
   1104 }
   1105 
   1106 static void
   1107 age_watchdog(struct ifnet *ifp)
   1108 {
   1109 	struct age_softc *sc = ifp->if_softc;
   1110 
   1111 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
   1112 		printf("%s: watchdog timeout (missed link)\n",
   1113 		    device_xname(sc->sc_dev));
   1114 		if_statinc(ifp, if_oerrors);
   1115 		age_init(ifp);
   1116 		return;
   1117 	}
   1118 
   1119 	if (sc->age_cdata.age_tx_cnt == 0) {
   1120 		printf("%s: watchdog timeout (missed Tx interrupts) "
   1121 		    "-- recovering\n", device_xname(sc->sc_dev));
   1122 		age_start(ifp);
   1123 		return;
   1124 	}
   1125 
   1126 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   1127 	if_statinc(ifp, if_oerrors);
   1128 	age_init(ifp);
   1129 	age_start(ifp);
   1130 }
   1131 
   1132 static bool
   1133 age_shutdown(device_t self, int howto)
   1134 {
   1135 	struct age_softc *sc;
   1136 	struct ifnet *ifp;
   1137 
   1138 	sc = device_private(self);
   1139 	ifp = &sc->sc_ec.ec_if;
   1140 	age_stop(ifp, 1);
   1141 
   1142 	return true;
   1143 }
   1144 
   1145 static int
   1146 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1147 {
   1148 	struct age_softc *sc = ifp->if_softc;
   1149 	int s, error;
   1150 
   1151 	s = splnet();
   1152 
   1153 	error = ether_ioctl(ifp, cmd, data);
   1154 	if (error == ENETRESET) {
   1155 		if (ifp->if_flags & IFF_RUNNING)
   1156 			age_rxfilter(sc);
   1157 		error = 0;
   1158 	}
   1159 
   1160 	splx(s);
   1161 	return error;
   1162 }
   1163 
   1164 static void
   1165 age_mac_config(struct age_softc *sc)
   1166 {
   1167 	struct mii_data *mii;
   1168 	uint32_t reg;
   1169 
   1170 	mii = &sc->sc_miibus;
   1171 
   1172 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1173 	reg &= ~MAC_CFG_FULL_DUPLEX;
   1174 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
   1175 	reg &= ~MAC_CFG_SPEED_MASK;
   1176 
   1177 	/* Reprogram MAC with resolved speed/duplex. */
   1178 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1179 	case IFM_10_T:
   1180 	case IFM_100_TX:
   1181 		reg |= MAC_CFG_SPEED_10_100;
   1182 		break;
   1183 	case IFM_1000_T:
   1184 		reg |= MAC_CFG_SPEED_1000;
   1185 		break;
   1186 	}
   1187 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
   1188 		reg |= MAC_CFG_FULL_DUPLEX;
   1189 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
   1190 			reg |= MAC_CFG_TX_FC;
   1191 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
   1192 			reg |= MAC_CFG_RX_FC;
   1193 	}
   1194 
   1195 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   1196 }
   1197 
   1198 static bool
   1199 age_resume(device_t dv, const pmf_qual_t *qual)
   1200 {
   1201 	struct age_softc *sc = device_private(dv);
   1202 	uint16_t cmd;
   1203 
   1204 	/*
   1205 	 * Clear INTx emulation disable for hardware that
   1206 	 * is set in resume event. From Linux.
   1207 	 */
   1208 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   1209 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
   1210 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
   1211 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
   1212 		    PCI_COMMAND_STATUS_REG, cmd);
   1213 	}
   1214 
   1215 	return true;
   1216 }
   1217 
   1218 static int
   1219 age_encap(struct age_softc *sc, struct mbuf * const m)
   1220 {
   1221 	struct age_txdesc *txd, *txd_last;
   1222 	struct tx_desc *desc;
   1223 	bus_dmamap_t map;
   1224 	uint32_t cflags, poff, vtag;
   1225 	int error, i, nsegs, prod;
   1226 
   1227 	cflags = vtag = 0;
   1228 	poff = 0;
   1229 
   1230 	prod = sc->age_cdata.age_tx_prod;
   1231 	txd = &sc->age_cdata.age_txdesc[prod];
   1232 	txd_last = txd;
   1233 	map = txd->tx_dmamap;
   1234 
   1235 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1236 	if (error == EFBIG) {
   1237 		struct mbuf *mnew = m_defrag(m, M_NOWAIT);
   1238 		if (mnew != NULL) {
   1239 			KASSERT(m == mnew);
   1240 			error = bus_dmamap_load_mbuf(sc->sc_dmat, map, mnew,
   1241 			    BUS_DMA_NOWAIT);
   1242 		} else {
   1243 			/* Just drop if we can't defrag. */
   1244 			error = EFBIG;
   1245 		}
   1246 		if (error) {
   1247 			if (error == EFBIG) {
   1248 				printf("%s: Tx packet consumes too many "
   1249 				    "DMA segments, dropping...\n",
   1250 				    device_xname(sc->sc_dev));
   1251 			}
   1252 			return error;
   1253 		}
   1254 	} else if (error) {
   1255 		return error;
   1256 	}
   1257 
   1258 	nsegs = map->dm_nsegs;
   1259 	KASSERT(nsegs != 0);
   1260 
   1261 	/* Check descriptor overrun. */
   1262 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
   1263 		bus_dmamap_unload(sc->sc_dmat, map);
   1264 		return ENOBUFS;
   1265 	}
   1266 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1267 	    BUS_DMASYNC_PREWRITE);
   1268 
   1269 	/* Configure Tx IP/TCP/UDP checksum offload. */
   1270 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
   1271 		cflags |= AGE_TD_CSUM;
   1272 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
   1273 			cflags |= AGE_TD_TCPCSUM;
   1274 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1275 			cflags |= AGE_TD_UDPCSUM;
   1276 		/* Set checksum start offset. */
   1277 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
   1278 	}
   1279 
   1280 #if NVLAN > 0
   1281 	/* Configure VLAN hardware tag insertion. */
   1282 	if (vlan_has_tag(m)) {
   1283 		vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
   1284 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
   1285 		cflags |= AGE_TD_INSERT_VLAN_TAG;
   1286 	}
   1287 #endif
   1288 
   1289 	desc = NULL;
   1290 	KASSERT(nsegs > 0);
   1291 	for (i = 0; ; i++) {
   1292 		desc = &sc->age_rdata.age_tx_ring[prod];
   1293 		desc->addr = htole64(map->dm_segs[i].ds_addr);
   1294 		desc->len =
   1295 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
   1296 		desc->flags = htole32(cflags);
   1297 		sc->age_cdata.age_tx_cnt++;
   1298 		if (i == (nsegs - 1))
   1299 			break;
   1300 
   1301 		/* Sync this descriptor and go to the next one */
   1302 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1303 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1304 		    BUS_DMASYNC_PREWRITE);
   1305 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1306 	}
   1307 
   1308 	/* Set EOP on the last descriptor and sync it. */
   1309 	desc->flags |= htole32(AGE_TD_EOP);
   1310 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1311 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1312 	    BUS_DMASYNC_PREWRITE);
   1313 
   1314 	if (nsegs > 1) {
   1315 		/* Swap dmamap of the first and the last. */
   1316 		txd = &sc->age_cdata.age_txdesc[prod];
   1317 		map = txd_last->tx_dmamap;
   1318 		txd_last->tx_dmamap = txd->tx_dmamap;
   1319 		txd->tx_dmamap = map;
   1320 		txd->tx_m = m;
   1321 		KASSERT(txd_last->tx_m == NULL);
   1322 	} else {
   1323 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
   1324 		txd_last->tx_m = m;
   1325 	}
   1326 
   1327 	/* Update producer index. */
   1328 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
   1329 	sc->age_cdata.age_tx_prod = prod;
   1330 
   1331 	return 0;
   1332 }
   1333 
   1334 static void
   1335 age_txintr(struct age_softc *sc, int tpd_cons)
   1336 {
   1337 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1338 	struct age_txdesc *txd;
   1339 	int cons, prog;
   1340 
   1341 	if (sc->age_cdata.age_tx_cnt <= 0) {
   1342 		if (ifp->if_timer != 0)
   1343 			printf("timer running without packets\n");
   1344 		if (sc->age_cdata.age_tx_cnt)
   1345 			printf("age_tx_cnt corrupted\n");
   1346 	}
   1347 
   1348 	/*
   1349 	 * Go through our Tx list and free mbufs for those
   1350 	 * frames which have been transmitted.
   1351 	 */
   1352 	cons = sc->age_cdata.age_tx_cons;
   1353 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
   1354 		if (sc->age_cdata.age_tx_cnt <= 0)
   1355 			break;
   1356 		prog++;
   1357 		ifp->if_flags &= ~IFF_OACTIVE;
   1358 		sc->age_cdata.age_tx_cnt--;
   1359 		txd = &sc->age_cdata.age_txdesc[cons];
   1360 		/*
   1361 		 * Clear Tx descriptors, it's not required but would
   1362 		 * help debugging in case of Tx issues.
   1363 		 */
   1364 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
   1365 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
   1366 		    BUS_DMASYNC_POSTWRITE);
   1367 		txd->tx_desc->addr = 0;
   1368 		txd->tx_desc->len = 0;
   1369 		txd->tx_desc->flags = 0;
   1370 
   1371 		if (txd->tx_m == NULL)
   1372 			continue;
   1373 		/* Reclaim transmitted mbufs. */
   1374 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1375 		m_freem(txd->tx_m);
   1376 		txd->tx_m = NULL;
   1377 	}
   1378 
   1379 	if (prog > 0) {
   1380 		sc->age_cdata.age_tx_cons = cons;
   1381 
   1382 		/*
   1383 		 * Unarm watchdog timer only when there are no pending
   1384 		 * Tx descriptors in queue.
   1385 		 */
   1386 		if (sc->age_cdata.age_tx_cnt == 0)
   1387 			ifp->if_timer = 0;
   1388 	}
   1389 }
   1390 
   1391 /* Receive a frame. */
   1392 static void
   1393 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
   1394 {
   1395 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1396 	struct age_rxdesc *rxd;
   1397 	struct rx_desc *desc;
   1398 	struct mbuf *mp, *m;
   1399 	uint32_t status, index;
   1400 	int count, nsegs, pktlen;
   1401 	int rx_cons;
   1402 
   1403 	status = le32toh(rxrd->flags);
   1404 	index = le32toh(rxrd->index);
   1405 	rx_cons = AGE_RX_CONS(index);
   1406 	nsegs = AGE_RX_NSEGS(index);
   1407 
   1408 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1409 	if ((status & AGE_RRD_ERROR) != 0 &&
   1410 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
   1411 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
   1412 		/*
   1413 		 * We want to pass the following frames to upper
   1414 		 * layer regardless of error status of Rx return
   1415 		 * ring.
   1416 		 *
   1417 		 *  o IP/TCP/UDP checksum is bad.
   1418 		 *  o frame length and protocol specific length
   1419 		 *     does not match.
   1420 		 */
   1421 		sc->age_cdata.age_rx_cons += nsegs;
   1422 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1423 		return;
   1424 	}
   1425 
   1426 	pktlen = 0;
   1427 	for (count = 0; count < nsegs; count++,
   1428 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
   1429 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
   1430 		mp = rxd->rx_m;
   1431 		desc = rxd->rx_desc;
   1432 		/* Add a new receive buffer to the ring. */
   1433 		if (age_newbuf(sc, rxd, 0) != 0) {
   1434 			if_statinc(ifp, if_iqdrops);
   1435 			/* Reuse Rx buffers. */
   1436 			if (sc->age_cdata.age_rxhead != NULL) {
   1437 				m_freem(sc->age_cdata.age_rxhead);
   1438 				AGE_RXCHAIN_RESET(sc);
   1439 			}
   1440 			break;
   1441 		}
   1442 
   1443 		/* The length of the first mbuf is computed last. */
   1444 		if (count != 0) {
   1445 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
   1446 			pktlen += mp->m_len;
   1447 		}
   1448 
   1449 		/* Chain received mbufs. */
   1450 		if (sc->age_cdata.age_rxhead == NULL) {
   1451 			sc->age_cdata.age_rxhead = mp;
   1452 			sc->age_cdata.age_rxtail = mp;
   1453 		} else {
   1454 			m_remove_pkthdr(mp);
   1455 			sc->age_cdata.age_rxprev_tail =
   1456 			    sc->age_cdata.age_rxtail;
   1457 			sc->age_cdata.age_rxtail->m_next = mp;
   1458 			sc->age_cdata.age_rxtail = mp;
   1459 		}
   1460 
   1461 		if (count == nsegs - 1) {
   1462 			/*
   1463 			 * It seems that L1 controller has no way
   1464 			 * to tell hardware to strip CRC bytes.
   1465 			 */
   1466 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
   1467 			if (nsegs > 1) {
   1468 				/* Remove the CRC bytes in chained mbufs. */
   1469 				pktlen -= ETHER_CRC_LEN;
   1470 				if (mp->m_len <= ETHER_CRC_LEN) {
   1471 					sc->age_cdata.age_rxtail =
   1472 					    sc->age_cdata.age_rxprev_tail;
   1473 					sc->age_cdata.age_rxtail->m_len -=
   1474 					    (ETHER_CRC_LEN - mp->m_len);
   1475 					sc->age_cdata.age_rxtail->m_next = NULL;
   1476 					m_freem(mp);
   1477 				} else {
   1478 					mp->m_len -= ETHER_CRC_LEN;
   1479 				}
   1480 			}
   1481 
   1482 			m = sc->age_cdata.age_rxhead;
   1483 			KASSERT(m->m_flags & M_PKTHDR);
   1484 			m_set_rcvif(m, ifp);
   1485 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
   1486 			/* Set the first mbuf length. */
   1487 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
   1488 
   1489 			/*
   1490 			 * Set checksum information.
   1491 			 * It seems that L1 controller can compute partial
   1492 			 * checksum. The partial checksum value can be used
   1493 			 * to accelerate checksum computation for fragmented
   1494 			 * TCP/UDP packets. Upper network stack already
   1495 			 * takes advantage of the partial checksum value in
   1496 			 * IP reassembly stage. But I'm not sure the
   1497 			 * correctness of the partial hardware checksum
   1498 			 * assistance due to lack of data sheet. If it is
   1499 			 * proven to work on L1 I'll enable it.
   1500 			 */
   1501 			if (status & AGE_RRD_IPV4) {
   1502 				if (status & AGE_RRD_IPCSUM_NOK)
   1503 					m->m_pkthdr.csum_flags |=
   1504 					    M_CSUM_IPv4_BAD;
   1505 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
   1506 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
   1507 					m->m_pkthdr.csum_flags |=
   1508 					    M_CSUM_TCP_UDP_BAD;
   1509 				}
   1510 				/*
   1511 				 * Don't mark bad checksum for TCP/UDP frames
   1512 				 * as fragmented frames may always have set
   1513 				 * bad checksummed bit of descriptor status.
   1514 				 */
   1515 			}
   1516 #if NVLAN > 0
   1517 			/* Check for VLAN tagged frames. */
   1518 			if (status & AGE_RRD_VLAN) {
   1519 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
   1520 				vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
   1521 			}
   1522 #endif
   1523 
   1524 			/* Pass it on. */
   1525 			if_percpuq_enqueue(ifp->if_percpuq, m);
   1526 
   1527 			/* Reset mbuf chains. */
   1528 			AGE_RXCHAIN_RESET(sc);
   1529 		}
   1530 	}
   1531 
   1532 	if (count != nsegs) {
   1533 		sc->age_cdata.age_rx_cons += nsegs;
   1534 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
   1535 	} else
   1536 		sc->age_cdata.age_rx_cons = rx_cons;
   1537 }
   1538 
   1539 static void
   1540 age_rxintr(struct age_softc *sc, int rr_prod)
   1541 {
   1542 	struct rx_rdesc *rxrd;
   1543 	int rr_cons, nsegs, pktlen, prog;
   1544 
   1545 	rr_cons = sc->age_cdata.age_rr_cons;
   1546 	if (rr_cons == rr_prod)
   1547 		return;
   1548 
   1549 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1550 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1551 	    BUS_DMASYNC_POSTREAD);
   1552 
   1553 	for (prog = 0; rr_cons != rr_prod; prog++) {
   1554 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
   1555 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
   1556 		if (nsegs == 0)
   1557 			break;
   1558 		/*
   1559 		 * Check number of segments against received bytes
   1560 		 * Non-matching value would indicate that hardware
   1561 		 * is still trying to update Rx return descriptors.
   1562 		 * I'm not sure whether this check is really needed.
   1563 		 */
   1564 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
   1565 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
   1566 		    (MCLBYTES - ETHER_ALIGN)))
   1567 			break;
   1568 
   1569 		/* Received a frame. */
   1570 		age_rxeof(sc, rxrd);
   1571 
   1572 		/* Clear return ring. */
   1573 		rxrd->index = 0;
   1574 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
   1575 	}
   1576 
   1577 	if (prog > 0) {
   1578 		/* Update the consumer index. */
   1579 		sc->age_cdata.age_rr_cons = rr_cons;
   1580 
   1581 		/* Sync descriptors. */
   1582 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   1583 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
   1584 		    BUS_DMASYNC_PREWRITE);
   1585 
   1586 		/* Notify hardware availability of new Rx buffers. */
   1587 		AGE_COMMIT_MBOX(sc);
   1588 	}
   1589 }
   1590 
   1591 static void
   1592 age_tick(void *xsc)
   1593 {
   1594 	struct age_softc *sc = xsc;
   1595 	struct mii_data *mii = &sc->sc_miibus;
   1596 	int s;
   1597 
   1598 	s = splnet();
   1599 	mii_tick(mii);
   1600 	splx(s);
   1601 
   1602 	callout_schedule(&sc->sc_tick_ch, hz);
   1603 }
   1604 
   1605 static void
   1606 age_reset(struct age_softc *sc)
   1607 {
   1608 	uint32_t reg;
   1609 	int i;
   1610 
   1611 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
   1612 	CSR_READ_4(sc, AGE_MASTER_CFG);
   1613 	DELAY(1000);
   1614 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1615 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1616 			break;
   1617 		DELAY(10);
   1618 	}
   1619 
   1620 	if (i == 0)
   1621 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
   1622 		    reg);
   1623 
   1624 	/* Initialize PCIe module. From Linux. */
   1625 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1626 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1627 }
   1628 
   1629 static int
   1630 age_init(struct ifnet *ifp)
   1631 {
   1632 	struct age_softc *sc = ifp->if_softc;
   1633 	struct mii_data *mii;
   1634 	uint8_t eaddr[ETHER_ADDR_LEN];
   1635 	bus_addr_t paddr;
   1636 	uint32_t reg, fsize;
   1637 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
   1638 	int error;
   1639 
   1640 	/*
   1641 	 * Cancel any pending I/O.
   1642 	 */
   1643 	age_stop(ifp, 0);
   1644 
   1645 	/*
   1646 	 * Reset the chip to a known state.
   1647 	 */
   1648 	age_reset(sc);
   1649 
   1650 	/* Initialize descriptors. */
   1651 	error = age_init_rx_ring(sc);
   1652 	if (error != 0) {
   1653 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
   1654 		age_stop(ifp, 0);
   1655 		return error;
   1656 	}
   1657 	age_init_rr_ring(sc);
   1658 	age_init_tx_ring(sc);
   1659 	age_init_cmb_block(sc);
   1660 	age_init_smb_block(sc);
   1661 
   1662 	/* Reprogram the station address. */
   1663 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
   1664 	CSR_WRITE_4(sc, AGE_PAR0,
   1665 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
   1666 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
   1667 
   1668 	/* Set descriptor base addresses. */
   1669 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1670 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
   1671 	paddr = sc->age_rdata.age_rx_ring_paddr;
   1672 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
   1673 	paddr = sc->age_rdata.age_rr_ring_paddr;
   1674 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
   1675 	paddr = sc->age_rdata.age_tx_ring_paddr;
   1676 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
   1677 	paddr = sc->age_rdata.age_cmb_block_paddr;
   1678 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1679 	paddr = sc->age_rdata.age_smb_block_paddr;
   1680 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
   1681 
   1682 	/* Set Rx/Rx return descriptor counter. */
   1683 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
   1684 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
   1685 	    DESC_RRD_CNT_MASK) |
   1686 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
   1687 
   1688 	/* Set Tx descriptor counter. */
   1689 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
   1690 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
   1691 
   1692 	/* Tell hardware that we're ready to load descriptors. */
   1693 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
   1694 
   1695 	/*
   1696 	 * Initialize mailbox register.
   1697 	 * Updated producer/consumer index information is exchanged
   1698 	 * through this mailbox register. However Tx producer and
   1699 	 * Rx return consumer/Rx producer are all shared such that
   1700 	 * it's hard to separate code path between Tx and Rx without
   1701 	 * locking. If L1 hardware have a separate mail box register
   1702 	 * for Tx and Rx consumer/producer management we could have
   1703 	 * independent Tx/Rx handler which in turn Rx handler could have
   1704 	 * been run without any locking.
   1705 	*/
   1706 	AGE_COMMIT_MBOX(sc);
   1707 
   1708 	/* Configure IPG/IFG parameters. */
   1709 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
   1710 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
   1711 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
   1712 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
   1713 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
   1714 
   1715 	/* Set parameters for half-duplex media. */
   1716 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
   1717 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
   1718 	    HDPX_CFG_LCOL_MASK) |
   1719 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
   1720 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
   1721 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
   1722 	    HDPX_CFG_ABEBT_MASK) |
   1723 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
   1724 	     HDPX_CFG_JAMIPG_MASK));
   1725 
   1726 	/* Configure interrupt moderation timer. */
   1727 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
   1728 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
   1729 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
   1730 	reg &= ~MASTER_MTIMER_ENB;
   1731 	if (AGE_USECS(sc->age_int_mod) == 0)
   1732 		reg &= ~MASTER_ITIMER_ENB;
   1733 	else
   1734 		reg |= MASTER_ITIMER_ENB;
   1735 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
   1736 	if (agedebug)
   1737 		printf("%s: interrupt moderation is %d us.\n",
   1738 		    device_xname(sc->sc_dev), sc->age_int_mod);
   1739 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
   1740 
   1741 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
   1742 	if (ifp->if_mtu < ETHERMTU)
   1743 		sc->age_max_frame_size = ETHERMTU;
   1744 	else
   1745 		sc->age_max_frame_size = ifp->if_mtu;
   1746 	sc->age_max_frame_size += ETHER_HDR_LEN +
   1747 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
   1748 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
   1749 
   1750 	/* Configure jumbo frame. */
   1751 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
   1752 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
   1753 	    (((fsize / sizeof(uint64_t)) <<
   1754 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
   1755 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
   1756 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
   1757 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
   1758 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
   1759 
   1760 	/* Configure flow-control parameters. From Linux. */
   1761 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
   1762 		/*
   1763 		 * Magic workaround for old-L1.
   1764 		 * Don't know which hw revision requires this magic.
   1765 		 */
   1766 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
   1767 		/*
   1768 		 * Another magic workaround for flow-control mode
   1769 		 * change. From Linux.
   1770 		 */
   1771 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
   1772 	}
   1773 	/*
   1774 	 * TODO
   1775 	 *  Should understand pause parameter relationships between FIFO
   1776 	 *  size and number of Rx descriptors and Rx return descriptors.
   1777 	 *
   1778 	 *  Magic parameters came from Linux.
   1779 	 */
   1780 	switch (sc->age_chip_rev) {
   1781 	case 0x8001:
   1782 	case 0x9001:
   1783 	case 0x9002:
   1784 	case 0x9003:
   1785 		rxf_hi = AGE_RX_RING_CNT / 16;
   1786 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
   1787 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
   1788 		rrd_lo = AGE_RR_RING_CNT / 16;
   1789 		break;
   1790 	default:
   1791 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
   1792 		rxf_lo = reg / 16;
   1793 		if (rxf_lo < 192)
   1794 			rxf_lo = 192;
   1795 		rxf_hi = (reg * 7) / 8;
   1796 		if (rxf_hi < rxf_lo)
   1797 			rxf_hi = rxf_lo + 16;
   1798 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
   1799 		rrd_lo = reg / 8;
   1800 		rrd_hi = (reg * 7) / 8;
   1801 		if (rrd_lo < 2)
   1802 			rrd_lo = 2;
   1803 		if (rrd_hi < rrd_lo)
   1804 			rrd_hi = rrd_lo + 3;
   1805 		break;
   1806 	}
   1807 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
   1808 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
   1809 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
   1810 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
   1811 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
   1812 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
   1813 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
   1814 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
   1815 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
   1816 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
   1817 
   1818 	/* Configure RxQ. */
   1819 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1820 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
   1821 	    RXQ_CFG_RD_BURST_MASK) |
   1822 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
   1823 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
   1824 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
   1825 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
   1826 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
   1827 
   1828 	/* Configure TxQ. */
   1829 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1830 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
   1831 	    TXQ_CFG_TPD_BURST_MASK) |
   1832 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
   1833 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
   1834 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
   1835 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
   1836 	    TXQ_CFG_ENB);
   1837 
   1838 	/* Configure DMA parameters. */
   1839 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1840 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
   1841 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
   1842 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
   1843 
   1844 	/* Configure CMB DMA write threshold. */
   1845 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
   1846 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
   1847 	    CMB_WR_THRESH_RRD_MASK) |
   1848 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
   1849 	    CMB_WR_THRESH_TPD_MASK));
   1850 
   1851 	/* Set CMB/SMB timer and enable them. */
   1852 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
   1853 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
   1854 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
   1855 
   1856 	/* Request SMB updates for every seconds. */
   1857 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
   1858 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
   1859 
   1860 	/*
   1861 	 * Disable all WOL bits as WOL can interfere normal Rx
   1862 	 * operation.
   1863 	 */
   1864 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
   1865 
   1866 	/*
   1867 	 * Configure Tx/Rx MACs.
   1868 	 *  - Auto-padding for short frames.
   1869 	 *  - Enable CRC generation.
   1870 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
   1871 	 *  of MAC is followed after link establishment.
   1872 	 */
   1873 	CSR_WRITE_4(sc, AGE_MAC_CFG,
   1874 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
   1875 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
   1876 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
   1877 	    MAC_CFG_PREAMBLE_MASK));
   1878 
   1879 	/* Set up the receive filter. */
   1880 	age_rxfilter(sc);
   1881 	age_rxvlan(sc);
   1882 
   1883 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   1884 	reg |= MAC_CFG_RXCSUM_ENB;
   1885 
   1886 	/* Ack all pending interrupts and clear it. */
   1887 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
   1888 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
   1889 
   1890 	/* Finally enable Tx/Rx MAC. */
   1891 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
   1892 
   1893 	sc->age_flags &= ~AGE_FLAG_LINK;
   1894 
   1895 	/* Switch to the current media. */
   1896 	mii = &sc->sc_miibus;
   1897 	mii_mediachg(mii);
   1898 
   1899 	callout_schedule(&sc->sc_tick_ch, hz);
   1900 
   1901 	ifp->if_flags |= IFF_RUNNING;
   1902 	ifp->if_flags &= ~IFF_OACTIVE;
   1903 
   1904 	return 0;
   1905 }
   1906 
   1907 static void
   1908 age_stop(struct ifnet *ifp, int disable)
   1909 {
   1910 	struct age_softc *sc = ifp->if_softc;
   1911 	struct age_txdesc *txd;
   1912 	struct age_rxdesc *rxd;
   1913 	uint32_t reg;
   1914 	int i;
   1915 
   1916 	callout_stop(&sc->sc_tick_ch);
   1917 
   1918 	/*
   1919 	 * Mark the interface down and cancel the watchdog timer.
   1920 	 */
   1921 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1922 	ifp->if_timer = 0;
   1923 
   1924 	sc->age_flags &= ~AGE_FLAG_LINK;
   1925 
   1926 	mii_down(&sc->sc_miibus);
   1927 
   1928 	/*
   1929 	 * Disable interrupts.
   1930 	 */
   1931 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
   1932 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
   1933 
   1934 	/* Stop CMB/SMB updates. */
   1935 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
   1936 
   1937 	/* Stop Rx/Tx MAC. */
   1938 	age_stop_rxmac(sc);
   1939 	age_stop_txmac(sc);
   1940 
   1941 	/* Stop DMA. */
   1942 	CSR_WRITE_4(sc, AGE_DMA_CFG,
   1943 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
   1944 
   1945 	/* Stop TxQ/RxQ. */
   1946 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
   1947 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
   1948 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
   1949 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
   1950 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   1951 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
   1952 			break;
   1953 		DELAY(10);
   1954 	}
   1955 	if (i == 0)
   1956 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
   1957 		    device_xname(sc->sc_dev), reg);
   1958 
   1959 	/* Reclaim Rx buffers that have been processed. */
   1960 	if (sc->age_cdata.age_rxhead != NULL)
   1961 		m_freem(sc->age_cdata.age_rxhead);
   1962 	AGE_RXCHAIN_RESET(sc);
   1963 
   1964 	/*
   1965 	 * Free RX and TX mbufs still in the queues.
   1966 	 */
   1967 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   1968 		rxd = &sc->age_cdata.age_rxdesc[i];
   1969 		if (rxd->rx_m != NULL) {
   1970 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1971 			m_freem(rxd->rx_m);
   1972 			rxd->rx_m = NULL;
   1973 		}
   1974 	}
   1975 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   1976 		txd = &sc->age_cdata.age_txdesc[i];
   1977 		if (txd->tx_m != NULL) {
   1978 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
   1979 			m_freem(txd->tx_m);
   1980 			txd->tx_m = NULL;
   1981 		}
   1982 	}
   1983 }
   1984 
   1985 static void
   1986 age_stats_update(struct age_softc *sc)
   1987 {
   1988 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1989 	struct age_stats *stat;
   1990 	struct smb *smb;
   1991 
   1992 	stat = &sc->age_stat;
   1993 
   1994 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   1995 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   1996 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1997 
   1998 	smb = sc->age_rdata.age_smb_block;
   1999 	if (smb->updated == 0)
   2000 		return;
   2001 
   2002 	/* Rx stats. */
   2003 	stat->rx_frames += smb->rx_frames;
   2004 	stat->rx_bcast_frames += smb->rx_bcast_frames;
   2005 	stat->rx_mcast_frames += smb->rx_mcast_frames;
   2006 	stat->rx_pause_frames += smb->rx_pause_frames;
   2007 	stat->rx_control_frames += smb->rx_control_frames;
   2008 	stat->rx_crcerrs += smb->rx_crcerrs;
   2009 	stat->rx_lenerrs += smb->rx_lenerrs;
   2010 	stat->rx_bytes += smb->rx_bytes;
   2011 	stat->rx_runts += smb->rx_runts;
   2012 	stat->rx_fragments += smb->rx_fragments;
   2013 	stat->rx_pkts_64 += smb->rx_pkts_64;
   2014 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
   2015 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
   2016 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
   2017 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
   2018 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
   2019 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
   2020 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
   2021 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
   2022 	stat->rx_desc_oflows += smb->rx_desc_oflows;
   2023 	stat->rx_alignerrs += smb->rx_alignerrs;
   2024 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
   2025 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
   2026 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
   2027 
   2028 	/* Tx stats. */
   2029 	stat->tx_frames += smb->tx_frames;
   2030 	stat->tx_bcast_frames += smb->tx_bcast_frames;
   2031 	stat->tx_mcast_frames += smb->tx_mcast_frames;
   2032 	stat->tx_pause_frames += smb->tx_pause_frames;
   2033 	stat->tx_excess_defer += smb->tx_excess_defer;
   2034 	stat->tx_control_frames += smb->tx_control_frames;
   2035 	stat->tx_deferred += smb->tx_deferred;
   2036 	stat->tx_bytes += smb->tx_bytes;
   2037 	stat->tx_pkts_64 += smb->tx_pkts_64;
   2038 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
   2039 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
   2040 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
   2041 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
   2042 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
   2043 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
   2044 	stat->tx_single_colls += smb->tx_single_colls;
   2045 	stat->tx_multi_colls += smb->tx_multi_colls;
   2046 	stat->tx_late_colls += smb->tx_late_colls;
   2047 	stat->tx_excess_colls += smb->tx_excess_colls;
   2048 	stat->tx_underrun += smb->tx_underrun;
   2049 	stat->tx_desc_underrun += smb->tx_desc_underrun;
   2050 	stat->tx_lenerrs += smb->tx_lenerrs;
   2051 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
   2052 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
   2053 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
   2054 
   2055 	/* Update counters in ifnet. */
   2056 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   2057 
   2058 	if_statadd_ref(ifp, nsr, if_opackets, smb->tx_frames);
   2059 
   2060 	if_statadd_ref(ifp, nsr, if_collisions,
   2061 	    smb->tx_single_colls +
   2062 	    smb->tx_multi_colls + smb->tx_late_colls +
   2063 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
   2064 
   2065 	if_statadd_ref(ifp, nsr, if_oerrors,
   2066 	    smb->tx_excess_colls +
   2067 	    smb->tx_late_colls + smb->tx_underrun +
   2068 	    smb->tx_pkts_truncated);
   2069 
   2070 	if_statadd_ref(ifp, nsr, if_ierrors,
   2071 	    smb->rx_crcerrs + smb->rx_lenerrs +
   2072 	    smb->rx_runts + smb->rx_pkts_truncated +
   2073 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
   2074 	    smb->rx_alignerrs);
   2075 
   2076 	IF_STAT_PUTREF(ifp);
   2077 
   2078 	/* Update done, clear. */
   2079 	smb->updated = 0;
   2080 
   2081 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2082 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
   2083 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2084 }
   2085 
   2086 static void
   2087 age_stop_txmac(struct age_softc *sc)
   2088 {
   2089 	uint32_t reg;
   2090 	int i;
   2091 
   2092 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2093 	if ((reg & MAC_CFG_TX_ENB) != 0) {
   2094 		reg &= ~MAC_CFG_TX_ENB;
   2095 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2096 	}
   2097 	/* Stop Tx DMA engine. */
   2098 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2099 	if ((reg & DMA_CFG_RD_ENB) != 0) {
   2100 		reg &= ~DMA_CFG_RD_ENB;
   2101 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2102 	}
   2103 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2104 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2105 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
   2106 			break;
   2107 		DELAY(10);
   2108 	}
   2109 	if (i == 0)
   2110 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
   2111 }
   2112 
   2113 static void
   2114 age_stop_rxmac(struct age_softc *sc)
   2115 {
   2116 	uint32_t reg;
   2117 	int i;
   2118 
   2119 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2120 	if ((reg & MAC_CFG_RX_ENB) != 0) {
   2121 		reg &= ~MAC_CFG_RX_ENB;
   2122 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2123 	}
   2124 	/* Stop Rx DMA engine. */
   2125 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
   2126 	if ((reg & DMA_CFG_WR_ENB) != 0) {
   2127 		reg &= ~DMA_CFG_WR_ENB;
   2128 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
   2129 	}
   2130 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
   2131 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
   2132 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
   2133 			break;
   2134 		DELAY(10);
   2135 	}
   2136 	if (i == 0)
   2137 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
   2138 }
   2139 
   2140 static void
   2141 age_init_tx_ring(struct age_softc *sc)
   2142 {
   2143 	struct age_ring_data *rd;
   2144 	struct age_txdesc *txd;
   2145 	int i;
   2146 
   2147 	sc->age_cdata.age_tx_prod = 0;
   2148 	sc->age_cdata.age_tx_cons = 0;
   2149 	sc->age_cdata.age_tx_cnt = 0;
   2150 
   2151 	rd = &sc->age_rdata;
   2152 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
   2153 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
   2154 		txd = &sc->age_cdata.age_txdesc[i];
   2155 		txd->tx_desc = &rd->age_tx_ring[i];
   2156 		txd->tx_m = NULL;
   2157 	}
   2158 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
   2159 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2160 }
   2161 
   2162 static int
   2163 age_init_rx_ring(struct age_softc *sc)
   2164 {
   2165 	struct age_ring_data *rd;
   2166 	struct age_rxdesc *rxd;
   2167 	int i;
   2168 
   2169 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
   2170 	rd = &sc->age_rdata;
   2171 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
   2172 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
   2173 		rxd = &sc->age_cdata.age_rxdesc[i];
   2174 		rxd->rx_m = NULL;
   2175 		rxd->rx_desc = &rd->age_rx_ring[i];
   2176 		if (age_newbuf(sc, rxd, 1) != 0)
   2177 			return ENOBUFS;
   2178 	}
   2179 
   2180 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
   2181 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2182 
   2183 	return 0;
   2184 }
   2185 
   2186 static void
   2187 age_init_rr_ring(struct age_softc *sc)
   2188 {
   2189 	struct age_ring_data *rd;
   2190 
   2191 	sc->age_cdata.age_rr_cons = 0;
   2192 	AGE_RXCHAIN_RESET(sc);
   2193 
   2194 	rd = &sc->age_rdata;
   2195 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
   2196 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
   2197 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2198 }
   2199 
   2200 static void
   2201 age_init_cmb_block(struct age_softc *sc)
   2202 {
   2203 	struct age_ring_data *rd;
   2204 
   2205 	rd = &sc->age_rdata;
   2206 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
   2207 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
   2208 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
   2209 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2210 }
   2211 
   2212 static void
   2213 age_init_smb_block(struct age_softc *sc)
   2214 {
   2215 	struct age_ring_data *rd;
   2216 
   2217 	rd = &sc->age_rdata;
   2218 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
   2219 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
   2220 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2221 }
   2222 
   2223 static int
   2224 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
   2225 {
   2226 	struct rx_desc *desc;
   2227 	struct mbuf *m;
   2228 	bus_dmamap_t map;
   2229 	int error;
   2230 
   2231 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2232 	if (m == NULL)
   2233 		return ENOBUFS;
   2234 	MCLGET(m, M_DONTWAIT);
   2235 	if (!(m->m_flags & M_EXT)) {
   2236 		 m_freem(m);
   2237 		 return ENOBUFS;
   2238 	}
   2239 
   2240 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   2241 	m_adj(m, ETHER_ALIGN);
   2242 
   2243 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2244 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
   2245 
   2246 	if (error != 0) {
   2247 		m_freem(m);
   2248 
   2249 		if (init)
   2250 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
   2251 		return error;
   2252 	}
   2253 
   2254 	if (rxd->rx_m != NULL) {
   2255 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
   2256 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2257 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   2258 	}
   2259 	map = rxd->rx_dmamap;
   2260 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
   2261 	sc->age_cdata.age_rx_sparemap = map;
   2262 	rxd->rx_m = m;
   2263 
   2264 	desc = rxd->rx_desc;
   2265 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
   2266 	desc->len =
   2267 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
   2268 	    AGE_RD_LEN_SHIFT);
   2269 
   2270 	return 0;
   2271 }
   2272 
   2273 static void
   2274 age_rxvlan(struct age_softc *sc)
   2275 {
   2276 	uint32_t reg;
   2277 
   2278 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
   2279 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
   2280 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
   2281 		reg |= MAC_CFG_VLAN_TAG_STRIP;
   2282 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
   2283 }
   2284 
   2285 static void
   2286 age_rxfilter(struct age_softc *sc)
   2287 {
   2288 	struct ethercom *ec = &sc->sc_ec;
   2289 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2290 	struct ether_multi *enm;
   2291 	struct ether_multistep step;
   2292 	uint32_t crc;
   2293 	uint32_t mchash[2];
   2294 	uint32_t rxcfg;
   2295 
   2296 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
   2297 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
   2298 	ifp->if_flags &= ~IFF_ALLMULTI;
   2299 
   2300 	/*
   2301 	 * Always accept broadcast frames.
   2302 	 */
   2303 	rxcfg |= MAC_CFG_BCAST;
   2304 
   2305 	/* Program new filter. */
   2306 	if ((ifp->if_flags & IFF_PROMISC) != 0)
   2307 		goto update;
   2308 
   2309 	memset(mchash, 0, sizeof(mchash));
   2310 
   2311 	ETHER_LOCK(ec);
   2312 	ETHER_FIRST_MULTI(step, ec, enm);
   2313 	while (enm != NULL) {
   2314 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2315 			/* XXX Use ETHER_F_ALLMULTI in future. */
   2316 			ifp->if_flags |= IFF_ALLMULTI;
   2317 			ETHER_UNLOCK(ec);
   2318 			goto update;
   2319 		}
   2320 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2321 		mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
   2322 		ETHER_NEXT_MULTI(step, enm);
   2323 	}
   2324 	ETHER_UNLOCK(ec);
   2325 
   2326 update:
   2327 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   2328 		if (ifp->if_flags & IFF_PROMISC) {
   2329 			rxcfg |= MAC_CFG_PROMISC;
   2330 			/* XXX Use ETHER_F_ALLMULTI in future. */
   2331 			ifp->if_flags |= IFF_ALLMULTI;
   2332 		} else
   2333 			rxcfg |= MAC_CFG_ALLMULTI;
   2334 		mchash[0] = mchash[1] = 0xFFFFFFFF;
   2335 	}
   2336 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
   2337 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
   2338 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
   2339 }
   2340