1 /* $NetBSD: arn5008.c,v 1.20 2024/07/05 04:31:50 rin Exp $ */ 2 /* $OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr> 6 * Copyright (c) 2008-2009 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines common to AR5008, AR9001 and AR9002 families. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.20 2024/07/05 04:31:50 rin Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/queue.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/intr.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/if_dl.h> 48 #include <net/if_ether.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/ip.h> 56 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/ic/athnreg.h> 62 #include <dev/ic/athnvar.h> 63 64 #include <dev/ic/arn5008reg.h> 65 #include <dev/ic/arn5008.h> 66 #include <dev/ic/arn5416.h> 67 #include <dev/ic/arn9280.h> 68 69 #define Static static 70 71 Static void ar5008_calib_adc_dc_off(struct athn_softc *); 72 Static void ar5008_calib_adc_gain(struct athn_softc *); 73 Static void ar5008_calib_iq(struct athn_softc *); 74 Static void ar5008_disable_ofdm_weak_signal(struct athn_softc *); 75 Static void ar5008_disable_phy(struct athn_softc *); 76 Static int ar5008_dma_alloc(struct athn_softc *); 77 Static void ar5008_dma_free(struct athn_softc *); 78 Static void ar5008_do_calib(struct athn_softc *); 79 Static void ar5008_do_noisefloor_calib(struct athn_softc *); 80 Static void ar5008_enable_antenna_diversity(struct athn_softc *); 81 Static void ar5008_enable_ofdm_weak_signal(struct athn_softc *); 82 Static uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int); 83 Static void ar5008_gpio_config_input(struct athn_softc *, int); 84 Static void ar5008_gpio_config_output(struct athn_softc *, int, int); 85 Static int ar5008_gpio_read(struct athn_softc *, int); 86 Static void ar5008_gpio_write(struct athn_softc *, int, int); 87 Static void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *, 88 struct ieee80211_channel *); 89 Static void ar5008_init_baseband(struct athn_softc *); 90 Static void ar5008_init_chains(struct athn_softc *); 91 Static int ar5008_intr_status(struct athn_softc *); 92 Static int ar5008_intr(struct athn_softc *); 93 Static void ar5008_next_calib(struct athn_softc *); 94 Static int ar5008_read_eep_word(struct athn_softc *, uint32_t, 95 uint16_t *); 96 Static int ar5008_read_rom(struct athn_softc *); 97 Static void ar5008_rf_bus_release(struct athn_softc *); 98 Static int ar5008_rf_bus_request(struct athn_softc *); 99 Static void ar5008_rfsilent_init(struct athn_softc *); 100 Static int ar5008_rx_alloc(struct athn_softc *); 101 Static void ar5008_rx_enable(struct athn_softc *); 102 Static void ar5008_rx_free(struct athn_softc *); 103 Static void ar5008_rx_intr(struct athn_softc *); 104 Static void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *, 105 struct ar_rx_desc *); 106 Static void ar5008_set_cck_weak_signal(struct athn_softc *, int); 107 Static void ar5008_set_delta_slope(struct athn_softc *, 108 struct ieee80211_channel *, struct ieee80211_channel *); 109 Static void ar5008_set_firstep_level(struct athn_softc *, int); 110 Static void ar5008_set_noise_immunity_level(struct athn_softc *, int); 111 Static void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *, 112 struct ieee80211_channel *); 113 Static void ar5008_set_rf_mode(struct athn_softc *, 114 struct ieee80211_channel *); 115 Static void ar5008_set_rxchains(struct athn_softc *); 116 Static void ar5008_set_spur_immunity_level(struct athn_softc *, int); 117 Static void ar5008_swap_rom(struct athn_softc *); 118 Static int ar5008_swba_intr(struct athn_softc *); 119 Static int ar5008_tx(struct athn_softc *, struct mbuf *, 120 struct ieee80211_node *, int); 121 Static int ar5008_tx_alloc(struct athn_softc *); 122 Static void ar5008_tx_free(struct athn_softc *); 123 Static void ar5008_tx_intr(struct athn_softc *); 124 Static int ar5008_tx_process(struct athn_softc *, int); 125 126 #ifdef notused 127 Static void ar5008_bb_load_noisefloor(struct athn_softc *); 128 Static void ar5008_get_noisefloor(struct athn_softc *, 129 struct ieee80211_channel *); 130 Static void ar5008_noisefloor_calib(struct athn_softc *); 131 Static void ar5008_read_noisefloor(struct athn_softc *, int16_t *, 132 int16_t *); 133 Static void ar5008_write_noisefloor(struct athn_softc *, int16_t *, 134 int16_t *); 135 #endif /* notused */ 136 137 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 138 139 /* 140 * XXX: see if_iwn.c:MCLGETIalt() for a better solution. 141 */ 142 static struct mbuf * 143 MCLGETI(struct athn_softc *sc __unused, int how, 144 struct ifnet *ifp __unused, u_int size) 145 { 146 struct mbuf *m; 147 148 MGETHDR(m, how, MT_DATA); 149 if (m == NULL) 150 return NULL; 151 152 MEXTMALLOC(m, size, how); 153 if ((m->m_flags & M_EXT) == 0) { 154 m_freem(m); 155 return NULL; 156 } 157 return m; 158 } 159 160 PUBLIC int 161 ar5008_attach(struct athn_softc *sc) 162 { 163 struct athn_ops *ops = &sc->sc_ops; 164 struct ieee80211com *ic = &sc->sc_ic; 165 struct ar_base_eep_header *base; 166 uint8_t eep_ver, kc_entries_log; 167 int error; 168 169 /* Set callbacks for AR5008, AR9001 and AR9002 families. */ 170 ops->gpio_read = ar5008_gpio_read; 171 ops->gpio_write = ar5008_gpio_write; 172 ops->gpio_config_input = ar5008_gpio_config_input; 173 ops->gpio_config_output = ar5008_gpio_config_output; 174 ops->rfsilent_init = ar5008_rfsilent_init; 175 176 ops->dma_alloc = ar5008_dma_alloc; 177 ops->dma_free = ar5008_dma_free; 178 ops->rx_enable = ar5008_rx_enable; 179 ops->intr_status = ar5008_intr_status; 180 ops->intr = ar5008_intr; 181 ops->tx = ar5008_tx; 182 183 ops->set_rf_mode = ar5008_set_rf_mode; 184 ops->rf_bus_request = ar5008_rf_bus_request; 185 ops->rf_bus_release = ar5008_rf_bus_release; 186 ops->set_phy = ar5008_set_phy; 187 ops->set_delta_slope = ar5008_set_delta_slope; 188 ops->enable_antenna_diversity = ar5008_enable_antenna_diversity; 189 ops->init_baseband = ar5008_init_baseband; 190 ops->disable_phy = ar5008_disable_phy; 191 ops->set_rxchains = ar5008_set_rxchains; 192 ops->noisefloor_calib = ar5008_do_noisefloor_calib; 193 ops->do_calib = ar5008_do_calib; 194 ops->next_calib = ar5008_next_calib; 195 ops->hw_init = ar5008_hw_init; 196 197 ops->set_noise_immunity_level = ar5008_set_noise_immunity_level; 198 ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal; 199 ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal; 200 ops->set_cck_weak_signal = ar5008_set_cck_weak_signal; 201 ops->set_firstep_level = ar5008_set_firstep_level; 202 ops->set_spur_immunity_level = ar5008_set_spur_immunity_level; 203 204 /* Set MAC registers offsets. */ 205 sc->sc_obs_off = AR_OBS; 206 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; 207 208 if (!(sc->sc_flags & ATHN_FLAG_PCIE)) 209 athn_config_nonpcie(sc); 210 else 211 athn_config_pcie(sc); 212 213 /* Read entire ROM content in memory. */ 214 if ((error = ar5008_read_rom(sc)) != 0) { 215 aprint_error_dev(sc->sc_dev, "could not read ROM\n"); 216 return error; 217 } 218 219 /* Get RF revision. */ 220 sc->sc_rf_rev = ar5416_get_rf_rev(sc); 221 222 base = sc->sc_eep; 223 eep_ver = (base->version >> 12) & 0xf; 224 sc->sc_eep_rev = (base->version & 0xfff); 225 if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) { 226 aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n", 227 eep_ver, sc->sc_eep_rev); 228 return EINVAL; 229 } 230 231 if (base->opCapFlags & AR_OPFLAGS_11A) 232 sc->sc_flags |= ATHN_FLAG_11A; 233 if (base->opCapFlags & AR_OPFLAGS_11G) 234 sc->sc_flags |= ATHN_FLAG_11G; 235 if (base->opCapFlags & AR_OPFLAGS_11N) 236 sc->sc_flags |= ATHN_FLAG_11N; 237 238 IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr); 239 240 /* Check if we have a hardware radio switch. */ 241 if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) { 242 sc->sc_flags |= ATHN_FLAG_RFSILENT; 243 /* Get GPIO pin used by hardware radio switch. */ 244 sc->sc_rfsilent_pin = MS(base->rfSilent, 245 AR_EEP_RFSILENT_GPIO_SEL); 246 /* Get polarity of hardware radio switch. */ 247 if (base->rfSilent & AR_EEP_RFSILENT_POLARITY) 248 sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED; 249 } 250 251 /* Get the number of HW key cache entries. */ 252 kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES); 253 sc->sc_kc_entries = kc_entries_log != 0 ? 254 1 << kc_entries_log : AR_KEYTABLE_SIZE; 255 256 sc->sc_txchainmask = base->txMask; 257 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI && 258 !(base->opCapFlags & AR_OPFLAGS_11A)) { 259 /* For single-band AR5416 PCI, use GPIO pin 0. */ 260 sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7; 261 } 262 else 263 sc->sc_rxchainmask = base->rxMask; 264 265 ops->setup(sc); 266 return 0; 267 } 268 269 /* 270 * Read 16-bit word from ROM. 271 */ 272 Static int 273 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) 274 { 275 uint32_t reg; 276 int ntries; 277 278 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); 279 for (ntries = 0; ntries < 1000; ntries++) { 280 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); 281 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | 282 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { 283 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); 284 return 0; 285 } 286 DELAY(10); 287 } 288 *val = 0xffff; 289 return ETIMEDOUT; 290 } 291 292 Static int 293 ar5008_read_rom(struct athn_softc *sc) 294 { 295 uint32_t addr, end; 296 uint16_t magic, sum, *eep; 297 int need_swap = 0; 298 int error; 299 300 /* Determine ROM endianness. */ 301 error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic); 302 if (error != 0) 303 return error; 304 if (magic != AR_EEPROM_MAGIC) { 305 if (magic != bswap16(AR_EEPROM_MAGIC)) { 306 DPRINTFN(DBG_INIT, sc, 307 "invalid ROM magic 0x%x != 0x%x\n", 308 magic, AR_EEPROM_MAGIC); 309 return EIO; 310 } 311 DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n"); 312 need_swap = 1; 313 } 314 315 /* Allocate space to store ROM in host memory. */ 316 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK); 317 318 /* Read entire ROM and compute checksum. */ 319 sum = 0; 320 eep = sc->sc_eep; 321 end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t); 322 for (addr = sc->sc_eep_base; addr < end; addr++, eep++) { 323 if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) { 324 DPRINTFN(DBG_INIT, sc, 325 "could not read ROM at 0x%x\n", addr); 326 return error; 327 } 328 if (need_swap) 329 *eep = bswap16(*eep); 330 sum ^= *eep; 331 } 332 if (sum != 0xffff) { 333 aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum); 334 return EIO; 335 } 336 if (need_swap) 337 ar5008_swap_rom(sc); 338 339 return 0; 340 } 341 342 Static void 343 ar5008_swap_rom(struct athn_softc *sc) 344 { 345 struct ar_base_eep_header *base = sc->sc_eep; 346 347 /* Swap common fields first. */ 348 base->length = bswap16(base->length); 349 base->version = bswap16(base->version); 350 base->regDmn[0] = bswap16(base->regDmn[0]); 351 base->regDmn[1] = bswap16(base->regDmn[1]); 352 base->rfSilent = bswap16(base->rfSilent); 353 base->blueToothOptions = bswap16(base->blueToothOptions); 354 base->deviceCap = bswap16(base->deviceCap); 355 356 /* Swap device-dependent fields. */ 357 sc->sc_ops.swap_rom(sc); 358 } 359 360 /* 361 * Access to General Purpose Input/Output ports. 362 */ 363 Static int 364 ar5008_gpio_read(struct athn_softc *sc, int pin) 365 { 366 367 KASSERT(pin < sc->sc_ngpiopins); 368 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) 369 return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1); 370 return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1; 371 } 372 373 Static void 374 ar5008_gpio_write(struct athn_softc *sc, int pin, int set) 375 { 376 uint32_t reg; 377 378 KASSERT(pin < sc->sc_ngpiopins); 379 380 if (sc->sc_flags & ATHN_FLAG_USB) 381 set = !set; /* AR9271/AR7010 is reversed. */ 382 383 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 384 /* Special case for AR7010. */ 385 reg = AR_READ(sc, AR7010_GPIO_OUT); 386 if (set) 387 reg |= 1 << pin; 388 else 389 reg &= ~(1 << pin); 390 AR_WRITE(sc, AR7010_GPIO_OUT, reg); 391 } 392 else { 393 reg = AR_READ(sc, AR_GPIO_IN_OUT); 394 if (set) 395 reg |= 1 << pin; 396 else 397 reg &= ~(1 << pin); 398 AR_WRITE(sc, AR_GPIO_IN_OUT, reg); 399 } 400 AR_WRITE_BARRIER(sc); 401 } 402 403 Static void 404 ar5008_gpio_config_input(struct athn_softc *sc, int pin) 405 { 406 uint32_t reg; 407 408 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 409 /* Special case for AR7010. */ 410 AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin); 411 } 412 else { 413 reg = AR_READ(sc, AR_GPIO_OE_OUT); 414 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 415 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); 416 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 417 } 418 AR_WRITE_BARRIER(sc); 419 } 420 421 Static void 422 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type) 423 { 424 uint32_t reg; 425 int mux, off; 426 427 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 428 /* Special case for AR7010. */ 429 AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin); 430 AR_WRITE_BARRIER(sc); 431 return; 432 } 433 mux = pin / 6; 434 off = pin % 6; 435 436 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); 437 if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0) 438 reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1; 439 reg &= ~(0x1f << (off * 5)); 440 reg |= (type & 0x1f) << (off * 5); 441 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); 442 443 reg = AR_READ(sc, AR_GPIO_OE_OUT); 444 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 445 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); 446 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 447 AR_WRITE_BARRIER(sc); 448 } 449 450 Static void 451 ar5008_rfsilent_init(struct athn_softc *sc) 452 { 453 uint32_t reg; 454 455 /* Configure hardware radio switch. */ 456 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); 457 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); 458 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); 459 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); 460 ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin); 461 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); 462 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) { 463 AR_SETBITS(sc, AR_GPIO_INTR_POL, 464 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin)); 465 } 466 AR_WRITE_BARRIER(sc); 467 } 468 469 Static int 470 ar5008_dma_alloc(struct athn_softc *sc) 471 { 472 int error; 473 474 error = ar5008_tx_alloc(sc); 475 if (error != 0) 476 return error; 477 478 error = ar5008_rx_alloc(sc); 479 if (error != 0) 480 return error; 481 482 return 0; 483 } 484 485 Static void 486 ar5008_dma_free(struct athn_softc *sc) 487 { 488 489 ar5008_tx_free(sc); 490 ar5008_rx_free(sc); 491 } 492 493 Static int 494 ar5008_tx_alloc(struct athn_softc *sc) 495 { 496 struct athn_tx_buf *bf; 497 bus_size_t size; 498 int error, nsegs, i; 499 500 /* 501 * Allocate a pool of Tx descriptors shared between all Tx queues. 502 */ 503 size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 504 505 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 506 BUS_DMA_NOWAIT, &sc->sc_map); 507 if (error != 0) 508 goto fail; 509 510 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1, 511 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 512 &nsegs, BUS_DMA_NOWAIT); 513 if (error != 0) 514 goto fail; 515 516 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size, 517 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 518 if (error != 0) 519 goto fail; 520 521 error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, 522 size, NULL, BUS_DMA_NOWAIT); 523 if (error != 0) 524 goto fail; 525 526 SIMPLEQ_INIT(&sc->sc_txbufs); 527 for (i = 0; i < ATHN_NTXBUFS; i++) { 528 bf = &sc->sc_txpool[i]; 529 530 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, 531 AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, 532 &bf->bf_map); 533 if (error != 0) { 534 aprint_error_dev(sc->sc_dev, 535 "could not create Tx buf DMA map\n"); 536 goto fail; 537 } 538 539 bf->bf_descs = 540 &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER]; 541 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr + 542 i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 543 544 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 545 } 546 return 0; 547 fail: 548 ar5008_tx_free(sc); 549 return error; 550 } 551 552 Static void 553 ar5008_tx_free(struct athn_softc *sc) 554 { 555 struct athn_tx_buf *bf; 556 int i; 557 558 for (i = 0; i < ATHN_NTXBUFS; i++) { 559 bf = &sc->sc_txpool[i]; 560 561 if (bf->bf_map != NULL) 562 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 563 } 564 /* Free Tx descriptors. */ 565 if (sc->sc_map != NULL) { 566 if (sc->sc_descs != NULL) { 567 bus_dmamap_unload(sc->sc_dmat, sc->sc_map); 568 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs, 569 ATHN_NTXBUFS * AR5008_MAX_SCATTER * 570 sizeof(struct ar_tx_desc)); 571 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 572 } 573 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map); 574 } 575 } 576 577 Static int 578 ar5008_rx_alloc(struct athn_softc *sc) 579 { 580 struct athn_rxq *rxq = &sc->sc_rxq[0]; 581 struct athn_rx_buf *bf; 582 struct ar_rx_desc *ds; 583 bus_size_t size; 584 int error, nsegs, i; 585 586 rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF, 587 M_WAITOK | M_ZERO); 588 589 size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc); 590 591 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 592 BUS_DMA_NOWAIT, &rxq->map); 593 if (error != 0) 594 goto fail; 595 596 error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1, 597 // &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 598 &nsegs, BUS_DMA_NOWAIT); 599 if (error != 0) 600 goto fail; 601 602 error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size, 603 (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 604 if (error != 0) 605 goto fail; 606 607 error = bus_dmamap_load(sc->sc_dmat, rxq->map, rxq->descs, 608 size, NULL, BUS_DMA_NOWAIT); 609 if (error != 0) 610 goto fail; 611 612 for (i = 0; i < ATHN_NRXBUFS; i++) { 613 bf = &rxq->bf[i]; 614 ds = &((struct ar_rx_desc *)rxq->descs)[i]; 615 616 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, 617 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 618 &bf->bf_map); 619 if (error != 0) { 620 aprint_error_dev(sc->sc_dev, 621 " could not create Rx buf DMA map\n"); 622 goto fail; 623 } 624 /* 625 * Assumes MCLGETI returns cache-line-size aligned buffers. 626 * XXX: does ours? 627 */ 628 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 629 if (bf->bf_m == NULL) { 630 aprint_error_dev(sc->sc_dev, 631 "could not allocate Rx mbuf\n"); 632 error = ENOBUFS; 633 goto fail; 634 } 635 636 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 637 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 638 BUS_DMA_NOWAIT | BUS_DMA_READ); 639 if (error != 0) { 640 aprint_error_dev(sc->sc_dev, 641 "could not DMA map Rx buffer\n"); 642 goto fail; 643 } 644 645 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 646 BUS_DMASYNC_PREREAD); 647 648 bf->bf_desc = ds; 649 bf->bf_daddr = rxq->map->dm_segs[0].ds_addr + 650 i * sizeof(struct ar_rx_desc); 651 } 652 return 0; 653 fail: 654 ar5008_rx_free(sc); 655 return error; 656 } 657 658 Static void 659 ar5008_rx_free(struct athn_softc *sc) 660 { 661 struct athn_rxq *rxq = &sc->sc_rxq[0]; 662 struct athn_rx_buf *bf; 663 int i; 664 665 if (rxq->bf == NULL) 666 return; 667 for (i = 0; i < ATHN_NRXBUFS; i++) { 668 bf = &rxq->bf[i]; 669 670 if (bf->bf_map != NULL) 671 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 672 m_freem(bf->bf_m); 673 } 674 free(rxq->bf, M_DEVBUF); 675 676 /* Free Rx descriptors. */ 677 if (rxq->map != NULL) { 678 if (rxq->descs != NULL) { 679 bus_dmamap_unload(sc->sc_dmat, rxq->map); 680 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs, 681 ATHN_NRXBUFS * sizeof(struct ar_rx_desc)); 682 bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1); 683 } 684 bus_dmamap_destroy(sc->sc_dmat, rxq->map); 685 } 686 } 687 688 Static void 689 ar5008_rx_enable(struct athn_softc *sc) 690 { 691 struct athn_rxq *rxq = &sc->sc_rxq[0]; 692 struct athn_rx_buf *bf; 693 struct ar_rx_desc *ds; 694 int i; 695 696 /* Setup and link Rx descriptors. */ 697 SIMPLEQ_INIT(&rxq->head); 698 rxq->lastds = NULL; 699 for (i = 0; i < ATHN_NRXBUFS; i++) { 700 bf = &rxq->bf[i]; 701 ds = bf->bf_desc; 702 703 memset(ds, 0, sizeof(*ds)); 704 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 705 ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ); 706 707 if (rxq->lastds != NULL) { 708 ((struct ar_rx_desc *)rxq->lastds)->ds_link = 709 bf->bf_daddr; 710 } 711 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 712 rxq->lastds = ds; 713 } 714 bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize, 715 BUS_DMASYNC_PREREAD); 716 717 /* Enable Rx. */ 718 AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr); 719 AR_WRITE(sc, AR_CR, AR_CR_RXE); 720 AR_WRITE_BARRIER(sc); 721 } 722 723 Static void 724 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m, 725 struct ar_rx_desc *ds) 726 { 727 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; 728 struct ieee80211com *ic = &sc->sc_ic; 729 uint64_t tsf; 730 uint32_t tstamp; 731 uint8_t rate; 732 733 /* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */ 734 tstamp = ds->ds_status2; 735 tsf = AR_READ(sc, AR_TSF_U32); 736 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); 737 if ((tsf & 0x7fff) < tstamp) 738 tsf -= 0x8000; 739 tsf = (tsf & ~0x7fff) | tstamp; 740 741 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 742 tap->wr_tsft = htole64(tsf); 743 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 744 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 745 tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 746 /* XXX noise. */ 747 tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA); 748 tap->wr_rate = 0; /* In case it can't be found below. */ 749 if (AR_SREV_5416_20_OR_LATER(sc)) 750 rate = MS(ds->ds_status0, AR_RXS0_RATE); 751 else 752 rate = MS(ds->ds_status3, AR_RXS3_RATE); 753 if (rate & 0x80) { /* HT. */ 754 /* Bit 7 set means HT MCS instead of rate. */ 755 tap->wr_rate = rate; 756 if (!(ds->ds_status3 & AR_RXS3_GI)) 757 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 758 759 } 760 else if (rate & 0x10) { /* CCK. */ 761 if (rate & 0x04) 762 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 763 switch (rate & ~0x14) { 764 case 0xb: tap->wr_rate = 2; break; 765 case 0xa: tap->wr_rate = 4; break; 766 case 0x9: tap->wr_rate = 11; break; 767 case 0x8: tap->wr_rate = 22; break; 768 } 769 } 770 else { /* OFDM. */ 771 switch (rate) { 772 case 0xb: tap->wr_rate = 12; break; 773 case 0xf: tap->wr_rate = 18; break; 774 case 0xa: tap->wr_rate = 24; break; 775 case 0xe: tap->wr_rate = 36; break; 776 case 0x9: tap->wr_rate = 48; break; 777 case 0xd: tap->wr_rate = 72; break; 778 case 0x8: tap->wr_rate = 96; break; 779 case 0xc: tap->wr_rate = 108; break; 780 } 781 } 782 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 783 } 784 785 static __inline int 786 ar5008_rx_process(struct athn_softc *sc) 787 { 788 struct ieee80211com *ic = &sc->sc_ic; 789 struct ifnet *ifp = &sc->sc_if; 790 struct athn_rxq *rxq = &sc->sc_rxq[0]; 791 struct athn_rx_buf *bf, *nbf; 792 struct ar_rx_desc *ds; 793 struct ieee80211_frame *wh; 794 struct ieee80211_node *ni; 795 struct mbuf *m, *m1; 796 u_int32_t rstamp; 797 int error, len, rssi, s; 798 799 bf = SIMPLEQ_FIRST(&rxq->head); 800 if (__predict_false(bf == NULL)) { /* Should not happen. */ 801 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n"); 802 return ENOENT; 803 } 804 ds = bf->bf_desc; 805 806 if (!(ds->ds_status8 & AR_RXS8_DONE)) { 807 /* 808 * On some parts, the status words can get corrupted 809 * (including the "done" bit), so we check the next 810 * descriptor "done" bit. If it is set, it is a good 811 * indication that the status words are corrupted, so 812 * we skip this descriptor and drop the frame. 813 */ 814 nbf = SIMPLEQ_NEXT(bf, bf_list); 815 if (nbf != NULL && 816 (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 & 817 AR_RXS8_DONE)) { 818 DPRINTFN(DBG_RX, sc, 819 "corrupted descriptor status=0x%x\n", 820 ds->ds_status8); 821 /* HW will not "move" RXDP in this case, so do it. */ 822 AR_WRITE(sc, AR_RXDP, nbf->bf_daddr); 823 AR_WRITE_BARRIER(sc); 824 if_statinc(ifp, if_ierrors); 825 goto skip; 826 } 827 return EBUSY; 828 } 829 830 if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) { 831 /* Drop frames that span multiple Rx descriptors. */ 832 DPRINTFN(DBG_RX, sc, "dropping split frame\n"); 833 if_statinc(ifp, if_ierrors); 834 goto skip; 835 } 836 if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) { 837 if (ds->ds_status8 & AR_RXS8_CRC_ERR) 838 DPRINTFN(DBG_RX, sc, "CRC error\n"); 839 else if (ds->ds_status8 & AR_RXS8_PHY_ERR) 840 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n", 841 MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE)); 842 else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR) 843 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n"); 844 else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) { 845 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n"); 846 847 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 848 m = bf->bf_m; 849 m_set_rcvif(m, ifp); 850 m->m_pkthdr.len = m->m_len = len; 851 wh = mtod(m, struct ieee80211_frame *); 852 853 /* Report Michael MIC failures to net80211. */ 854 ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */); 855 } 856 if_statinc(ifp, if_ierrors); 857 goto skip; 858 } 859 860 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 861 if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) { 862 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len); 863 if_statinc(ifp, if_ierrors); 864 goto skip; 865 } 866 867 /* Allocate a new Rx buffer. */ 868 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 869 if (__predict_false(m1 == NULL)) { 870 ic->ic_stats.is_rx_nobuf++; 871 if_statinc(ifp, if_ierrors); 872 goto skip; 873 } 874 875 /* Sync and unmap the old Rx buffer. */ 876 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 877 BUS_DMASYNC_POSTREAD); 878 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 879 880 /* Map the new Rx buffer. */ 881 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), 882 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 883 if (__predict_false(error != 0)) { 884 m_freem(m1); 885 886 /* Remap the old Rx buffer or panic. */ 887 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 888 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 889 BUS_DMA_NOWAIT | BUS_DMA_READ); 890 KASSERT(error != 0); 891 if_statinc(ifp, if_ierrors); 892 goto skip; 893 } 894 895 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 896 BUS_DMASYNC_PREREAD); 897 898 /* Write physical address of new Rx buffer. */ 899 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 900 901 m = bf->bf_m; 902 bf->bf_m = m1; 903 904 /* Finalize mbuf. */ 905 m_set_rcvif(m, ifp); 906 m->m_pkthdr.len = m->m_len = len; 907 908 s = splnet(); 909 910 /* Grab a reference to the source node. */ 911 wh = mtod(m, struct ieee80211_frame *); 912 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 913 914 /* Remove any HW padding after the 802.11 header. */ 915 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { 916 u_int hdrlen = ieee80211_anyhdrsize(wh); 917 if (hdrlen & 3) { 918 memmove((uint8_t *)wh + 2, wh, hdrlen); 919 m_adj(m, 2); 920 } 921 } 922 if (__predict_false(sc->sc_drvbpf != NULL)) 923 ar5008_rx_radiotap(sc, m, ds); 924 925 /* Trim 802.11 FCS after radiotap. */ 926 m_adj(m, -IEEE80211_CRC_LEN); 927 928 /* Send the frame to the 802.11 layer. */ 929 rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 930 rstamp = ds->ds_status2; 931 ieee80211_input(ic, m, ni, rssi, rstamp); 932 933 /* Node is no longer needed. */ 934 ieee80211_free_node(ni); 935 936 splx(s); 937 938 skip: 939 /* Unlink this descriptor from head. */ 940 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); 941 memset(&ds->ds_status0, 0, 36); /* XXX Really needed? */ 942 ds->ds_status8 &= ~AR_RXS8_DONE; 943 ds->ds_link = 0; 944 945 /* Re-use this descriptor and link it to tail. */ 946 if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head))) 947 ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; 948 else 949 AR_WRITE(sc, AR_RXDP, bf->bf_daddr); 950 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 951 rxq->lastds = ds; 952 953 /* Re-enable Rx. */ 954 AR_WRITE(sc, AR_CR, AR_CR_RXE); 955 AR_WRITE_BARRIER(sc); 956 return 0; 957 } 958 959 Static void 960 ar5008_rx_intr(struct athn_softc *sc) 961 { 962 963 while (ar5008_rx_process(sc) == 0) 964 continue; 965 } 966 967 Static int 968 ar5008_tx_process(struct athn_softc *sc, int qid) 969 { 970 struct ifnet *ifp = &sc->sc_if; 971 struct athn_txq *txq = &sc->sc_txq[qid]; 972 struct athn_node *an; 973 struct athn_tx_buf *bf; 974 struct ar_tx_desc *ds; 975 uint8_t failcnt; 976 977 bf = SIMPLEQ_FIRST(&txq->head); 978 if (bf == NULL) 979 return ENOENT; 980 /* Get descriptor of last DMA segment. */ 981 ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1]; 982 983 if (!(ds->ds_status9 & AR_TXS9_DONE)) 984 return EBUSY; 985 986 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); 987 if_statinc(ifp, if_opackets); 988 989 sc->sc_tx_timer = 0; 990 991 if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES) 992 if_statinc(ifp, if_oerrors); 993 994 if (ds->ds_status1 & AR_TXS1_UNDERRUN) 995 athn_inc_tx_trigger_level(sc); 996 997 an = (struct athn_node *)bf->bf_ni; 998 /* 999 * NB: the data fail count contains the number of un-acked tries 1000 * for the final series used. We must add the number of tries for 1001 * each series that was fully processed. 1002 */ 1003 failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT); 1004 /* NB: Assume two tries per series. */ 1005 failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2; 1006 1007 /* Update rate control statistics. */ 1008 an->amn.amn_txcnt++; 1009 if (failcnt > 0) 1010 an->amn.amn_retrycnt++; 1011 1012 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n", 1013 qid, ds->ds_status1, failcnt); 1014 1015 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1016 BUS_DMASYNC_POSTWRITE); 1017 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1018 1019 m_freem(bf->bf_m); 1020 bf->bf_m = NULL; 1021 ieee80211_free_node(bf->bf_ni); 1022 bf->bf_ni = NULL; 1023 1024 /* Link Tx buffer back to global free list. */ 1025 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 1026 return 0; 1027 } 1028 1029 Static void 1030 ar5008_tx_intr(struct athn_softc *sc) 1031 { 1032 struct ifnet *ifp = &sc->sc_if; 1033 uint16_t mask = 0; 1034 uint32_t reg; 1035 int qid, s; 1036 1037 s = splnet(); 1038 1039 reg = AR_READ(sc, AR_ISR_S0_S); 1040 mask |= MS(reg, AR_ISR_S0_QCU_TXOK); 1041 mask |= MS(reg, AR_ISR_S0_QCU_TXDESC); 1042 1043 reg = AR_READ(sc, AR_ISR_S1_S); 1044 mask |= MS(reg, AR_ISR_S1_QCU_TXERR); 1045 mask |= MS(reg, AR_ISR_S1_QCU_TXEOL); 1046 1047 DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask); 1048 for (qid = 0; mask != 0; mask >>= 1, qid++) { 1049 if (mask & 1) 1050 while (ar5008_tx_process(sc, qid) == 0); 1051 } 1052 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) { 1053 ifp->if_flags &= ~IFF_OACTIVE; 1054 ifp->if_start(ifp); /* in softint */ 1055 } 1056 1057 splx(s); 1058 } 1059 1060 #ifndef IEEE80211_STA_ONLY 1061 /* 1062 * Process Software Beacon Alert interrupts. 1063 */ 1064 Static int 1065 ar5008_swba_intr(struct athn_softc *sc) 1066 { 1067 struct ieee80211com *ic = &sc->sc_ic; 1068 struct ifnet *ifp = &sc->sc_if; 1069 struct ieee80211_node *ni = ic->ic_bss; 1070 struct athn_tx_buf *bf = sc->sc_bcnbuf; 1071 struct ieee80211_frame *wh; 1072 struct ieee80211_beacon_offsets bo; 1073 struct ar_tx_desc *ds; 1074 struct mbuf *m; 1075 uint8_t ridx, hwrate; 1076 int error, totlen; 1077 1078 #if notyet 1079 if (ic->ic_tim_mcast_pending && 1080 IF_IS_EMPTY(&ni->ni_savedq) && 1081 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head)) 1082 ic->ic_tim_mcast_pending = 0; 1083 #endif 1084 if (ic->ic_dtim_count == 0) 1085 ic->ic_dtim_count = ic->ic_dtim_period - 1; 1086 else 1087 ic->ic_dtim_count--; 1088 1089 /* Make sure previous beacon has been sent. */ 1090 if (athn_tx_pending(sc, ATHN_QID_BEACON)) { 1091 DPRINTFN(DBG_INTR, sc, "beacon stuck\n"); 1092 return EBUSY; 1093 } 1094 /* Get new beacon. */ 1095 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 1096 if (__predict_false(m == NULL)) 1097 return ENOBUFS; 1098 /* Assign sequence number. */ 1099 /* XXX: use non-QoS tid? */ 1100 wh = mtod(m, struct ieee80211_frame *); 1101 *(uint16_t *)&wh->i_seq[0] = 1102 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 1103 ic->ic_bss->ni_txseqs[0]++; 1104 1105 /* Unmap and free old beacon if any. */ 1106 if (__predict_true(bf->bf_m != NULL)) { 1107 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, 1108 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1109 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1110 m_freem(bf->bf_m); 1111 bf->bf_m = NULL; 1112 } 1113 /* DMA map new beacon. */ 1114 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1115 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1116 if (__predict_false(error != 0)) { 1117 m_freem(m); 1118 return error; 1119 } 1120 bf->bf_m = m; 1121 1122 /* Setup Tx descriptor (simplified ar5008_tx()). */ 1123 ds = bf->bf_descs; 1124 memset(ds, 0, sizeof(*ds)); 1125 1126 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1127 ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen); 1128 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER); 1129 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON); 1130 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1131 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); 1132 1133 /* Write number of tries. */ 1134 ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1); 1135 1136 /* Write Tx rate. */ 1137 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1138 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1139 hwrate = athn_rates[ridx].hwrate; 1140 ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate); 1141 1142 /* Write Tx chains. */ 1143 ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask); 1144 1145 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 1146 /* Segment length must be a multiple of 4. */ 1147 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1148 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); 1149 1150 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1151 BUS_DMASYNC_PREWRITE); 1152 1153 /* Stop Tx DMA before putting the new beacon on the queue. */ 1154 athn_stop_tx_dma(sc, ATHN_QID_BEACON); 1155 1156 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); 1157 1158 for(;;) { 1159 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) 1160 break; 1161 1162 IF_DEQUEUE(&ni->ni_savedq, m); 1163 if (m == NULL) 1164 break; 1165 if (!IF_IS_EMPTY(&ni->ni_savedq)) { 1166 /* more queued frames, set the more data bit */ 1167 wh = mtod(m, struct ieee80211_frame *); 1168 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1169 } 1170 1171 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { 1172 ieee80211_free_node(ni); 1173 if_statinc(ifp, if_oerrors); 1174 break; 1175 } 1176 } 1177 1178 /* Kick Tx. */ 1179 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); 1180 AR_WRITE_BARRIER(sc); 1181 return 0; 1182 } 1183 #endif 1184 1185 static int 1186 ar5008_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp) 1187 { 1188 uint32_t intr, sync; 1189 1190 /* Get pending interrupts. */ 1191 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); 1192 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { 1193 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); 1194 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0) 1195 return 0; /* Not for us. */ 1196 } 1197 1198 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && 1199 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) 1200 intr = AR_READ(sc, AR_ISR); 1201 else 1202 intr = 0; 1203 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync; 1204 if (intr == 0 && sync == 0) 1205 return 0; /* Not for us. */ 1206 1207 *intrp = intr; 1208 *syncp = sync; 1209 return 1; 1210 } 1211 1212 1213 Static int 1214 ar5008_intr_status(struct athn_softc *sc) 1215 { 1216 uint32_t intr, sync; 1217 1218 return ar5008_get_intr_status(sc, &intr, &sync); 1219 } 1220 1221 Static int 1222 ar5008_intr(struct athn_softc *sc) 1223 { 1224 uint32_t intr, intr5, sync; 1225 #ifndef IEEE80211_STA_ONLY 1226 int s; 1227 #endif 1228 1229 if (!ar5008_get_intr_status(sc, &intr, &sync)) 1230 return 0; 1231 1232 if (intr != 0) { 1233 if (intr & AR_ISR_BCNMISC) { 1234 uint32_t intr2 = AR_READ(sc, AR_ISR_S2); 1235 #if notyet 1236 if (intr2 & AR_ISR_S2_TIM) 1237 /* TBD */; 1238 if (intr2 & AR_ISR_S2_TSFOOR) 1239 /* TBD */; 1240 #else 1241 __USE(intr2); 1242 #endif 1243 } 1244 intr = AR_READ(sc, AR_ISR_RAC); 1245 if (intr == AR_INTR_SPURIOUS) 1246 return 1; 1247 1248 #ifndef IEEE80211_STA_ONLY 1249 if (intr & AR_ISR_SWBA) { 1250 s = splnet(); 1251 ar5008_swba_intr(sc); 1252 splx(s); 1253 } 1254 #endif 1255 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) 1256 ar5008_rx_intr(sc); 1257 if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN)) 1258 ar5008_rx_intr(sc); 1259 1260 if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC | 1261 AR_ISR_TXERR | AR_ISR_TXEOL)) 1262 ar5008_tx_intr(sc); 1263 1264 intr5 = AR_READ(sc, AR_ISR_S5_S); 1265 if (intr & AR_ISR_GENTMR) { 1266 if (intr5 & AR_ISR_GENTMR) { 1267 DPRINTFN(DBG_INTR, sc, 1268 "GENTMR trigger=%d thresh=%d\n", 1269 MS(intr5, AR_ISR_S5_GENTIMER_TRIG), 1270 MS(intr5, AR_ISR_S5_GENTIMER_THRESH)); 1271 } 1272 } 1273 #if notyet 1274 if (intr5 & AR_ISR_S5_TIM_TIMER) { 1275 /* TBD */; 1276 } 1277 #endif 1278 } 1279 if (sync != 0) { 1280 #if notyet 1281 if (sync & 1282 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) { 1283 /* TBD */; 1284 } 1285 #endif 1286 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { 1287 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); 1288 AR_WRITE(sc, AR_RC, 0); 1289 } 1290 1291 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) && 1292 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) { 1293 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0); 1294 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE); 1295 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF); 1296 } 1297 1298 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); 1299 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); 1300 } 1301 return 1; 1302 } 1303 1304 Static int 1305 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 1306 int txflags) 1307 { 1308 struct ieee80211com *ic = &sc->sc_ic; 1309 struct ieee80211_key *k = NULL; 1310 struct ieee80211_frame *wh; 1311 struct athn_series series[4]; 1312 struct ar_tx_desc *ds, *lastds; 1313 struct athn_txq *txq; 1314 struct athn_tx_buf *bf; 1315 struct athn_node *an = (void *)ni; 1316 struct mbuf *m1; 1317 uint16_t qos; 1318 uint8_t txpower, type, encrtype, ridx[4]; 1319 int i, error, totlen, hasqos, qid; 1320 1321 /* Grab a Tx buffer from our global free list. */ 1322 bf = SIMPLEQ_FIRST(&sc->sc_txbufs); 1323 KASSERT(bf != NULL); 1324 1325 /* Map 802.11 frame type to hardware frame type. */ 1326 wh = mtod(m, struct ieee80211_frame *); 1327 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1328 IEEE80211_FC0_TYPE_MGT) { 1329 /* NB: Beacons do not use ar5008_tx(). */ 1330 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1331 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1332 type = AR_FRAME_TYPE_PROBE_RESP; 1333 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1334 IEEE80211_FC0_SUBTYPE_ATIM) 1335 type = AR_FRAME_TYPE_ATIM; 1336 else 1337 type = AR_FRAME_TYPE_NORMAL; 1338 } 1339 else if ((wh->i_fc[0] & 1340 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1341 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { 1342 type = AR_FRAME_TYPE_PSPOLL; 1343 } 1344 else 1345 type = AR_FRAME_TYPE_NORMAL; 1346 1347 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1348 k = ieee80211_crypto_encap(ic, ni, m); 1349 if (k == NULL) 1350 return ENOBUFS; 1351 1352 /* packet header may have moved, reset our local pointer */ 1353 wh = mtod(m, struct ieee80211_frame *); 1354 } 1355 1356 /* XXX 2-byte padding for QoS and 4-addr headers. */ 1357 1358 /* Select the HW Tx queue to use for this frame. */ 1359 if ((hasqos = ieee80211_has_qos(wh))) { 1360 #ifdef notyet_edca 1361 uint8_t tid; 1362 1363 qos = ieee80211_get_qos(wh); 1364 tid = qos & IEEE80211_QOS_TID; 1365 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; 1366 #else 1367 qos = ieee80211_get_qos(wh); 1368 qid = ATHN_QID_AC_BE; 1369 #endif /* notyet_edca */ 1370 } 1371 else if (type == AR_FRAME_TYPE_PSPOLL) { 1372 qos = 0; 1373 qid = ATHN_QID_PSPOLL; 1374 } 1375 else if (txflags & ATHN_TXFLAG_CAB) { 1376 qos = 0; 1377 qid = ATHN_QID_CAB; 1378 } 1379 else { 1380 qos = 0; 1381 qid = ATHN_QID_AC_BE; 1382 } 1383 txq = &sc->sc_txq[qid]; 1384 1385 /* Select the transmit rates to use for this frame. */ 1386 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1387 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 1388 IEEE80211_FC0_TYPE_DATA) { 1389 /* Use lowest rate for all tries. */ 1390 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1391 (ic->ic_curmode == IEEE80211_MODE_11A) ? 1392 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1393 } 1394 else if (ic->ic_fixed_rate != -1) { 1395 /* Use same fixed rate for all tries. */ 1396 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1397 sc->sc_fixed_ridx; 1398 } 1399 else { 1400 int txrate = ni->ni_txrate; 1401 /* Use fallback table of the node. */ 1402 for (i = 0; i < 4; i++) { 1403 ridx[i] = an->ridx[txrate]; 1404 txrate = an->fallback[txrate]; 1405 } 1406 } 1407 1408 if (__predict_false(sc->sc_drvbpf != NULL)) { 1409 struct athn_tx_radiotap_header *tap = &sc->sc_txtap; 1410 1411 tap->wt_flags = 0; 1412 /* Use initial transmit rate. */ 1413 tap->wt_rate = athn_rates[ridx[0]].rate; 1414 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1415 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1416 // XXX tap->wt_hwqueue = qid; 1417 if (ridx[0] != ATHN_RIDX_CCK1 && 1418 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1419 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1420 1421 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); 1422 } 1423 1424 /* DMA map mbuf. */ 1425 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1426 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1427 if (__predict_false(error != 0)) { 1428 if (error != EFBIG) { 1429 aprint_error_dev(sc->sc_dev, 1430 "can't map mbuf (error %d)\n", error); 1431 m_freem(m); 1432 return error; 1433 } 1434 /* 1435 * DMA mapping requires too many DMA segments; linearize 1436 * mbuf in kernel virtual address space and retry. 1437 */ 1438 MGETHDR(m1, M_DONTWAIT, MT_DATA); 1439 if (m1 == NULL) { 1440 m_freem(m); 1441 return ENOBUFS; 1442 } 1443 if (m->m_pkthdr.len > (int)MHLEN) { 1444 MCLGET(m1, M_DONTWAIT); 1445 if (!(m1->m_flags & M_EXT)) { 1446 m_freem(m); 1447 m_freem(m1); 1448 return ENOBUFS; 1449 } 1450 } 1451 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 1452 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 1453 m_freem(m); 1454 m = m1; 1455 1456 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1457 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1458 if (error != 0) { 1459 aprint_error_dev(sc->sc_dev, 1460 "can't map mbuf (error %d)\n", error); 1461 m_freem(m); 1462 return error; 1463 } 1464 } 1465 bf->bf_m = m; 1466 bf->bf_ni = ni; 1467 bf->bf_txflags = txflags; 1468 1469 wh = mtod(m, struct ieee80211_frame *); 1470 1471 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1472 1473 /* Clear all Tx descriptors that we will use. */ 1474 memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds)); 1475 1476 /* Setup first Tx descriptor. */ 1477 ds = bf->bf_descs; 1478 1479 ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK; 1480 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ 1481 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower); 1482 1483 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type); 1484 1485 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1486 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) == 1487 IEEE80211_QOS_ACKPOLICY_NOACK)) 1488 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1489 #if notyet 1490 if (0 && k != NULL) { 1491 uintptr_t entry; 1492 1493 /* 1494 * Map 802.11 cipher to hardware encryption type and 1495 * compute MIC+ICV overhead. 1496 */ 1497 totlen += k->wk_keylen; 1498 switch (k->wk_cipher->ic_cipher) { 1499 case IEEE80211_CIPHER_WEP: 1500 encrtype = AR_ENCR_TYPE_WEP; 1501 break; 1502 case IEEE80211_CIPHER_TKIP: 1503 encrtype = AR_ENCR_TYPE_TKIP; 1504 break; 1505 case IEEE80211_CIPHER_AES_OCB: 1506 case IEEE80211_CIPHER_AES_CCM: 1507 encrtype = AR_ENCR_TYPE_AES; 1508 break; 1509 default: 1510 panic("unsupported cipher"); 1511 } 1512 /* 1513 * NB: The key cache entry index is stored in the key 1514 * private field when the key is installed. 1515 */ 1516 entry = (uintptr_t)k->k_priv; 1517 ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry); 1518 ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID; 1519 } 1520 else 1521 #endif 1522 encrtype = AR_ENCR_TYPE_CLEAR; 1523 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype); 1524 1525 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1526 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1527 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1528 if (totlen > ic->ic_rtsthreshold) { 1529 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1530 } 1531 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1532 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) { 1533 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1534 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1535 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1536 ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE; 1537 } 1538 } 1539 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1540 /* Disable multi-rate retries when protection is used. */ 1541 ridx[1] = ridx[2] = ridx[3] = ridx[0]; 1542 } 1543 /* Setup multi-rate retries. */ 1544 for (i = 0; i < 4; i++) { 1545 series[i].hwrate = athn_rates[ridx[i]].hwrate; 1546 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && 1547 ridx[i] != ATHN_RIDX_CCK1 && 1548 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1549 series[i].hwrate |= 0x04; 1550 series[i].dur = 0; 1551 } 1552 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1553 /* Compute duration for each series. */ 1554 for (i = 0; i < 4; i++) { 1555 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN, 1556 athn_rates[ridx[i]].rspridx, ic->ic_flags); 1557 } 1558 } 1559 1560 /* Write number of tries for each series. */ 1561 ds->ds_ctl2 = 1562 SM(AR_TXC2_XMIT_DATA_TRIES0, 2) | 1563 SM(AR_TXC2_XMIT_DATA_TRIES1, 2) | 1564 SM(AR_TXC2_XMIT_DATA_TRIES2, 2) | 1565 SM(AR_TXC2_XMIT_DATA_TRIES3, 4); 1566 1567 /* Tell HW to update duration field in 802.11 header. */ 1568 if (type != AR_FRAME_TYPE_PSPOLL) 1569 ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA; 1570 1571 /* Write Tx rate for each series. */ 1572 ds->ds_ctl3 = 1573 SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) | 1574 SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) | 1575 SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) | 1576 SM(AR_TXC3_XMIT_RATE3, series[3].hwrate); 1577 1578 /* Write duration for each series. */ 1579 ds->ds_ctl4 = 1580 SM(AR_TXC4_PACKET_DUR0, series[0].dur) | 1581 SM(AR_TXC4_PACKET_DUR1, series[1].dur); 1582 ds->ds_ctl5 = 1583 SM(AR_TXC5_PACKET_DUR2, series[2].dur) | 1584 SM(AR_TXC5_PACKET_DUR3, series[3].dur); 1585 1586 /* Use the same Tx chains for all tries. */ 1587 ds->ds_ctl7 = 1588 SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) | 1589 SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) | 1590 SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) | 1591 SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask); 1592 #ifdef notyet 1593 #ifndef IEEE80211_NO_HT 1594 /* Use the same short GI setting for all tries. */ 1595 if (ic->ic_flags & IEEE80211_F_SHGI) 1596 ds->ds_ctl7 |= AR_TXC7_GI0123; 1597 /* Use the same channel width for all tries. */ 1598 if (ic->ic_flags & IEEE80211_F_CBW40) 1599 ds->ds_ctl7 |= AR_TXC7_2040_0123; 1600 #endif 1601 #endif 1602 1603 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1604 uint8_t protridx, hwrate; 1605 uint16_t dur = 0; 1606 1607 /* Use the same protection mode for all tries. */ 1608 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1609 ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01; 1610 ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23; 1611 } 1612 /* Select protection rate (suboptimal but ok). */ 1613 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1614 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; 1615 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1616 /* Account for CTS duration. */ 1617 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1618 athn_rates[protridx].rspridx, ic->ic_flags); 1619 } 1620 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); 1621 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1622 /* Account for ACK duration. */ 1623 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1624 athn_rates[ridx[0]].rspridx, ic->ic_flags); 1625 } 1626 /* Write protection frame duration and rate. */ 1627 ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur); 1628 hwrate = athn_rates[protridx].hwrate; 1629 if (protridx == ATHN_RIDX_CCK2 && 1630 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1631 hwrate |= 0x04; 1632 ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate); 1633 } 1634 1635 /* Finalize first Tx descriptor and fill others (if any). */ 1636 ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen); 1637 1638 lastds = NULL; /* XXX: gcc */ 1639 for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) { 1640 ds->ds_data = bf->bf_map->dm_segs[i].ds_addr; 1641 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1642 bf->bf_map->dm_segs[i].ds_len); 1643 1644 if (i != bf->bf_map->dm_nsegs - 1) 1645 ds->ds_ctl1 |= AR_TXC1_MORE; 1646 ds->ds_link = 0; 1647 1648 /* Chain Tx descriptor. */ 1649 if (i != 0) 1650 lastds->ds_link = bf->bf_daddr + i * sizeof(*ds); 1651 lastds = ds; 1652 } 1653 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1654 BUS_DMASYNC_PREWRITE); 1655 1656 if (!SIMPLEQ_EMPTY(&txq->head)) 1657 ((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr; 1658 else 1659 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); 1660 txq->lastds = lastds; 1661 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list); 1662 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); 1663 1664 ds = bf->bf_descs; 1665 DPRINTFN(DBG_TX, sc, 1666 "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n", 1667 qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3); 1668 1669 /* Kick Tx. */ 1670 AR_WRITE(sc, AR_Q_TXE, 1 << qid); 1671 AR_WRITE_BARRIER(sc); 1672 return 0; 1673 } 1674 1675 Static void 1676 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) 1677 { 1678 uint32_t reg; 1679 1680 reg = IEEE80211_IS_CHAN_2GHZ(c) ? 1681 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 1682 if (!AR_SREV_9280_10_OR_LATER(sc)) { 1683 reg |= IEEE80211_IS_CHAN_2GHZ(c) ? 1684 AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ; 1685 } 1686 else if (IEEE80211_IS_CHAN_5GHZ(c) && 1687 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 1688 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; 1689 } 1690 AR_WRITE(sc, AR_PHY_MODE, reg); 1691 AR_WRITE_BARRIER(sc); 1692 } 1693 1694 static __inline uint32_t 1695 ar5008_synth_delay(struct athn_softc *sc) 1696 { 1697 uint32_t synth_delay; 1698 1699 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); 1700 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) 1701 synth_delay = (synth_delay * 4) / 22; 1702 else 1703 synth_delay = synth_delay / 10; /* in 100ns steps */ 1704 return synth_delay; 1705 } 1706 1707 Static int 1708 ar5008_rf_bus_request(struct athn_softc *sc) 1709 { 1710 int ntries; 1711 1712 /* Request RF Bus grant. */ 1713 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1714 for (ntries = 0; ntries < 10000; ntries++) { 1715 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) 1716 return 0; 1717 DELAY(10); 1718 } 1719 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx"); 1720 return ETIMEDOUT; 1721 } 1722 1723 Static void 1724 ar5008_rf_bus_release(struct athn_softc *sc) 1725 { 1726 1727 /* Wait for the synthesizer to settle. */ 1728 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc)); 1729 1730 /* Release the RF Bus grant. */ 1731 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); 1732 AR_WRITE_BARRIER(sc); 1733 } 1734 1735 Static void 1736 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, 1737 struct ieee80211_channel *extc) 1738 { 1739 uint32_t phy; 1740 1741 if (AR_SREV_9285_10_OR_LATER(sc)) 1742 phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO; 1743 else 1744 phy = 0; 1745 phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | 1746 AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; 1747 #ifndef IEEE80211_NO_HT 1748 if (extc != NULL) { 1749 phy |= AR_PHY_FC_DYN2040_EN; 1750 if (extc > c) /* XXX */ 1751 phy |= AR_PHY_FC_DYN2040_PRI_CH; 1752 } 1753 #endif 1754 AR_WRITE(sc, AR_PHY_TURBO, phy); 1755 1756 AR_WRITE(sc, AR_2040_MODE, 1757 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); 1758 1759 /* Set global transmit timeout. */ 1760 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); 1761 /* Set carrier sense timeout. */ 1762 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); 1763 AR_WRITE_BARRIER(sc); 1764 } 1765 1766 Static void 1767 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, 1768 struct ieee80211_channel *extc) 1769 { 1770 uint32_t coeff, exp, man, reg; 1771 1772 /* Set Delta Slope (exponent and mantissa). */ 1773 coeff = (100 << 24) / c->ic_freq; 1774 athn_get_delta_slope(coeff, &exp, &man); 1775 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1776 1777 reg = AR_READ(sc, AR_PHY_TIMING3); 1778 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); 1779 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); 1780 AR_WRITE(sc, AR_PHY_TIMING3, reg); 1781 1782 /* For Short GI, coeff is 9/10 that of normal coeff. */ 1783 coeff = (9 * coeff) / 10; 1784 athn_get_delta_slope(coeff, &exp, &man); 1785 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1786 1787 reg = AR_READ(sc, AR_PHY_HALFGI); 1788 reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp); 1789 reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man); 1790 AR_WRITE(sc, AR_PHY_HALFGI, reg); 1791 AR_WRITE_BARRIER(sc); 1792 } 1793 1794 Static void 1795 ar5008_enable_antenna_diversity(struct athn_softc *sc) 1796 { 1797 1798 AR_SETBITS(sc, AR_PHY_CCK_DETECT, 1799 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 1800 AR_WRITE_BARRIER(sc); 1801 } 1802 1803 Static void 1804 ar5008_init_baseband(struct athn_softc *sc) 1805 { 1806 uint32_t synth_delay; 1807 1808 synth_delay = ar5008_synth_delay(sc); 1809 /* Activate the PHY (includes baseband activate and synthesizer on). */ 1810 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 1811 AR_WRITE_BARRIER(sc); 1812 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); 1813 } 1814 1815 Static void 1816 ar5008_disable_phy(struct athn_softc *sc) 1817 { 1818 1819 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1820 AR_WRITE_BARRIER(sc); 1821 } 1822 1823 Static void 1824 ar5008_init_chains(struct athn_softc *sc) 1825 { 1826 1827 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5) 1828 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1829 1830 /* Setup chain masks. */ 1831 if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 && 1832 (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) { 1833 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7); 1834 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7); 1835 } 1836 else { 1837 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1838 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1839 } 1840 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask); 1841 AR_WRITE_BARRIER(sc); 1842 } 1843 1844 Static void 1845 ar5008_set_rxchains(struct athn_softc *sc) 1846 { 1847 1848 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) { 1849 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1850 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1851 AR_WRITE_BARRIER(sc); 1852 } 1853 } 1854 1855 #ifdef notused 1856 Static void 1857 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1858 { 1859 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ 1860 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) 1861 uint32_t reg; 1862 int i; 1863 1864 for (i = 0; i < sc->sc_nrxchains; i++) { 1865 reg = AR_READ(sc, AR_PHY_CCA(i)); 1866 if (AR_SREV_9280_10_OR_LATER(sc)) 1867 nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR); 1868 else 1869 nf[i] = MS(reg, AR_PHY_MINCCA_PWR); 1870 nf[i] = SIGN_EXT(nf[i]); 1871 1872 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1873 if (AR_SREV_9280_10_OR_LATER(sc)) 1874 nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR); 1875 else 1876 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); 1877 nf_ext[i] = SIGN_EXT(nf_ext[i]); 1878 } 1879 #undef SIGN_EXT 1880 } 1881 #endif /* notused */ 1882 1883 #ifdef notused 1884 Static void 1885 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1886 { 1887 uint32_t reg; 1888 int i; 1889 1890 for (i = 0; i < sc->sc_nrxchains; i++) { 1891 reg = AR_READ(sc, AR_PHY_CCA(i)); 1892 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); 1893 AR_WRITE(sc, AR_PHY_CCA(i), reg); 1894 1895 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1896 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); 1897 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); 1898 } 1899 AR_WRITE_BARRIER(sc); 1900 } 1901 #endif /* notused */ 1902 1903 #ifdef notused 1904 Static void 1905 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c) 1906 { 1907 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1908 int i; 1909 1910 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 1911 /* Noisefloor calibration not finished. */ 1912 return; 1913 } 1914 /* Noisefloor calibration is finished. */ 1915 ar5008_read_noisefloor(sc, nf, nf_ext); 1916 1917 /* Update noisefloor history. */ 1918 for (i = 0; i < sc->sc_nrxchains; i++) { 1919 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i]; 1920 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i]; 1921 } 1922 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) 1923 sc->sc_nf_hist_cur = 0; 1924 } 1925 #endif /* notused */ 1926 1927 #ifdef notused 1928 Static void 1929 ar5008_bb_load_noisefloor(struct athn_softc *sc) 1930 { 1931 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1932 int i, ntries; 1933 1934 /* Write filtered noisefloor values. */ 1935 for (i = 0; i < sc->sc_nrxchains; i++) { 1936 nf[i] = sc->sc_nf_priv[i] * 2; 1937 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2; 1938 } 1939 ar5008_write_noisefloor(sc, nf, nf_ext); 1940 1941 /* Load filtered noisefloor values into baseband. */ 1942 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1943 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1944 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1945 /* Wait for load to complete. */ 1946 for (ntries = 0; ntries < 1000; ntries++) { 1947 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) 1948 break; 1949 DELAY(50); 1950 } 1951 if (ntries == 1000) { 1952 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n"); 1953 return; 1954 } 1955 1956 /* Restore noisefloor values to initial (max) values. */ 1957 for (i = 0; i < AR_MAX_CHAINS; i++) 1958 nf[i] = nf_ext[i] = -50 * 2; 1959 ar5008_write_noisefloor(sc, nf, nf_ext); 1960 } 1961 #endif /* notused */ 1962 1963 #ifdef notused 1964 Static void 1965 ar5008_noisefloor_calib(struct athn_softc *sc) 1966 { 1967 1968 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1969 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1970 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1971 AR_WRITE_BARRIER(sc); 1972 } 1973 #endif /* notused */ 1974 1975 Static void 1976 ar5008_do_noisefloor_calib(struct athn_softc *sc) 1977 { 1978 1979 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1980 AR_WRITE_BARRIER(sc); 1981 } 1982 1983 Static void 1984 ar5008_do_calib(struct athn_softc *sc) 1985 { 1986 uint32_t mode, reg; 1987 int log; 1988 1989 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); 1990 log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2; 1991 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log); 1992 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); 1993 1994 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 1995 mode = AR_PHY_CALMODE_ADC_GAIN; 1996 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 1997 mode = AR_PHY_CALMODE_ADC_DC_PER; 1998 else /* ATHN_CAL_IQ */ 1999 mode = AR_PHY_CALMODE_IQ; 2000 AR_WRITE(sc, AR_PHY_CALMODE, mode); 2001 2002 DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode); 2003 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL); 2004 AR_WRITE_BARRIER(sc); 2005 } 2006 2007 Static void 2008 ar5008_next_calib(struct athn_softc *sc) 2009 { 2010 2011 /* Check if we have any calibration in progress. */ 2012 if (sc->sc_cur_calib_mask != 0) { 2013 if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) & 2014 AR_PHY_TIMING_CTRL4_DO_CAL)) { 2015 /* Calibration completed for current sample. */ 2016 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 2017 ar5008_calib_adc_gain(sc); 2018 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 2019 ar5008_calib_adc_dc_off(sc); 2020 else /* ATHN_CAL_IQ */ 2021 ar5008_calib_iq(sc); 2022 } 2023 } 2024 } 2025 2026 Static void 2027 ar5008_calib_iq(struct athn_softc *sc) 2028 { 2029 struct athn_iq_cal *cal; 2030 uint32_t reg, i_coff_denom, q_coff_denom; 2031 int32_t i_coff, q_coff; 2032 int i, iq_corr_neg; 2033 2034 for (i = 0; i < AR_MAX_CHAINS; i++) { 2035 cal = &sc->sc_calib.iq[i]; 2036 2037 /* Accumulate IQ calibration measures (clear on read). */ 2038 cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2039 cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2040 cal->iq_corr_meas += 2041 (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2042 } 2043 if (!AR_SREV_9280_10_OR_LATER(sc) && 2044 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2045 /* Not enough samples accumulated, continue. */ 2046 ar5008_do_calib(sc); 2047 return; 2048 } 2049 2050 for (i = 0; i < sc->sc_nrxchains; i++) { 2051 cal = &sc->sc_calib.iq[i]; 2052 2053 if (cal->pwr_meas_q == 0) 2054 continue; 2055 2056 if ((iq_corr_neg = cal->iq_corr_meas) < 0) 2057 cal->iq_corr_meas = -cal->iq_corr_meas; 2058 2059 i_coff_denom = 2060 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128; 2061 q_coff_denom = cal->pwr_meas_q / 64; 2062 2063 if (i_coff_denom == 0 || q_coff_denom == 0) 2064 continue; /* Prevents division by zero. */ 2065 2066 i_coff = cal->iq_corr_meas / i_coff_denom; 2067 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; 2068 2069 /* Negate i_coff if iq_corr_meas is positive. */ 2070 if (!iq_corr_neg) 2071 i_coff = 0x40 - (i_coff & 0x3f); 2072 if (q_coff > 15) 2073 q_coff = 15; 2074 else if (q_coff <= -16) 2075 q_coff = -16; /* XXX Linux has a bug here? */ 2076 2077 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i); 2078 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i)); 2079 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff); 2080 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff); 2081 AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg); 2082 } 2083 2084 /* Apply new settings. */ 2085 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, 2086 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); 2087 AR_WRITE_BARRIER(sc); 2088 2089 /* IQ calibration done. */ 2090 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ; 2091 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2092 } 2093 2094 Static void 2095 ar5008_calib_adc_gain(struct athn_softc *sc) 2096 { 2097 struct athn_adc_cal *cal; 2098 uint32_t reg, gain_mismatch_i, gain_mismatch_q; 2099 int i; 2100 2101 for (i = 0; i < AR_MAX_CHAINS; i++) { 2102 cal = &sc->sc_calib.adc_gain[i]; 2103 2104 /* Accumulate ADC gain measures (clear on read). */ 2105 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2106 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2107 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2108 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2109 } 2110 if (!AR_SREV_9280_10_OR_LATER(sc) && 2111 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2112 /* Not enough samples accumulated, continue. */ 2113 ar5008_do_calib(sc); 2114 return; 2115 } 2116 2117 for (i = 0; i < sc->sc_nrxchains; i++) { 2118 cal = &sc->sc_calib.adc_gain[i]; 2119 2120 if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0) 2121 continue; /* Prevents division by zero. */ 2122 2123 gain_mismatch_i = 2124 (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i; 2125 gain_mismatch_q = 2126 (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q; 2127 2128 DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i); 2129 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2130 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i); 2131 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q); 2132 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2133 } 2134 2135 /* Apply new settings. */ 2136 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2137 AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); 2138 AR_WRITE_BARRIER(sc); 2139 2140 /* ADC gain calibration done. */ 2141 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN; 2142 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2143 } 2144 2145 Static void 2146 ar5008_calib_adc_dc_off(struct athn_softc *sc) 2147 { 2148 struct athn_adc_cal *cal; 2149 int32_t dc_offset_mismatch_i, dc_offset_mismatch_q; 2150 uint32_t reg; 2151 int count, i; 2152 2153 for (i = 0; i < AR_MAX_CHAINS; i++) { 2154 cal = &sc->sc_calib.adc_dc_offset[i]; 2155 2156 /* Accumulate ADC DC offset measures (clear on read). */ 2157 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2158 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2159 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2160 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2161 } 2162 if (!AR_SREV_9280_10_OR_LATER(sc) && 2163 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2164 /* Not enough samples accumulated, continue. */ 2165 ar5008_do_calib(sc); 2166 return; 2167 } 2168 2169 if (AR_SREV_9280_10_OR_LATER(sc)) 2170 count = (1 << (10 + 5)); 2171 else 2172 count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES; 2173 for (i = 0; i < sc->sc_nrxchains; i++) { 2174 cal = &sc->sc_calib.adc_dc_offset[i]; 2175 2176 dc_offset_mismatch_i = 2177 (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count; 2178 dc_offset_mismatch_q = 2179 (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count; 2180 2181 DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i); 2182 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2183 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC, 2184 dc_offset_mismatch_q); 2185 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC, 2186 dc_offset_mismatch_i); 2187 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2188 } 2189 2190 /* Apply new settings. */ 2191 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2192 AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); 2193 AR_WRITE_BARRIER(sc); 2194 2195 /* ADC DC offset calibration done. */ 2196 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC; 2197 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2198 } 2199 2200 PUBLIC void 2201 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) 2202 { 2203 2204 AR_WRITE(sc, AR_PHY_POWER_TX_RATE1, 2205 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | 2206 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | 2207 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | 2208 (power[ATHN_POWER_OFDM6 ] & 0x3f)); 2209 AR_WRITE(sc, AR_PHY_POWER_TX_RATE2, 2210 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | 2211 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | 2212 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | 2213 (power[ATHN_POWER_OFDM24 ] & 0x3f)); 2214 AR_WRITE(sc, AR_PHY_POWER_TX_RATE3, 2215 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | 2216 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | 2217 (power[ATHN_POWER_XR ] & 0x3f) << 8 | 2218 (power[ATHN_POWER_CCK1_LP ] & 0x3f)); 2219 AR_WRITE(sc, AR_PHY_POWER_TX_RATE4, 2220 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | 2221 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | 2222 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | 2223 (power[ATHN_POWER_CCK55_LP] & 0x3f)); 2224 #ifndef IEEE80211_NO_HT 2225 AR_WRITE(sc, AR_PHY_POWER_TX_RATE5, 2226 (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 | 2227 (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 | 2228 (power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 | 2229 (power[ATHN_POWER_HT20(0) ] & 0x3f)); 2230 AR_WRITE(sc, AR_PHY_POWER_TX_RATE6, 2231 (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 | 2232 (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 | 2233 (power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 | 2234 (power[ATHN_POWER_HT20(4) ] & 0x3f)); 2235 AR_WRITE(sc, AR_PHY_POWER_TX_RATE7, 2236 (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 | 2237 (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 | 2238 (power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 | 2239 (power[ATHN_POWER_HT40(0) ] & 0x3f)); 2240 AR_WRITE(sc, AR_PHY_POWER_TX_RATE8, 2241 (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 | 2242 (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 | 2243 (power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 | 2244 (power[ATHN_POWER_HT40(4) ] & 0x3f)); 2245 AR_WRITE(sc, AR_PHY_POWER_TX_RATE9, 2246 (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 | 2247 (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 | 2248 (power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 | 2249 (power[ATHN_POWER_CCK_DUP ] & 0x3f)); 2250 #endif 2251 AR_WRITE_BARRIER(sc); 2252 } 2253 2254 PUBLIC void 2255 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin) 2256 { 2257 uint32_t mask[4], reg; 2258 uint8_t m[62], p[62]; /* XXX use bit arrays? */ 2259 int i, bit, cur; 2260 2261 /* Compute pilot mask. */ 2262 cur = -6000; 2263 for (i = 0; i < 4; i++) { 2264 mask[i] = 0; 2265 for (bit = 0; bit < 30; bit++) { 2266 if (abs(cur - bin) < 100) 2267 mask[i] |= 1 << bit; 2268 cur += 100; 2269 } 2270 if (cur == 0) /* Skip entry "0". */ 2271 cur = 100; 2272 } 2273 /* Write entries from -6000 to -3100. */ 2274 AR_WRITE(sc, AR_PHY_TIMING7, mask[0]); 2275 AR_WRITE(sc, AR_PHY_TIMING9, mask[0]); 2276 /* Write entries from -3000 to -100. */ 2277 AR_WRITE(sc, AR_PHY_TIMING8, mask[1]); 2278 AR_WRITE(sc, AR_PHY_TIMING10, mask[1]); 2279 /* Write entries from 100 to 3000. */ 2280 AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]); 2281 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]); 2282 /* Write entries from 3100 to 6000. */ 2283 AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]); 2284 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]); 2285 2286 /* Compute viterbi mask. */ 2287 for (cur = 6100; cur >= 0; cur -= 100) 2288 p[+cur / 100] = abs(cur - bin) < 75; 2289 for (cur = 0; cur >= -6100; cur -= 100) 2290 m[-cur / 100] = abs(cur - bin) < 75; 2291 2292 /* Write viterbi mask (XXX needs to be reworked). */ 2293 reg = 2294 m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 | 2295 m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 | 2296 m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 | 2297 m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0; 2298 AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg); 2299 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg); 2300 2301 /* XXX m[48] should be m[38] ? */ 2302 reg = m[31] << 28 | m[32] << 26 | m[33] << 24 | 2303 m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 | 2304 m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 | 2305 m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0; 2306 AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg); 2307 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg); 2308 2309 /* XXX This one is weird too. */ 2310 reg = 2311 m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 | 2312 m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 | 2313 m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 | 2314 m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0; 2315 AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg); 2316 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg); 2317 2318 reg = 2319 m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 | 2320 m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 | 2321 m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 | 2322 m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0; 2323 AR_WRITE(sc, AR_PHY_MASK_CTL, reg); 2324 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg); 2325 2326 reg = p[15] << 28 | p[14] << 26 | p[13] << 24 | 2327 p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 | 2328 p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 | 2329 p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0; 2330 AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg); 2331 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg); 2332 2333 reg = p[30] << 28 | p[29] << 26 | p[28] << 24 | 2334 p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 | 2335 p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 | 2336 p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0; 2337 AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg); 2338 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg); 2339 2340 reg = p[45] << 28 | p[44] << 26 | p[43] << 24 | 2341 p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 | 2342 p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 | 2343 p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0; 2344 AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg); 2345 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg); 2346 2347 reg = 2348 p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 | 2349 p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 | 2350 p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 | 2351 p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0; 2352 AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg); 2353 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg); 2354 AR_WRITE_BARRIER(sc); 2355 } 2356 2357 Static void 2358 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, 2359 struct ieee80211_channel *extc) 2360 { 2361 struct athn_ops *ops = &sc->sc_ops; 2362 const struct athn_ini *ini = sc->sc_ini; 2363 const uint32_t *pvals; 2364 uint32_t reg; 2365 int i; 2366 2367 AR_WRITE(sc, AR_PHY(0), 0x00000007); 2368 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 2369 2370 if (!AR_SINGLE_CHIP(sc)) 2371 ar5416_reset_addac(sc, c); 2372 2373 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 2374 2375 /* First initialization step (depends on channel band/bandwidth). */ 2376 #ifndef IEEE80211_NO_HT 2377 if (extc != NULL) { 2378 if (IEEE80211_IS_CHAN_2GHZ(c)) 2379 pvals = ini->vals_2g40; 2380 else 2381 pvals = ini->vals_5g40; 2382 } 2383 else 2384 #endif 2385 { 2386 if (IEEE80211_IS_CHAN_2GHZ(c)) 2387 pvals = ini->vals_2g20; 2388 else 2389 pvals = ini->vals_5g20; 2390 } 2391 DPRINTFN(DBG_INIT, sc, "writing modal init vals\n"); 2392 for (i = 0; i < ini->nregs; i++) { 2393 uint32_t val = pvals[i]; 2394 2395 /* Fix AR_AN_TOP2 initialization value if required. */ 2396 if (ini->regs[i] == AR_AN_TOP2 && 2397 (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP)) 2398 val &= ~AR_AN_TOP2_PWDCLKIND; 2399 AR_WRITE(sc, ini->regs[i], val); 2400 if (AR_IS_ANALOG_REG(ini->regs[i])) { 2401 AR_WRITE_BARRIER(sc); 2402 DELAY(100); 2403 } 2404 if ((i & 0x1f) == 0) 2405 DELAY(1); 2406 } 2407 AR_WRITE_BARRIER(sc); 2408 2409 if (sc->sc_rx_gain != NULL) 2410 ar9280_reset_rx_gain(sc, c); 2411 if (sc->sc_tx_gain != NULL) 2412 ar9280_reset_tx_gain(sc, c); 2413 2414 if (AR_SREV_9271_10(sc)) { 2415 AR_WRITE(sc, AR_PHY(68), 0x30002311); 2416 AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001); 2417 } 2418 AR_WRITE_BARRIER(sc); 2419 2420 /* Second initialization step (common to all channels). */ 2421 DPRINTFN(DBG_INIT, sc, "writing common init vals\n"); 2422 for (i = 0; i < ini->ncmregs; i++) { 2423 AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]); 2424 if (AR_IS_ANALOG_REG(ini->cmregs[i])) { 2425 AR_WRITE_BARRIER(sc); 2426 DELAY(100); 2427 } 2428 if ((i & 0x1f) == 0) 2429 DELAY(1); 2430 } 2431 AR_WRITE_BARRIER(sc); 2432 2433 if (!AR_SINGLE_CHIP(sc)) 2434 ar5416_reset_bb_gain(sc, c); 2435 2436 if (IEEE80211_IS_CHAN_5GHZ(c) && 2437 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 2438 /* Update modal values for fast PLL clock. */ 2439 #ifndef IEEE80211_NO_HT 2440 if (extc != NULL) 2441 pvals = ini->fastvals_5g40; 2442 else 2443 #endif 2444 pvals = ini->fastvals_5g20; 2445 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n"); 2446 for (i = 0; i < ini->nfastregs; i++) { 2447 AR_WRITE(sc, ini->fastregs[i], pvals[i]); 2448 if (AR_IS_ANALOG_REG(ini->fastregs[i])) { 2449 AR_WRITE_BARRIER(sc); 2450 DELAY(100); 2451 } 2452 if ((i & 0x1f) == 0) 2453 DELAY(1); 2454 } 2455 } 2456 2457 /* 2458 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted 2459 * descriptor status. 2460 */ 2461 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); 2462 2463 /* Hardware workarounds for occasional Rx data corruption. */ 2464 if (AR_SREV_9280_10_OR_LATER(sc)) { 2465 reg = AR_READ(sc, AR_PCU_MISC_MODE2); 2466 if (!AR_SREV_9271(sc)) 2467 reg &= ~AR_PCU_MISC_MODE2_HWWAR1; 2468 if (AR_SREV_9287_10_OR_LATER(sc)) 2469 reg &= ~AR_PCU_MISC_MODE2_HWWAR2; 2470 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); 2471 2472 } 2473 else if (AR_SREV_5416_20_OR_LATER(sc)) { 2474 /* Disable baseband clock gating. */ 2475 AR_WRITE(sc, AR_PHY(651), 0x11); 2476 2477 if (AR_SREV_9160(sc)) { 2478 /* Disable RIFS search to fix baseband hang. */ 2479 AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, 2480 AR_PHY_RIFS_INIT_DELAY_M); 2481 } 2482 } 2483 AR_WRITE_BARRIER(sc); 2484 2485 ar5008_set_phy(sc, c, extc); 2486 ar5008_init_chains(sc); 2487 2488 if (sc->sc_flags & ATHN_FLAG_OLPC) { 2489 sc->sc_olpc_ticks = ticks; 2490 ops->olpc_init(sc); 2491 } 2492 2493 ops->set_txpower(sc, c, extc); 2494 2495 if (!AR_SINGLE_CHIP(sc)) 2496 ar5416_rf_reset(sc, c); 2497 } 2498 2499 Static uint8_t 2500 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg, 2501 int nicepts) 2502 { 2503 uint8_t vpd; 2504 int i, lo, hi; 2505 2506 for (i = 0; i < nicepts; i++) 2507 if (pwrPdg[i] > pwr) 2508 break; 2509 hi = i; 2510 lo = hi - 1; 2511 if (lo == -1) 2512 lo = hi; 2513 else if (hi == nicepts) 2514 hi = lo; 2515 2516 vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo], 2517 pwrPdg[hi], vpdPdg[hi]); 2518 return vpd; 2519 } 2520 2521 PUBLIC void 2522 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin, 2523 struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains, 2524 int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) 2525 { 2526 #define DB(x) ((x) / 2) /* Convert half dB to dB. */ 2527 uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK]; 2528 uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr; 2529 uint8_t lovpd, hivpd, boundary; 2530 int16_t ss, delta, vpdstep, val; 2531 int i, j, npdadcs, nvpds, maxidx, tgtidx; 2532 2533 /* Compute min and max power in half dB for each pdGain. */ 2534 for (i = 0; i < nxpdgains; i++) { 2535 minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]); 2536 maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1], 2537 hipier->pwr[i][nicepts - 1]); 2538 } 2539 2540 /* Fill phase domain analog-to-digital converter (PDADC) table. */ 2541 npdadcs = 0; 2542 for (i = 0; i < nxpdgains; i++) { 2543 if (i != nxpdgains - 1) 2544 boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2; 2545 else 2546 boundaries[i] = DB(maxpwr[i]); 2547 if (boundaries[i] > AR_MAX_RATE_POWER) 2548 boundaries[i] = AR_MAX_RATE_POWER; 2549 2550 if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) { 2551 /* Fix the gain delta (AR5416 1.0 only). */ 2552 delta = boundaries[0] - 23; 2553 boundaries[0] = 23; 2554 } 2555 else 2556 delta = 0; 2557 2558 /* Find starting index for this pdGain. */ 2559 if (i != 0) { 2560 ss = boundaries[i - 1] - DB(minpwr[i]) - 2561 overlap + 1 + delta; 2562 } 2563 else if (AR_SREV_9280_10_OR_LATER(sc)) 2564 ss = -DB(minpwr[i]); 2565 else 2566 ss = 0; 2567 2568 /* Compute Vpd table for this pdGain. */ 2569 nvpds = DB(maxpwr[i] - minpwr[i]) + 1; 2570 memset(vpd, 0, sizeof(vpd)); 2571 pwr = minpwr[i]; 2572 for (j = 0; j < nvpds; j++) { 2573 /* Get lower and higher Vpd. */ 2574 lovpd = ar5008_get_vpd(pwr, lopier->pwr[i], 2575 lopier->vpd[i], nicepts); 2576 hivpd = ar5008_get_vpd(pwr, hipier->pwr[i], 2577 hipier->vpd[i], nicepts); 2578 2579 /* Interpolate the final Vpd. */ 2580 vpd[j] = athn_interpolate(fbin, 2581 lopier->fbin, lovpd, hipier->fbin, hivpd); 2582 2583 pwr += 2; /* In half dB. */ 2584 } 2585 2586 /* Extrapolate data for ss < 0. */ 2587 if (vpd[1] > vpd[0]) 2588 vpdstep = vpd[1] - vpd[0]; 2589 else 2590 vpdstep = 1; 2591 while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2592 val = vpd[0] + ss * vpdstep; 2593 pdadcs[npdadcs++] = MAX(val, 0); 2594 ss++; 2595 } 2596 2597 tgtidx = boundaries[i] + overlap - DB(minpwr[i]); 2598 maxidx = MIN(tgtidx, nvpds); 2599 while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1) 2600 pdadcs[npdadcs++] = vpd[ss++]; 2601 2602 if (tgtidx < maxidx) 2603 continue; 2604 2605 /* Extrapolate data for maxidx <= ss <= tgtidx. */ 2606 if (vpd[nvpds - 1] > vpd[nvpds - 2]) 2607 vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2]; 2608 else 2609 vpdstep = 1; 2610 while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2611 val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep; 2612 pdadcs[npdadcs++] = MIN(val, 255); 2613 ss++; 2614 } 2615 } 2616 2617 /* Fill remaining PDADC and boundaries entries. */ 2618 if (AR_SREV_9285(sc)) 2619 boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT; 2620 else /* Fill with latest. */ 2621 boundary = boundaries[nxpdgains - 1]; 2622 2623 for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++) 2624 boundaries[nxpdgains] = boundary; 2625 2626 for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++) 2627 pdadcs[npdadcs] = pdadcs[npdadcs - 1]; 2628 #undef DB 2629 } 2630 2631 PUBLIC void 2632 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2633 uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans, 2634 uint8_t tpow[4]) 2635 { 2636 uint8_t fbin; 2637 int i, lo, hi; 2638 2639 /* Find interval (lower and upper indices). */ 2640 fbin = athn_chan2fbin(c); 2641 for (i = 0; i < nchans; i++) { 2642 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2643 tgt[i].bChannel > fbin) 2644 break; 2645 } 2646 hi = i; 2647 lo = hi - 1; 2648 if (lo == -1) 2649 lo = hi; 2650 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2651 hi = lo; 2652 2653 /* Interpolate values. */ 2654 for (i = 0; i < 4; i++) { 2655 tpow[i] = athn_interpolate(fbin, 2656 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2657 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2658 } 2659 /* XXX Apply conformance testing limit. */ 2660 } 2661 2662 #ifndef IEEE80211_NO_HT 2663 PUBLIC void 2664 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2665 uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans, 2666 uint8_t tpow[8]) 2667 { 2668 uint8_t fbin; 2669 int i, lo, hi; 2670 2671 /* Find interval (lower and upper indices). */ 2672 fbin = athn_chan2fbin(c); 2673 for (i = 0; i < nchans; i++) { 2674 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2675 tgt[i].bChannel > fbin) 2676 break; 2677 } 2678 hi = i; 2679 lo = hi - 1; 2680 if (lo == -1) 2681 lo = hi; 2682 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2683 hi = lo; 2684 2685 /* Interpolate values. */ 2686 for (i = 0; i < 8; i++) { 2687 tpow[i] = athn_interpolate(fbin, 2688 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2689 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2690 } 2691 /* XXX Apply conformance testing limit. */ 2692 } 2693 #endif 2694 2695 /* 2696 * Adaptive noise immunity. 2697 */ 2698 Static void 2699 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level) 2700 { 2701 int high = level == 4; 2702 uint32_t reg; 2703 2704 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 2705 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); 2706 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 2707 2708 reg = AR_READ(sc, AR_PHY_AGC_CTL1); 2709 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64); 2710 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14); 2711 AR_WRITE(sc, AR_PHY_AGC_CTL1, reg); 2712 2713 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2714 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); 2715 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2716 2717 AR_WRITE_BARRIER(sc); 2718 } 2719 2720 Static void 2721 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc) 2722 { 2723 uint32_t reg; 2724 2725 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2726 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); 2727 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); 2728 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); 2729 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2730 2731 reg = AR_READ(sc, AR_PHY_SFCORR); 2732 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); 2733 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); 2734 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); 2735 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2736 2737 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2738 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); 2739 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); 2740 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); 2741 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); 2742 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2743 2744 AR_SETBITS(sc, AR_PHY_SFCORR_LOW, 2745 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2746 AR_WRITE_BARRIER(sc); 2747 } 2748 2749 Static void 2750 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc) 2751 { 2752 uint32_t reg; 2753 2754 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2755 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); 2756 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); 2757 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); 2758 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2759 2760 reg = AR_READ(sc, AR_PHY_SFCORR); 2761 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); 2762 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); 2763 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); 2764 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2765 2766 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2767 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); 2768 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); 2769 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); 2770 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); 2771 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2772 2773 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, 2774 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2775 AR_WRITE_BARRIER(sc); 2776 } 2777 2778 Static void 2779 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high) 2780 { 2781 uint32_t reg; 2782 2783 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 2784 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); 2785 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 2786 AR_WRITE_BARRIER(sc); 2787 } 2788 2789 Static void 2790 ar5008_set_firstep_level(struct athn_softc *sc, int level) 2791 { 2792 uint32_t reg; 2793 2794 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2795 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); 2796 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2797 AR_WRITE_BARRIER(sc); 2798 } 2799 2800 Static void 2801 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level) 2802 { 2803 uint32_t reg; 2804 2805 reg = AR_READ(sc, AR_PHY_TIMING5); 2806 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); 2807 AR_WRITE(sc, AR_PHY_TIMING5, reg); 2808 AR_WRITE_BARRIER(sc); 2809 } 2810