Home | History | Annotate | Line # | Download | only in kern
      1 /* $NetBSD: subr_autoconf.c,v 1.315 2025/10/03 16:49:07 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.315 2025/10/03 16:49:07 thorpej Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/device_impl.h>
     90 #include <sys/device_calls.h>
     91 #include <sys/disklabel.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/kmem.h>
     95 #include <sys/systm.h>
     96 #include <sys/kernel.h>
     97 #include <sys/errno.h>
     98 #include <sys/proc.h>
     99 #include <sys/reboot.h>
    100 #include <sys/kthread.h>
    101 #include <sys/buf.h>
    102 #include <sys/dirent.h>
    103 #include <sys/mount.h>
    104 #include <sys/namei.h>
    105 #include <sys/unistd.h>
    106 #include <sys/fcntl.h>
    107 #include <sys/lockf.h>
    108 #include <sys/callout.h>
    109 #include <sys/devmon.h>
    110 #include <sys/cpu.h>
    111 #include <sys/sysctl.h>
    112 #include <sys/stdarg.h>
    113 #include <sys/localcount.h>
    114 
    115 #include <sys/disk.h>
    116 
    117 #include <sys/rndsource.h>
    118 
    119 #include <machine/limits.h>
    120 
    121 /*
    122  * Autoconfiguration subroutines.
    123  */
    124 
    125 /*
    126  * Device autoconfiguration timings are mixed into the entropy pool.
    127  */
    128 static krndsource_t rnd_autoconf_source;
    129 
    130 /*
    131  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    132  * devices and drivers are found via these tables.
    133  */
    134 extern struct cfdata cfdata[];
    135 extern const short cfroots[];
    136 
    137 /*
    138  * List of all cfdriver structures.  We use this to detect duplicates
    139  * when other cfdrivers are loaded.
    140  */
    141 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    142 extern struct cfdriver * const cfdriver_list_initial[];
    143 
    144 /*
    145  * Initial list of cfattach's.
    146  */
    147 extern const struct cfattachinit cfattachinit[];
    148 
    149 /*
    150  * List of cfdata tables.  We always have one such list -- the one
    151  * built statically when the kernel was configured.
    152  */
    153 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    154 static struct cftable initcftable;
    155 
    156 #define	ROOT ((device_t)NULL)
    157 
    158 struct matchinfo {
    159 	cfsubmatch_t fn;
    160 	device_t parent;
    161 	const int *locs;
    162 	void	*aux;
    163 	struct	cfdata *match;
    164 	int	pri;
    165 };
    166 
    167 struct alldevs_foray {
    168 	int			af_s;
    169 	struct devicelist	af_garbage;
    170 };
    171 
    172 /*
    173  * Internal version of the cfargs structure; all versions are
    174  * canonicalized to this.
    175  */
    176 struct cfargs_internal {
    177 	union {
    178 		cfsubmatch_t	submatch;/* submatch function (direct config) */
    179 		cfsearch_t	search;	 /* search function (indirect config) */
    180 	};
    181 	const char *	iattr;		/* interface attribute */
    182 	const int *	locators;	/* locators array */
    183 	devhandle_t	devhandle;	/* devhandle_t (by value) */
    184 };
    185 
    186 static char *number(char *, int);
    187 static void mapply(struct matchinfo *, cfdata_t);
    188 static void config_devdelete(device_t);
    189 static void config_devunlink(device_t, struct devicelist *);
    190 static void config_makeroom(int, struct cfdriver *);
    191 static void config_devlink(device_t);
    192 static void config_alldevs_enter(struct alldevs_foray *);
    193 static void config_alldevs_exit(struct alldevs_foray *);
    194 static void config_add_attrib_dict(device_t);
    195 static device_t	config_attach_internal(device_t, cfdata_t, void *,
    196 		    cfprint_t, const struct cfargs_internal *);
    197 
    198 static void config_collect_garbage(struct devicelist *);
    199 static void config_dump_garbage(struct devicelist *);
    200 
    201 static void pmflock_debug(device_t, const char *, int);
    202 
    203 static device_t deviter_next1(deviter_t *);
    204 static void deviter_reinit(deviter_t *);
    205 
    206 struct deferred_config {
    207 	TAILQ_ENTRY(deferred_config) dc_queue;
    208 	device_t dc_dev;
    209 	void (*dc_func)(device_t);
    210 };
    211 
    212 TAILQ_HEAD(deferred_config_head, deferred_config);
    213 
    214 static struct deferred_config_head deferred_config_queue =
    215 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    216 static struct deferred_config_head interrupt_config_queue =
    217 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    218 static int interrupt_config_threads = 8;
    219 static struct deferred_config_head mountroot_config_queue =
    220 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    221 static int mountroot_config_threads = 2;
    222 static lwp_t **mountroot_config_lwpids;
    223 static size_t mountroot_config_lwpids_size;
    224 bool root_is_mounted = false;
    225 
    226 static void config_process_deferred(struct deferred_config_head *, device_t);
    227 
    228 /* Hooks to finalize configuration once all real devices have been found. */
    229 struct finalize_hook {
    230 	TAILQ_ENTRY(finalize_hook) f_list;
    231 	int (*f_func)(device_t);
    232 	device_t f_dev;
    233 };
    234 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    235 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    236 static int config_finalize_done;
    237 
    238 /* list of all devices */
    239 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    240 static kmutex_t alldevs_lock __cacheline_aligned;
    241 static devgen_t alldevs_gen = 1;
    242 static int alldevs_nread = 0;
    243 static int alldevs_nwrite = 0;
    244 static bool alldevs_garbage = false;
    245 
    246 static struct devicelist config_pending =
    247     TAILQ_HEAD_INITIALIZER(config_pending);
    248 static kmutex_t config_misc_lock;
    249 static kcondvar_t config_misc_cv;
    250 
    251 static bool detachall = false;
    252 
    253 #define	STREQ(s1, s2)			\
    254 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    255 
    256 static bool config_initialized = false;	/* config_init() has been called. */
    257 
    258 static int config_do_twiddle;
    259 static callout_t config_twiddle_ch;
    260 
    261 static void sysctl_detach_setup(struct sysctllog **);
    262 
    263 int no_devmon_insert(const char *, prop_dictionary_t);
    264 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    265 
    266 typedef int (*cfdriver_fn)(struct cfdriver *);
    267 static int
    268 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    269 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    270 	const char *style, bool dopanic)
    271 {
    272 	void (*pr)(const char *, ...) __printflike(1, 2) =
    273 	    dopanic ? panic : printf;
    274 	int i, error = 0, e2 __diagused;
    275 
    276 	for (i = 0; cfdriverv[i] != NULL; i++) {
    277 		if ((error = drv_do(cfdriverv[i])) != 0) {
    278 			pr("configure: `%s' driver %s failed: %d",
    279 			    cfdriverv[i]->cd_name, style, error);
    280 			goto bad;
    281 		}
    282 	}
    283 
    284 	KASSERT(error == 0);
    285 	return 0;
    286 
    287  bad:
    288 	printf("\n");
    289 	for (i--; i >= 0; i--) {
    290 		e2 = drv_undo(cfdriverv[i]);
    291 		KASSERT(e2 == 0);
    292 	}
    293 
    294 	return error;
    295 }
    296 
    297 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    298 static int
    299 frob_cfattachvec(const struct cfattachinit *cfattachv,
    300 	cfattach_fn att_do, cfattach_fn att_undo,
    301 	const char *style, bool dopanic)
    302 {
    303 	const struct cfattachinit *cfai = NULL;
    304 	void (*pr)(const char *, ...) __printflike(1, 2) =
    305 	    dopanic ? panic : printf;
    306 	int j = 0, error = 0, e2 __diagused;
    307 
    308 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    309 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    310 			if ((error = att_do(cfai->cfai_name,
    311 			    cfai->cfai_list[j])) != 0) {
    312 				pr("configure: attachment `%s' "
    313 				    "of `%s' driver %s failed: %d",
    314 				    cfai->cfai_list[j]->ca_name,
    315 				    cfai->cfai_name, style, error);
    316 				goto bad;
    317 			}
    318 		}
    319 	}
    320 
    321 	KASSERT(error == 0);
    322 	return 0;
    323 
    324  bad:
    325 	/*
    326 	 * Rollback in reverse order.  dunno if super-important, but
    327 	 * do that anyway.  Although the code looks a little like
    328 	 * someone did a little integration (in the math sense).
    329 	 */
    330 	printf("\n");
    331 	if (cfai) {
    332 		bool last;
    333 
    334 		for (last = false; last == false; ) {
    335 			if (cfai == &cfattachv[0])
    336 				last = true;
    337 			for (j--; j >= 0; j--) {
    338 				e2 = att_undo(cfai->cfai_name,
    339 				    cfai->cfai_list[j]);
    340 				KASSERT(e2 == 0);
    341 			}
    342 			if (!last) {
    343 				cfai--;
    344 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    345 					;
    346 			}
    347 		}
    348 	}
    349 
    350 	return error;
    351 }
    352 
    353 /*
    354  * Initialize the autoconfiguration data structures.  Normally this
    355  * is done by configure(), but some platforms need to do this very
    356  * early (to e.g. initialize the console).
    357  */
    358 void
    359 config_init(void)
    360 {
    361 
    362 	KASSERT(config_initialized == false);
    363 
    364 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    365 
    366 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    367 	cv_init(&config_misc_cv, "cfgmisc");
    368 
    369 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    370 
    371 	frob_cfdrivervec(cfdriver_list_initial,
    372 	    config_cfdriver_attach, NULL, "bootstrap", true);
    373 	frob_cfattachvec(cfattachinit,
    374 	    config_cfattach_attach, NULL, "bootstrap", true);
    375 
    376 	initcftable.ct_cfdata = cfdata;
    377 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    378 
    379 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
    380 	    RND_FLAG_COLLECT_TIME);
    381 
    382 	config_initialized = true;
    383 }
    384 
    385 /*
    386  * Init or fini drivers and attachments.  Either all or none
    387  * are processed (via rollback).  It would be nice if this were
    388  * atomic to outside consumers, but with the current state of
    389  * locking ...
    390  */
    391 int
    392 config_init_component(struct cfdriver * const *cfdriverv,
    393 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    394 {
    395 	int error;
    396 
    397 	KERNEL_LOCK(1, NULL);
    398 
    399 	if ((error = frob_cfdrivervec(cfdriverv,
    400 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    401 		goto out;
    402 	if ((error = frob_cfattachvec(cfattachv,
    403 	    config_cfattach_attach, config_cfattach_detach,
    404 	    "init", false)) != 0) {
    405 		frob_cfdrivervec(cfdriverv,
    406 	            config_cfdriver_detach, NULL, "init rollback", true);
    407 		goto out;
    408 	}
    409 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    410 		frob_cfattachvec(cfattachv,
    411 		    config_cfattach_detach, NULL, "init rollback", true);
    412 		frob_cfdrivervec(cfdriverv,
    413 	            config_cfdriver_detach, NULL, "init rollback", true);
    414 		goto out;
    415 	}
    416 
    417 	/* Success!  */
    418 	error = 0;
    419 
    420 out:	KERNEL_UNLOCK_ONE(NULL);
    421 	return error;
    422 }
    423 
    424 int
    425 config_fini_component(struct cfdriver * const *cfdriverv,
    426 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    427 {
    428 	int error;
    429 
    430 	KERNEL_LOCK(1, NULL);
    431 
    432 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    433 		goto out;
    434 	if ((error = frob_cfattachvec(cfattachv,
    435 	    config_cfattach_detach, config_cfattach_attach,
    436 	    "fini", false)) != 0) {
    437 		if (config_cfdata_attach(cfdatav, 0) != 0)
    438 			panic("config_cfdata fini rollback failed");
    439 		goto out;
    440 	}
    441 	if ((error = frob_cfdrivervec(cfdriverv,
    442 	    config_cfdriver_detach, config_cfdriver_attach,
    443 	    "fini", false)) != 0) {
    444 		frob_cfattachvec(cfattachv,
    445 	            config_cfattach_attach, NULL, "fini rollback", true);
    446 		if (config_cfdata_attach(cfdatav, 0) != 0)
    447 			panic("config_cfdata fini rollback failed");
    448 		goto out;
    449 	}
    450 
    451 	/* Success!  */
    452 	error = 0;
    453 
    454 out:	KERNEL_UNLOCK_ONE(NULL);
    455 	return error;
    456 }
    457 
    458 void
    459 config_init_mi(void)
    460 {
    461 
    462 	if (!config_initialized)
    463 		config_init();
    464 
    465 	sysctl_detach_setup(NULL);
    466 }
    467 
    468 void
    469 config_deferred(device_t dev)
    470 {
    471 
    472 	KASSERT(KERNEL_LOCKED_P());
    473 
    474 	config_process_deferred(&deferred_config_queue, dev);
    475 	config_process_deferred(&interrupt_config_queue, dev);
    476 	config_process_deferred(&mountroot_config_queue, dev);
    477 }
    478 
    479 static void
    480 config_interrupts_thread(void *cookie)
    481 {
    482 	struct deferred_config *dc;
    483 	device_t dev;
    484 
    485 	mutex_enter(&config_misc_lock);
    486 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    487 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    488 		mutex_exit(&config_misc_lock);
    489 
    490 		dev = dc->dc_dev;
    491 		(*dc->dc_func)(dev);
    492 		if (!device_pmf_is_registered(dev))
    493 			aprint_debug_dev(dev,
    494 			    "WARNING: power management not supported\n");
    495 		config_pending_decr(dev);
    496 		kmem_free(dc, sizeof(*dc));
    497 
    498 		mutex_enter(&config_misc_lock);
    499 	}
    500 	mutex_exit(&config_misc_lock);
    501 
    502 	kthread_exit(0);
    503 }
    504 
    505 void
    506 config_create_interruptthreads(void)
    507 {
    508 	int i;
    509 
    510 	for (i = 0; i < interrupt_config_threads; i++) {
    511 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    512 		    config_interrupts_thread, NULL, NULL, "configintr");
    513 	}
    514 }
    515 
    516 static void
    517 config_mountroot_thread(void *cookie)
    518 {
    519 	struct deferred_config *dc;
    520 
    521 	mutex_enter(&config_misc_lock);
    522 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    523 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    524 		mutex_exit(&config_misc_lock);
    525 
    526 		(*dc->dc_func)(dc->dc_dev);
    527 		kmem_free(dc, sizeof(*dc));
    528 
    529 		mutex_enter(&config_misc_lock);
    530 	}
    531 	mutex_exit(&config_misc_lock);
    532 
    533 	kthread_exit(0);
    534 }
    535 
    536 void
    537 config_create_mountrootthreads(void)
    538 {
    539 	int i;
    540 
    541 	if (!root_is_mounted)
    542 		root_is_mounted = true;
    543 
    544 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    545 				       mountroot_config_threads;
    546 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    547 					     KM_NOSLEEP);
    548 	KASSERT(mountroot_config_lwpids);
    549 	for (i = 0; i < mountroot_config_threads; i++) {
    550 		mountroot_config_lwpids[i] = 0;
    551 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    552 				     NULL, config_mountroot_thread, NULL,
    553 				     &mountroot_config_lwpids[i],
    554 				     "configroot");
    555 	}
    556 }
    557 
    558 void
    559 config_finalize_mountroot(void)
    560 {
    561 	int i, error;
    562 
    563 	for (i = 0; i < mountroot_config_threads; i++) {
    564 		if (mountroot_config_lwpids[i] == 0)
    565 			continue;
    566 
    567 		error = kthread_join(mountroot_config_lwpids[i]);
    568 		if (error)
    569 			printf("%s: thread %x joined with error %d\n",
    570 			       __func__, i, error);
    571 	}
    572 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    573 }
    574 
    575 /*
    576  * Announce device attach/detach to userland listeners.
    577  */
    578 
    579 int
    580 no_devmon_insert(const char *name, prop_dictionary_t p)
    581 {
    582 
    583 	return ENODEV;
    584 }
    585 
    586 static void
    587 devmon_report_device(device_t dev, bool isattach)
    588 {
    589 	prop_dictionary_t ev, dict = device_properties(dev);
    590 	const char *parent;
    591 	const char *what;
    592 	const char *where;
    593 	device_t pdev = device_parent(dev);
    594 
    595 	/* If currently no drvctl device, just return */
    596 	if (devmon_insert_vec == no_devmon_insert)
    597 		return;
    598 
    599 	ev = prop_dictionary_create();
    600 	if (ev == NULL)
    601 		return;
    602 
    603 	what = (isattach ? "device-attach" : "device-detach");
    604 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    605 	if (prop_dictionary_get_string(dict, "location", &where)) {
    606 		prop_dictionary_set_string(ev, "location", where);
    607 		aprint_debug("ev: %s %s at %s in [%s]\n",
    608 		    what, device_xname(dev), parent, where);
    609 	}
    610 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
    611 	    !prop_dictionary_set_string(ev, "parent", parent)) {
    612 		prop_object_release(ev);
    613 		return;
    614 	}
    615 
    616 	if ((*devmon_insert_vec)(what, ev) != 0)
    617 		prop_object_release(ev);
    618 }
    619 
    620 /*
    621  * Add a cfdriver to the system.
    622  */
    623 int
    624 config_cfdriver_attach(struct cfdriver *cd)
    625 {
    626 	struct cfdriver *lcd;
    627 
    628 	/* Make sure this driver isn't already in the system. */
    629 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    630 		if (STREQ(lcd->cd_name, cd->cd_name))
    631 			return EEXIST;
    632 	}
    633 
    634 	LIST_INIT(&cd->cd_attach);
    635 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    636 
    637 	return 0;
    638 }
    639 
    640 /*
    641  * Remove a cfdriver from the system.
    642  */
    643 int
    644 config_cfdriver_detach(struct cfdriver *cd)
    645 {
    646 	struct alldevs_foray af;
    647 	int i, rc = 0;
    648 
    649 	config_alldevs_enter(&af);
    650 	/* Make sure there are no active instances. */
    651 	for (i = 0; i < cd->cd_ndevs; i++) {
    652 		if (cd->cd_devs[i] != NULL) {
    653 			rc = EBUSY;
    654 			break;
    655 		}
    656 	}
    657 	config_alldevs_exit(&af);
    658 
    659 	if (rc != 0)
    660 		return rc;
    661 
    662 	/* ...and no attachments loaded. */
    663 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    664 		return EBUSY;
    665 
    666 	LIST_REMOVE(cd, cd_list);
    667 
    668 	KASSERT(cd->cd_devs == NULL);
    669 
    670 	return 0;
    671 }
    672 
    673 /*
    674  * Look up a cfdriver by name.
    675  */
    676 struct cfdriver *
    677 config_cfdriver_lookup(const char *name)
    678 {
    679 	struct cfdriver *cd;
    680 
    681 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    682 		if (STREQ(cd->cd_name, name))
    683 			return cd;
    684 	}
    685 
    686 	return NULL;
    687 }
    688 
    689 /*
    690  * Add a cfattach to the specified driver.
    691  */
    692 int
    693 config_cfattach_attach(const char *driver, struct cfattach *ca)
    694 {
    695 	struct cfattach *lca;
    696 	struct cfdriver *cd;
    697 
    698 	cd = config_cfdriver_lookup(driver);
    699 	if (cd == NULL)
    700 		return ESRCH;
    701 
    702 	/* Make sure this attachment isn't already on this driver. */
    703 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    704 		if (STREQ(lca->ca_name, ca->ca_name))
    705 			return EEXIST;
    706 	}
    707 
    708 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    709 
    710 	return 0;
    711 }
    712 
    713 /*
    714  * Remove a cfattach from the specified driver.
    715  */
    716 int
    717 config_cfattach_detach(const char *driver, struct cfattach *ca)
    718 {
    719 	struct alldevs_foray af;
    720 	struct cfdriver *cd;
    721 	device_t dev;
    722 	int i, rc = 0;
    723 
    724 	cd = config_cfdriver_lookup(driver);
    725 	if (cd == NULL)
    726 		return ESRCH;
    727 
    728 	config_alldevs_enter(&af);
    729 	/* Make sure there are no active instances. */
    730 	for (i = 0; i < cd->cd_ndevs; i++) {
    731 		if ((dev = cd->cd_devs[i]) == NULL)
    732 			continue;
    733 		if (dev->dv_cfattach == ca) {
    734 			rc = EBUSY;
    735 			break;
    736 		}
    737 	}
    738 	config_alldevs_exit(&af);
    739 
    740 	if (rc != 0)
    741 		return rc;
    742 
    743 	LIST_REMOVE(ca, ca_list);
    744 
    745 	return 0;
    746 }
    747 
    748 /*
    749  * Look up a cfattach by name.
    750  */
    751 static struct cfattach *
    752 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    753 {
    754 	struct cfattach *ca;
    755 
    756 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    757 		if (STREQ(ca->ca_name, atname))
    758 			return ca;
    759 	}
    760 
    761 	return NULL;
    762 }
    763 
    764 /*
    765  * Look up a cfattach by driver/attachment name.
    766  */
    767 struct cfattach *
    768 config_cfattach_lookup(const char *name, const char *atname)
    769 {
    770 	struct cfdriver *cd;
    771 
    772 	cd = config_cfdriver_lookup(name);
    773 	if (cd == NULL)
    774 		return NULL;
    775 
    776 	return config_cfattach_lookup_cd(cd, atname);
    777 }
    778 
    779 /*
    780  * Apply the matching function and choose the best.  This is used
    781  * a few times and we want to keep the code small.
    782  */
    783 static void
    784 mapply(struct matchinfo *m, cfdata_t cf)
    785 {
    786 	int pri;
    787 
    788 	if (m->fn != NULL) {
    789 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    790 	} else {
    791 		pri = config_match(m->parent, cf, m->aux);
    792 	}
    793 	if (pri > m->pri) {
    794 		m->match = cf;
    795 		m->pri = pri;
    796 	}
    797 }
    798 
    799 int
    800 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    801 {
    802 	const struct cfiattrdata *ci;
    803 	const struct cflocdesc *cl;
    804 	int nlocs, i;
    805 
    806 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    807 	KASSERT(ci);
    808 	nlocs = ci->ci_loclen;
    809 	KASSERT(!nlocs || locs);
    810 	for (i = 0; i < nlocs; i++) {
    811 		cl = &ci->ci_locdesc[i];
    812 		if (cl->cld_defaultstr != NULL &&
    813 		    cf->cf_loc[i] == cl->cld_default)
    814 			continue;
    815 		if (cf->cf_loc[i] == locs[i])
    816 			continue;
    817 		return 0;
    818 	}
    819 
    820 	return config_match(parent, cf, aux);
    821 }
    822 
    823 /*
    824  * Helper function: check whether the driver supports the interface attribute
    825  * and return its descriptor structure.
    826  */
    827 static const struct cfiattrdata *
    828 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    829 {
    830 	const struct cfiattrdata * const *cpp;
    831 
    832 	if (cd->cd_attrs == NULL)
    833 		return 0;
    834 
    835 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    836 		if (STREQ((*cpp)->ci_name, ia)) {
    837 			/* Match. */
    838 			return *cpp;
    839 		}
    840 	}
    841 	return 0;
    842 }
    843 
    844 static int __diagused
    845 cfdriver_iattr_count(const struct cfdriver *cd)
    846 {
    847 	const struct cfiattrdata * const *cpp;
    848 	int i;
    849 
    850 	if (cd->cd_attrs == NULL)
    851 		return 0;
    852 
    853 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
    854 		i++;
    855 	}
    856 	return i;
    857 }
    858 
    859 /*
    860  * Lookup an interface attribute description by name.
    861  * If the driver is given, consider only its supported attributes.
    862  */
    863 const struct cfiattrdata *
    864 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    865 {
    866 	const struct cfdriver *d;
    867 	const struct cfiattrdata *ia;
    868 
    869 	if (cd)
    870 		return cfdriver_get_iattr(cd, name);
    871 
    872 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    873 		ia = cfdriver_get_iattr(d, name);
    874 		if (ia)
    875 			return ia;
    876 	}
    877 	return 0;
    878 }
    879 
    880 /*
    881  * Determine if `parent' is a potential parent for a device spec based
    882  * on `cfp'.
    883  */
    884 static int
    885 cfparent_match(const device_t parent, const struct cfparent *cfp)
    886 {
    887 	struct cfdriver *pcd;
    888 
    889 	/* We don't match root nodes here. */
    890 	if (cfp == NULL)
    891 		return 0;
    892 
    893 	pcd = parent->dv_cfdriver;
    894 	KASSERT(pcd != NULL);
    895 
    896 	/*
    897 	 * First, ensure this parent has the correct interface
    898 	 * attribute.
    899 	 */
    900 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    901 		return 0;
    902 
    903 	/*
    904 	 * If no specific parent device instance was specified (i.e.
    905 	 * we're attaching to the attribute only), we're done!
    906 	 */
    907 	if (cfp->cfp_parent == NULL)
    908 		return 1;
    909 
    910 	/*
    911 	 * Check the parent device's name.
    912 	 */
    913 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    914 		return 0;	/* not the same parent */
    915 
    916 	/*
    917 	 * Make sure the unit number matches.
    918 	 */
    919 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    920 	    cfp->cfp_unit == parent->dv_unit)
    921 		return 1;
    922 
    923 	/* Unit numbers don't match. */
    924 	return 0;
    925 }
    926 
    927 /*
    928  * Helper for config_cfdata_attach(): check all devices whether it could be
    929  * parent any attachment in the config data table passed, and rescan.
    930  */
    931 static void
    932 rescan_with_cfdata(const struct cfdata *cf)
    933 {
    934 	device_t d;
    935 	const struct cfdata *cf1;
    936 	deviter_t di;
    937 
    938 	KASSERT(KERNEL_LOCKED_P());
    939 
    940 	/*
    941 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    942 	 * the outer loop.
    943 	 */
    944 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    945 
    946 		if (!(d->dv_cfattach->ca_rescan))
    947 			continue;
    948 
    949 		for (cf1 = cf; cf1->cf_name; cf1++) {
    950 
    951 			if (!cfparent_match(d, cf1->cf_pspec))
    952 				continue;
    953 
    954 			(*d->dv_cfattach->ca_rescan)(d,
    955 				cfdata_ifattr(cf1), cf1->cf_loc);
    956 
    957 			config_deferred(d);
    958 		}
    959 	}
    960 	deviter_release(&di);
    961 }
    962 
    963 /*
    964  * Attach a supplemental config data table and rescan potential
    965  * parent devices if required.
    966  */
    967 int
    968 config_cfdata_attach(cfdata_t cf, int scannow)
    969 {
    970 	struct cftable *ct;
    971 
    972 	KERNEL_LOCK(1, NULL);
    973 
    974 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    975 	ct->ct_cfdata = cf;
    976 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    977 
    978 	if (scannow)
    979 		rescan_with_cfdata(cf);
    980 
    981 	KERNEL_UNLOCK_ONE(NULL);
    982 
    983 	return 0;
    984 }
    985 
    986 /*
    987  * Helper for config_cfdata_detach: check whether a device is
    988  * found through any attachment in the config data table.
    989  */
    990 static int
    991 dev_in_cfdata(device_t d, cfdata_t cf)
    992 {
    993 	const struct cfdata *cf1;
    994 
    995 	for (cf1 = cf; cf1->cf_name; cf1++)
    996 		if (d->dv_cfdata == cf1)
    997 			return 1;
    998 
    999 	return 0;
   1000 }
   1001 
   1002 /*
   1003  * Detach a supplemental config data table. Detach all devices found
   1004  * through that table (and thus keeping references to it) before.
   1005  */
   1006 int
   1007 config_cfdata_detach(cfdata_t cf)
   1008 {
   1009 	device_t d;
   1010 	int error = 0;
   1011 	struct cftable *ct;
   1012 	deviter_t di;
   1013 
   1014 	KERNEL_LOCK(1, NULL);
   1015 
   1016 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
   1017 	     d = deviter_next(&di)) {
   1018 		if (!dev_in_cfdata(d, cf))
   1019 			continue;
   1020 		if ((error = config_detach(d, 0)) != 0)
   1021 			break;
   1022 	}
   1023 	deviter_release(&di);
   1024 	if (error) {
   1025 		aprint_error_dev(d, "unable to detach instance\n");
   1026 		goto out;
   1027 	}
   1028 
   1029 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1030 		if (ct->ct_cfdata == cf) {
   1031 			TAILQ_REMOVE(&allcftables, ct, ct_list);
   1032 			kmem_free(ct, sizeof(*ct));
   1033 			error = 0;
   1034 			goto out;
   1035 		}
   1036 	}
   1037 
   1038 	/* not found -- shouldn't happen */
   1039 	error = EINVAL;
   1040 
   1041 out:	KERNEL_UNLOCK_ONE(NULL);
   1042 	return error;
   1043 }
   1044 
   1045 /*
   1046  * Invoke the "match" routine for a cfdata entry on behalf of
   1047  * an external caller, usually a direct config "submatch" routine.
   1048  */
   1049 int
   1050 config_match(device_t parent, cfdata_t cf, void *aux)
   1051 {
   1052 	struct cfattach *ca;
   1053 
   1054 	KASSERT(KERNEL_LOCKED_P());
   1055 
   1056 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
   1057 	if (ca == NULL) {
   1058 		/* No attachment for this entry, oh well. */
   1059 		return 0;
   1060 	}
   1061 
   1062 	return (*ca->ca_match)(parent, cf, aux);
   1063 }
   1064 
   1065 /*
   1066  * Invoke the "probe" routine for a cfdata entry on behalf of
   1067  * an external caller, usually an indirect config "search" routine.
   1068  */
   1069 int
   1070 config_probe(device_t parent, cfdata_t cf, void *aux)
   1071 {
   1072 	/*
   1073 	 * This is currently a synonym for config_match(), but this
   1074 	 * is an implementation detail; "match" and "probe" routines
   1075 	 * have different behaviors.
   1076 	 *
   1077 	 * XXX config_probe() should return a bool, because there is
   1078 	 * XXX no match score for probe -- it's either there or it's
   1079 	 * XXX not, but some ports abuse the return value as a way
   1080 	 * XXX to attach "critical" devices before "non-critical"
   1081 	 * XXX devices.
   1082 	 */
   1083 	return config_match(parent, cf, aux);
   1084 }
   1085 
   1086 static struct cfargs_internal *
   1087 cfargs_canonicalize(const struct cfargs * const cfargs,
   1088     struct cfargs_internal * const store)
   1089 {
   1090 	struct cfargs_internal *args = store;
   1091 
   1092 	memset(args, 0, sizeof(*args));
   1093 
   1094 	/* If none specified, are all-NULL pointers are good. */
   1095 	if (cfargs == NULL) {
   1096 		return args;
   1097 	}
   1098 
   1099 	/*
   1100 	 * Only one arguments version is recognized at this time.
   1101 	 */
   1102 	if (cfargs->cfargs_version != CFARGS_VERSION) {
   1103 		panic("cfargs_canonicalize: unknown version %lu\n",
   1104 		    (unsigned long)cfargs->cfargs_version);
   1105 	}
   1106 
   1107 	/*
   1108 	 * submatch and search are mutually-exclusive.
   1109 	 */
   1110 	if (cfargs->submatch != NULL && cfargs->search != NULL) {
   1111 		panic("cfargs_canonicalize: submatch and search are "
   1112 		      "mutually-exclusive");
   1113 	}
   1114 	if (cfargs->submatch != NULL) {
   1115 		args->submatch = cfargs->submatch;
   1116 	} else if (cfargs->search != NULL) {
   1117 		args->search = cfargs->search;
   1118 	}
   1119 
   1120 	args->iattr = cfargs->iattr;
   1121 	args->locators = cfargs->locators;
   1122 	args->devhandle = cfargs->devhandle;
   1123 
   1124 	return args;
   1125 }
   1126 
   1127 /*
   1128  * Iterate over all potential children of some device, calling the given
   1129  * function (default being the child's match function) for each one.
   1130  * Nonzero returns are matches; the highest value returned is considered
   1131  * the best match.  Return the `found child' if we got a match, or NULL
   1132  * otherwise.  The `aux' pointer is simply passed on through.
   1133  *
   1134  * Note that this function is designed so that it can be used to apply
   1135  * an arbitrary function to all potential children (its return value
   1136  * can be ignored).
   1137  */
   1138 static cfdata_t
   1139 config_search_internal(device_t parent, void *aux,
   1140     const struct cfargs_internal * const args)
   1141 {
   1142 	struct cftable *ct;
   1143 	cfdata_t cf;
   1144 	struct matchinfo m;
   1145 
   1146 	KASSERT(config_initialized);
   1147 	KASSERTMSG((!args->iattr ||
   1148 		cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)),
   1149 	    "%s searched for child at interface attribute %s,"
   1150 	    " but device %s(4) has no such interface attribute in config(5)",
   1151 	    device_xname(parent), args->iattr,
   1152 	    parent->dv_cfdriver->cd_name);
   1153 	KASSERTMSG((args->iattr ||
   1154 		cfdriver_iattr_count(parent->dv_cfdriver) < 2),
   1155 	    "%s searched for child without interface attribute,"
   1156 	    " needed to disambiguate among the %d declared for in %s(4)"
   1157 	    " in config(5)",
   1158 	    device_xname(parent),
   1159 	    cfdriver_iattr_count(parent->dv_cfdriver),
   1160 	    parent->dv_cfdriver->cd_name);
   1161 
   1162 	m.fn = args->submatch;		/* N.B. union */
   1163 	m.parent = parent;
   1164 	m.locs = args->locators;
   1165 	m.aux = aux;
   1166 	m.match = NULL;
   1167 	m.pri = 0;
   1168 
   1169 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1170 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1171 
   1172 			/* We don't match root nodes here. */
   1173 			if (!cf->cf_pspec)
   1174 				continue;
   1175 
   1176 			/*
   1177 			 * Skip cf if no longer eligible, otherwise scan
   1178 			 * through parents for one matching `parent', and
   1179 			 * try match function.
   1180 			 */
   1181 			if (cf->cf_fstate == FSTATE_FOUND)
   1182 				continue;
   1183 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1184 			    cf->cf_fstate == FSTATE_DSTAR)
   1185 				continue;
   1186 
   1187 			/*
   1188 			 * If an interface attribute was specified,
   1189 			 * consider only children which attach to
   1190 			 * that attribute.
   1191 			 */
   1192 			if (args->iattr != NULL &&
   1193 			    !STREQ(args->iattr, cfdata_ifattr(cf)))
   1194 				continue;
   1195 
   1196 			if (cfparent_match(parent, cf->cf_pspec))
   1197 				mapply(&m, cf);
   1198 		}
   1199 	}
   1200 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1201 	return m.match;
   1202 }
   1203 
   1204 cfdata_t
   1205 config_search(device_t parent, void *aux, const struct cfargs *cfargs)
   1206 {
   1207 	cfdata_t cf;
   1208 	struct cfargs_internal store;
   1209 
   1210 	cf = config_search_internal(parent, aux,
   1211 	    cfargs_canonicalize(cfargs, &store));
   1212 
   1213 	return cf;
   1214 }
   1215 
   1216 /*
   1217  * Find the given root device.
   1218  * This is much like config_search, but there is no parent.
   1219  * Don't bother with multiple cfdata tables; the root node
   1220  * must always be in the initial table.
   1221  */
   1222 cfdata_t
   1223 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1224 {
   1225 	cfdata_t cf;
   1226 	const short *p;
   1227 	struct matchinfo m;
   1228 
   1229 	m.fn = fn;
   1230 	m.parent = ROOT;
   1231 	m.aux = aux;
   1232 	m.match = NULL;
   1233 	m.pri = 0;
   1234 	m.locs = 0;
   1235 	/*
   1236 	 * Look at root entries for matching name.  We do not bother
   1237 	 * with found-state here since only one root should ever be
   1238 	 * searched (and it must be done first).
   1239 	 */
   1240 	for (p = cfroots; *p >= 0; p++) {
   1241 		cf = &cfdata[*p];
   1242 		if (strcmp(cf->cf_name, rootname) == 0)
   1243 			mapply(&m, cf);
   1244 	}
   1245 	return m.match;
   1246 }
   1247 
   1248 static const char * const msgs[] = {
   1249 [QUIET]		=	"",
   1250 [UNCONF]	=	" not configured\n",
   1251 [UNSUPP]	=	" unsupported\n",
   1252 };
   1253 
   1254 /*
   1255  * The given `aux' argument describes a device that has been found
   1256  * on the given parent, but not necessarily configured.  Locate the
   1257  * configuration data for that device (using the submatch function
   1258  * provided, or using candidates' cd_match configuration driver
   1259  * functions) and attach it, and return its device_t.  If the device was
   1260  * not configured, call the given `print' function and return NULL.
   1261  */
   1262 device_t
   1263 config_found_acquire(device_t parent, void *aux, cfprint_t print,
   1264     const struct cfargs * const cfargs)
   1265 {
   1266 	cfdata_t cf;
   1267 	struct cfargs_internal store;
   1268 	const struct cfargs_internal * const args =
   1269 	    cfargs_canonicalize(cfargs, &store);
   1270 	device_t dev;
   1271 
   1272 	KERNEL_LOCK(1, NULL);
   1273 
   1274 	cf = config_search_internal(parent, aux, args);
   1275 	if (cf != NULL) {
   1276 		dev = config_attach_internal(parent, cf, aux, print, args);
   1277 		goto out;
   1278 	}
   1279 
   1280 	if (print) {
   1281 		if (config_do_twiddle && cold)
   1282 			twiddle();
   1283 
   1284 		const int pret = (*print)(aux, device_xname(parent));
   1285 		KASSERT(pret >= 0);
   1286 		KASSERT(pret < __arraycount(msgs));
   1287 		KASSERT(msgs[pret] != NULL);
   1288 		aprint_normal("%s", msgs[pret]);
   1289 	}
   1290 
   1291 	dev = NULL;
   1292 
   1293 out:	KERNEL_UNLOCK_ONE(NULL);
   1294 	return dev;
   1295 }
   1296 
   1297 /*
   1298  * config_found(parent, aux, print, cfargs)
   1299  *
   1300  *	Legacy entry point for callers whose use of the returned
   1301  *	device_t is not delimited by device_release.
   1302  *
   1303  *	The caller is required to hold the kernel lock as a fragile
   1304  *	defence against races.
   1305  *
   1306  *	Callers should ignore the return value or be converted to
   1307  *	config_found_acquire with a matching device_release once they
   1308  *	have finished with the returned device_t.
   1309  */
   1310 device_t
   1311 config_found(device_t parent, void *aux, cfprint_t print,
   1312     const struct cfargs * const cfargs)
   1313 {
   1314 	device_t dev;
   1315 
   1316 	KASSERT(KERNEL_LOCKED_P());
   1317 
   1318 	dev = config_found_acquire(parent, aux, print, cfargs);
   1319 	if (dev == NULL)
   1320 		return NULL;
   1321 	device_release(dev);
   1322 
   1323 	return dev;
   1324 }
   1325 
   1326 /*
   1327  * As above, but for root devices.
   1328  */
   1329 device_t
   1330 config_rootfound(const char *rootname, void *aux)
   1331 {
   1332 	cfdata_t cf;
   1333 	device_t dev = NULL;
   1334 
   1335 	KERNEL_LOCK(1, NULL);
   1336 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1337 		dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
   1338 	else
   1339 		aprint_error("root device %s not configured\n", rootname);
   1340 	KERNEL_UNLOCK_ONE(NULL);
   1341 	return dev;
   1342 }
   1343 
   1344 /* just like sprintf(buf, "%d") except that it works from the end */
   1345 static char *
   1346 number(char *ep, int n)
   1347 {
   1348 
   1349 	*--ep = 0;
   1350 	while (n >= 10) {
   1351 		*--ep = (n % 10) + '0';
   1352 		n /= 10;
   1353 	}
   1354 	*--ep = n + '0';
   1355 	return ep;
   1356 }
   1357 
   1358 /*
   1359  * Expand the size of the cd_devs array if necessary.
   1360  *
   1361  * The caller must hold alldevs_lock. config_makeroom() may release and
   1362  * re-acquire alldevs_lock, so callers should re-check conditions such
   1363  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1364  * returns.
   1365  */
   1366 static void
   1367 config_makeroom(int n, struct cfdriver *cd)
   1368 {
   1369 	int ondevs, nndevs;
   1370 	device_t *osp, *nsp;
   1371 
   1372 	KASSERT(mutex_owned(&alldevs_lock));
   1373 	alldevs_nwrite++;
   1374 
   1375 	/* XXX arithmetic overflow */
   1376 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1377 		;
   1378 
   1379 	while (n >= cd->cd_ndevs) {
   1380 		/*
   1381 		 * Need to expand the array.
   1382 		 */
   1383 		ondevs = cd->cd_ndevs;
   1384 		osp = cd->cd_devs;
   1385 
   1386 		/*
   1387 		 * Release alldevs_lock around allocation, which may
   1388 		 * sleep.
   1389 		 */
   1390 		mutex_exit(&alldevs_lock);
   1391 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
   1392 		mutex_enter(&alldevs_lock);
   1393 
   1394 		/*
   1395 		 * If another thread moved the array while we did
   1396 		 * not hold alldevs_lock, try again.
   1397 		 */
   1398 		if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) {
   1399 			mutex_exit(&alldevs_lock);
   1400 			kmem_free(nsp, sizeof(device_t) * nndevs);
   1401 			mutex_enter(&alldevs_lock);
   1402 			continue;
   1403 		}
   1404 
   1405 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
   1406 		if (ondevs != 0)
   1407 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
   1408 
   1409 		cd->cd_ndevs = nndevs;
   1410 		cd->cd_devs = nsp;
   1411 		if (ondevs != 0) {
   1412 			mutex_exit(&alldevs_lock);
   1413 			kmem_free(osp, sizeof(device_t) * ondevs);
   1414 			mutex_enter(&alldevs_lock);
   1415 		}
   1416 	}
   1417 	KASSERT(mutex_owned(&alldevs_lock));
   1418 	alldevs_nwrite--;
   1419 }
   1420 
   1421 /*
   1422  * Put dev into the devices list.
   1423  */
   1424 static void
   1425 config_devlink(device_t dev)
   1426 {
   1427 
   1428 	mutex_enter(&alldevs_lock);
   1429 
   1430 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1431 
   1432 	dev->dv_add_gen = alldevs_gen;
   1433 	/* It is safe to add a device to the tail of the list while
   1434 	 * readers and writers are in the list.
   1435 	 */
   1436 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1437 	mutex_exit(&alldevs_lock);
   1438 }
   1439 
   1440 static void
   1441 config_devfree(device_t dev)
   1442 {
   1443 
   1444 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
   1445 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1446 
   1447 	if (dev->dv_cfattach->ca_devsize > 0)
   1448 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1449 	kmem_free(dev, sizeof(*dev));
   1450 }
   1451 
   1452 /*
   1453  * Caller must hold alldevs_lock.
   1454  */
   1455 static void
   1456 config_devunlink(device_t dev, struct devicelist *garbage)
   1457 {
   1458 	struct device_garbage *dg = &dev->dv_garbage;
   1459 	cfdriver_t cd = device_cfdriver(dev);
   1460 	int i;
   1461 
   1462 	KASSERT(mutex_owned(&alldevs_lock));
   1463 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1464 
   1465  	/* Unlink from device list.  Link to garbage list. */
   1466 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1467 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1468 
   1469 	/* Remove from cfdriver's array. */
   1470 	cd->cd_devs[dev->dv_unit] = NULL;
   1471 
   1472 	/*
   1473 	 * If the device now has no units in use, unlink its softc array.
   1474 	 */
   1475 	for (i = 0; i < cd->cd_ndevs; i++) {
   1476 		if (cd->cd_devs[i] != NULL)
   1477 			break;
   1478 	}
   1479 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1480 	if (i == cd->cd_ndevs) {
   1481 		dg->dg_ndevs = cd->cd_ndevs;
   1482 		dg->dg_devs = cd->cd_devs;
   1483 		cd->cd_devs = NULL;
   1484 		cd->cd_ndevs = 0;
   1485 	}
   1486 }
   1487 
   1488 static void
   1489 config_devdelete(device_t dev)
   1490 {
   1491 	struct device_garbage *dg = &dev->dv_garbage;
   1492 	device_lock_t dvl = device_getlock(dev);
   1493 
   1494 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
   1495 
   1496 	if (dg->dg_devs != NULL)
   1497 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
   1498 
   1499 	localcount_fini(dev->dv_localcount);
   1500 	kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));
   1501 
   1502 	cv_destroy(&dvl->dvl_cv);
   1503 	mutex_destroy(&dvl->dvl_mtx);
   1504 
   1505 	KASSERT(dev->dv_properties != NULL);
   1506 	prop_object_release(dev->dv_properties);
   1507 
   1508 	if (dev->dv_activity_handlers)
   1509 		panic("%s with registered handlers", __func__);
   1510 
   1511 	if (dev->dv_locators) {
   1512 		size_t amount = *--dev->dv_locators;
   1513 		kmem_free(dev->dv_locators, amount);
   1514 	}
   1515 
   1516 	config_devfree(dev);
   1517 }
   1518 
   1519 static int
   1520 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1521 {
   1522 	int unit = cf->cf_unit;
   1523 
   1524 	KASSERT(mutex_owned(&alldevs_lock));
   1525 
   1526 	if (unit < 0)
   1527 		return -1;
   1528 	if (cf->cf_fstate == FSTATE_STAR) {
   1529 		for (; unit < cd->cd_ndevs; unit++)
   1530 			if (cd->cd_devs[unit] == NULL)
   1531 				break;
   1532 		/*
   1533 		 * unit is now the unit of the first NULL device pointer,
   1534 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1535 		 */
   1536 	} else {
   1537 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1538 			unit = -1;
   1539 	}
   1540 	return unit;
   1541 }
   1542 
   1543 static int
   1544 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1545 {
   1546 	struct alldevs_foray af;
   1547 	int unit;
   1548 
   1549 	config_alldevs_enter(&af);
   1550 	for (;;) {
   1551 		unit = config_unit_nextfree(cd, cf);
   1552 		if (unit == -1)
   1553 			break;
   1554 		if (unit < cd->cd_ndevs) {
   1555 			cd->cd_devs[unit] = dev;
   1556 			dev->dv_unit = unit;
   1557 			break;
   1558 		}
   1559 		config_makeroom(unit, cd);
   1560 	}
   1561 	config_alldevs_exit(&af);
   1562 
   1563 	return unit;
   1564 }
   1565 
   1566 static device_t
   1567 config_devalloc(const device_t parent, const cfdata_t cf,
   1568     const struct cfargs_internal * const args)
   1569 {
   1570 	cfdriver_t cd;
   1571 	cfattach_t ca;
   1572 	size_t lname, lunit;
   1573 	const char *xunit;
   1574 	int myunit;
   1575 	char num[10];
   1576 	device_t dev;
   1577 	void *dev_private;
   1578 	const struct cfiattrdata *ia;
   1579 	device_lock_t dvl;
   1580 
   1581 	cd = config_cfdriver_lookup(cf->cf_name);
   1582 	if (cd == NULL)
   1583 		return NULL;
   1584 
   1585 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1586 	if (ca == NULL)
   1587 		return NULL;
   1588 
   1589 	/* get memory for all device vars */
   1590 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1591 	if (ca->ca_devsize > 0) {
   1592 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1593 	} else {
   1594 		dev_private = NULL;
   1595 	}
   1596 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1597 
   1598 	dev->dv_handle = args->devhandle;
   1599 
   1600 	dev->dv_class = cd->cd_class;
   1601 	dev->dv_cfdata = cf;
   1602 	dev->dv_cfdriver = cd;
   1603 	dev->dv_cfattach = ca;
   1604 	dev->dv_activity_count = 0;
   1605 	dev->dv_activity_handlers = NULL;
   1606 	dev->dv_private = dev_private;
   1607 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1608 	dev->dv_attaching = curlwp;
   1609 
   1610 	myunit = config_unit_alloc(dev, cd, cf);
   1611 	if (myunit == -1) {
   1612 		config_devfree(dev);
   1613 		return NULL;
   1614 	}
   1615 
   1616 	/* compute length of name and decimal expansion of unit number */
   1617 	lname = strlen(cd->cd_name);
   1618 	xunit = number(&num[sizeof(num)], myunit);
   1619 	lunit = &num[sizeof(num)] - xunit;
   1620 	if (lname + lunit > sizeof(dev->dv_xname))
   1621 		panic("config_devalloc: device name too long");
   1622 
   1623 	dvl = device_getlock(dev);
   1624 
   1625 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1626 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1627 
   1628 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1629 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1630 	dev->dv_parent = parent;
   1631 	if (parent != NULL)
   1632 		dev->dv_depth = parent->dv_depth + 1;
   1633 	else
   1634 		dev->dv_depth = 0;
   1635 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1636 	if (args->locators) {
   1637 		KASSERT(parent); /* no locators at root */
   1638 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1639 		dev->dv_locators =
   1640 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
   1641 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
   1642 		memcpy(dev->dv_locators, args->locators,
   1643 		    sizeof(int) * ia->ci_loclen);
   1644 	}
   1645 	dev->dv_properties = prop_dictionary_create();
   1646 	KASSERT(dev->dv_properties != NULL);
   1647 
   1648 	prop_dictionary_set_string_nocopy(dev->dv_properties,
   1649 	    "device-driver", dev->dv_cfdriver->cd_name);
   1650 	prop_dictionary_set_uint16(dev->dv_properties,
   1651 	    "device-unit", dev->dv_unit);
   1652 	if (parent != NULL) {
   1653 		prop_dictionary_set_string(dev->dv_properties,
   1654 		    "device-parent", device_xname(parent));
   1655 	}
   1656 
   1657 	dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
   1658 	    KM_SLEEP);
   1659 	localcount_init(dev->dv_localcount);
   1660 
   1661 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1662 		config_add_attrib_dict(dev);
   1663 
   1664 	return dev;
   1665 }
   1666 
   1667 /*
   1668  * Create an array of device attach attributes and add it
   1669  * to the device's dv_properties dictionary.
   1670  *
   1671  * <key>interface-attributes</key>
   1672  * <array>
   1673  *    <dict>
   1674  *       <key>attribute-name</key>
   1675  *       <string>foo</string>
   1676  *       <key>locators</key>
   1677  *       <array>
   1678  *          <dict>
   1679  *             <key>loc-name</key>
   1680  *             <string>foo-loc1</string>
   1681  *          </dict>
   1682  *          <dict>
   1683  *             <key>loc-name</key>
   1684  *             <string>foo-loc2</string>
   1685  *             <key>default</key>
   1686  *             <string>foo-loc2-default</string>
   1687  *          </dict>
   1688  *          ...
   1689  *       </array>
   1690  *    </dict>
   1691  *    ...
   1692  * </array>
   1693  */
   1694 
   1695 static void
   1696 config_add_attrib_dict(device_t dev)
   1697 {
   1698 	int i, j;
   1699 	const struct cfiattrdata *ci;
   1700 	prop_dictionary_t attr_dict, loc_dict;
   1701 	prop_array_t attr_array, loc_array;
   1702 
   1703 	if ((attr_array = prop_array_create()) == NULL)
   1704 		return;
   1705 
   1706 	for (i = 0; ; i++) {
   1707 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1708 			break;
   1709 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1710 			break;
   1711 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
   1712 		    ci->ci_name);
   1713 
   1714 		/* Create an array of the locator names and defaults */
   1715 
   1716 		if (ci->ci_loclen != 0 &&
   1717 		    (loc_array = prop_array_create()) != NULL) {
   1718 			for (j = 0; j < ci->ci_loclen; j++) {
   1719 				loc_dict = prop_dictionary_create();
   1720 				if (loc_dict == NULL)
   1721 					continue;
   1722 				prop_dictionary_set_string_nocopy(loc_dict,
   1723 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1724 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1725 					prop_dictionary_set_string_nocopy(
   1726 					    loc_dict, "default",
   1727 					    ci->ci_locdesc[j].cld_defaultstr);
   1728 				prop_array_set(loc_array, j, loc_dict);
   1729 				prop_object_release(loc_dict);
   1730 			}
   1731 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1732 			    loc_array);
   1733 		}
   1734 		prop_array_add(attr_array, attr_dict);
   1735 		prop_object_release(attr_dict);
   1736 	}
   1737 	if (i == 0)
   1738 		prop_object_release(attr_array);
   1739 	else
   1740 		prop_dictionary_set_and_rel(dev->dv_properties,
   1741 		    "interface-attributes", attr_array);
   1742 
   1743 	return;
   1744 }
   1745 
   1746 static void
   1747 config_device_register(device_t dev, void *aux)
   1748 {
   1749 	struct device_register_args args = {
   1750 		.aux = aux,
   1751 	};
   1752 
   1753 	/* We don't really care if this fails. */
   1754 	device_call(dev, DEVICE_REGISTER(&args));
   1755 
   1756 	device_register(dev, aux);
   1757 }
   1758 
   1759 /*
   1760  * Attach a found device.
   1761  *
   1762  * Returns the device referenced, to be released with device_release.
   1763  */
   1764 static device_t
   1765 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1766     const struct cfargs_internal * const args)
   1767 {
   1768 	device_t dev;
   1769 	struct cftable *ct;
   1770 	const char *drvname;
   1771 	bool deferred;
   1772 
   1773 	KASSERT(KERNEL_LOCKED_P());
   1774 
   1775 	dev = config_devalloc(parent, cf, args);
   1776 	if (!dev)
   1777 		panic("config_attach: allocation of device softc failed");
   1778 
   1779 	/* XXX redundant - see below? */
   1780 	if (cf->cf_fstate != FSTATE_STAR) {
   1781 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1782 		cf->cf_fstate = FSTATE_FOUND;
   1783 	}
   1784 
   1785 	config_devlink(dev);
   1786 
   1787 	if (config_do_twiddle && cold)
   1788 		twiddle();
   1789 	else
   1790 		aprint_naive("Found ");
   1791 	/*
   1792 	 * We want the next two printfs for normal, verbose, and quiet,
   1793 	 * but not silent (in which case, we're twiddling, instead).
   1794 	 */
   1795 	if (parent == ROOT) {
   1796 		aprint_naive("%s (root)", device_xname(dev));
   1797 		aprint_normal("%s (root)", device_xname(dev));
   1798 	} else {
   1799 		aprint_naive("%s at %s", device_xname(dev),
   1800 		    device_xname(parent));
   1801 		aprint_normal("%s at %s", device_xname(dev),
   1802 		    device_xname(parent));
   1803 		if (print)
   1804 			(void) (*print)(aux, NULL);
   1805 	}
   1806 
   1807 	/*
   1808 	 * Before attaching, clobber any unfound devices that are
   1809 	 * otherwise identical.
   1810 	 * XXX code above is redundant?
   1811 	 */
   1812 	drvname = dev->dv_cfdriver->cd_name;
   1813 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1814 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1815 			if (STREQ(cf->cf_name, drvname) &&
   1816 			    cf->cf_unit == dev->dv_unit) {
   1817 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1818 					cf->cf_fstate = FSTATE_FOUND;
   1819 			}
   1820 		}
   1821 	}
   1822 	config_device_register(dev, aux);
   1823 
   1824 	/* Let userland know */
   1825 	devmon_report_device(dev, true);
   1826 
   1827 	/*
   1828 	 * Prevent detach until the driver's attach function, and all
   1829 	 * deferred actions, have finished.
   1830 	 */
   1831 	config_pending_incr(dev);
   1832 
   1833 	/*
   1834 	 * Prevent concurrent detach from destroying the device_t until
   1835 	 * the caller has released the device.
   1836 	 */
   1837 	device_acquire(dev);
   1838 
   1839 	/* Call the driver's attach function.  */
   1840 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1841 
   1842 	/*
   1843 	 * Allow other threads to acquire references to the device now
   1844 	 * that the driver's attach function is done.
   1845 	 */
   1846 	mutex_enter(&config_misc_lock);
   1847 	KASSERT(dev->dv_attaching == curlwp);
   1848 	dev->dv_attaching = NULL;
   1849 	cv_broadcast(&config_misc_cv);
   1850 	mutex_exit(&config_misc_lock);
   1851 
   1852 	/*
   1853 	 * Synchronous parts of attach are done.  Allow detach, unless
   1854 	 * the driver's attach function scheduled deferred actions.
   1855 	 */
   1856 	config_pending_decr(dev);
   1857 
   1858 	mutex_enter(&config_misc_lock);
   1859 	deferred = (dev->dv_pending != 0);
   1860 	mutex_exit(&config_misc_lock);
   1861 
   1862 	if (!deferred && !device_pmf_is_registered(dev))
   1863 		aprint_debug_dev(dev,
   1864 		    "WARNING: power management not supported\n");
   1865 
   1866 	config_process_deferred(&deferred_config_queue, dev);
   1867 
   1868 	device_register_post_config(dev, aux);
   1869 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1870 	return dev;
   1871 }
   1872 
   1873 device_t
   1874 config_attach_acquire(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1875     const struct cfargs *cfargs)
   1876 {
   1877 	struct cfargs_internal store;
   1878 	device_t dev;
   1879 
   1880 	KERNEL_LOCK(1, NULL);
   1881 	dev = config_attach_internal(parent, cf, aux, print,
   1882 	    cfargs_canonicalize(cfargs, &store));
   1883 	KERNEL_UNLOCK_ONE(NULL);
   1884 
   1885 	return dev;
   1886 }
   1887 
   1888 /*
   1889  * config_attach(parent, cf, aux, print, cfargs)
   1890  *
   1891  *	Legacy entry point for callers whose use of the returned
   1892  *	device_t is not delimited by device_release.
   1893  *
   1894  *	The caller is required to hold the kernel lock as a fragile
   1895  *	defence against races.
   1896  *
   1897  *	Callers should ignore the return value or be converted to
   1898  *	config_attach_acquire with a matching device_release once they
   1899  *	have finished with the returned device_t.
   1900  */
   1901 device_t
   1902 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   1903     const struct cfargs *cfargs)
   1904 {
   1905 	device_t dev;
   1906 
   1907 	KASSERT(KERNEL_LOCKED_P());
   1908 
   1909 	dev = config_attach_acquire(parent, cf, aux, print, cfargs);
   1910 	if (dev == NULL)
   1911 		return NULL;
   1912 	device_release(dev);
   1913 
   1914 	return dev;
   1915 }
   1916 
   1917 /*
   1918  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1919  * way are silently inserted into the device tree, and their children
   1920  * attached.
   1921  *
   1922  * Note that because pseudo-devices are attached silently, any information
   1923  * the attach routine wishes to print should be prefixed with the device
   1924  * name by the attach routine.
   1925  */
   1926 device_t
   1927 config_attach_pseudo_acquire(cfdata_t cf, void *aux)
   1928 {
   1929 	device_t dev;
   1930 
   1931 	KERNEL_LOCK(1, NULL);
   1932 
   1933 	struct cfargs_internal args = { };
   1934 	dev = config_devalloc(ROOT, cf, &args);
   1935 	if (!dev)
   1936 		goto out;
   1937 
   1938 	/* XXX mark busy in cfdata */
   1939 
   1940 	if (cf->cf_fstate != FSTATE_STAR) {
   1941 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1942 		cf->cf_fstate = FSTATE_FOUND;
   1943 	}
   1944 
   1945 	config_devlink(dev);
   1946 
   1947 #if 0	/* XXXJRT not yet */
   1948 	config_device_register(dev, NULL);	/* like a root node */
   1949 #endif
   1950 
   1951 	/* Let userland know */
   1952 	devmon_report_device(dev, true);
   1953 
   1954 	/*
   1955 	 * Prevent detach until the driver's attach function, and all
   1956 	 * deferred actions, have finished.
   1957 	 */
   1958 	config_pending_incr(dev);
   1959 
   1960 	/*
   1961 	 * Prevent concurrent detach from destroying the device_t until
   1962 	 * the caller has released the device.
   1963 	 */
   1964 	device_acquire(dev);
   1965 
   1966 	/* Call the driver's attach function.  */
   1967 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, aux);
   1968 
   1969 	/*
   1970 	 * Allow other threads to acquire references to the device now
   1971 	 * that the driver's attach function is done.
   1972 	 */
   1973 	mutex_enter(&config_misc_lock);
   1974 	KASSERT(dev->dv_attaching == curlwp);
   1975 	dev->dv_attaching = NULL;
   1976 	cv_broadcast(&config_misc_cv);
   1977 	mutex_exit(&config_misc_lock);
   1978 
   1979 	/*
   1980 	 * Synchronous parts of attach are done.  Allow detach, unless
   1981 	 * the driver's attach function scheduled deferred actions.
   1982 	 */
   1983 	config_pending_decr(dev);
   1984 
   1985 	config_process_deferred(&deferred_config_queue, dev);
   1986 
   1987 out:	KERNEL_UNLOCK_ONE(NULL);
   1988 	return dev;
   1989 }
   1990 
   1991 /*
   1992  * config_attach_pseudo(cf)
   1993  *
   1994  *	Legacy entry point for callers whose use of the returned
   1995  *	device_t is not delimited by device_release.
   1996  *
   1997  *	The caller is required to hold the kernel lock as a fragile
   1998  *	defence against races.
   1999  *
   2000  *	Callers should ignore the return value or be converted to
   2001  *	config_attach_pseudo_acquire with a matching device_release
   2002  *	once they have finished with the returned device_t.  As a
   2003  *	bonus, config_attach_pseudo_acquire can pass a non-null aux
   2004  *	argument into the driver's attach routine.
   2005  */
   2006 device_t
   2007 config_attach_pseudo(cfdata_t cf)
   2008 {
   2009 	device_t dev;
   2010 
   2011 	dev = config_attach_pseudo_acquire(cf, NULL);
   2012 	if (dev == NULL)
   2013 		return dev;
   2014 	device_release(dev);
   2015 
   2016 	return dev;
   2017 }
   2018 
   2019 /*
   2020  * Caller must hold alldevs_lock.
   2021  */
   2022 static void
   2023 config_collect_garbage(struct devicelist *garbage)
   2024 {
   2025 	device_t dv;
   2026 
   2027 	KASSERT(!cpu_intr_p());
   2028 	KASSERT(!cpu_softintr_p());
   2029 	KASSERT(mutex_owned(&alldevs_lock));
   2030 
   2031 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   2032 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2033 			if (dv->dv_del_gen != 0)
   2034 				break;
   2035 		}
   2036 		if (dv == NULL) {
   2037 			alldevs_garbage = false;
   2038 			break;
   2039 		}
   2040 		config_devunlink(dv, garbage);
   2041 	}
   2042 	KASSERT(mutex_owned(&alldevs_lock));
   2043 }
   2044 
   2045 static void
   2046 config_dump_garbage(struct devicelist *garbage)
   2047 {
   2048 	device_t dv;
   2049 
   2050 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   2051 		TAILQ_REMOVE(garbage, dv, dv_list);
   2052 		config_devdelete(dv);
   2053 	}
   2054 }
   2055 
   2056 static int
   2057 config_detach_enter(device_t dev)
   2058 {
   2059 	struct lwp *l __diagused;
   2060 	int error = 0;
   2061 
   2062 	mutex_enter(&config_misc_lock);
   2063 
   2064 	/*
   2065 	 * Wait until attach has fully completed, and until any
   2066 	 * concurrent detach (e.g., drvctl racing with USB event
   2067 	 * thread) has completed.
   2068 	 *
   2069 	 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
   2070 	 * deviter) to ensure the winner of the race doesn't free the
   2071 	 * device leading the loser of the race into use-after-free.
   2072 	 *
   2073 	 * XXX Not all callers do this!
   2074 	 */
   2075 	while (dev->dv_pending || dev->dv_detaching) {
   2076 		KASSERTMSG(dev->dv_detaching != curlwp,
   2077 		    "recursively detaching %s", device_xname(dev));
   2078 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
   2079 		if (error)
   2080 			goto out;
   2081 	}
   2082 
   2083 	/*
   2084 	 * Attach has completed, and no other concurrent detach is
   2085 	 * running.  Claim the device for detaching.  This will cause
   2086 	 * all new attempts to acquire references to block.
   2087 	 */
   2088 	KASSERTMSG((l = dev->dv_attaching) == NULL,
   2089 	    "lwp %ld [%s] @ %p attaching %s",
   2090 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   2091 	    device_xname(dev));
   2092 	KASSERTMSG((l = dev->dv_detaching) == NULL,
   2093 	    "lwp %ld [%s] @ %p detaching %s",
   2094 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   2095 	    device_xname(dev));
   2096 	dev->dv_detaching = curlwp;
   2097 
   2098 out:	mutex_exit(&config_misc_lock);
   2099 	return error;
   2100 }
   2101 
   2102 static void
   2103 config_detach_exit(device_t dev)
   2104 {
   2105 	struct lwp *l __diagused;
   2106 
   2107 	mutex_enter(&config_misc_lock);
   2108 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
   2109 	    device_xname(dev));
   2110 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   2111 	    "lwp %ld [%s] @ %p detaching %s",
   2112 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   2113 	    device_xname(dev));
   2114 	dev->dv_detaching = NULL;
   2115 	cv_broadcast(&config_misc_cv);
   2116 	mutex_exit(&config_misc_lock);
   2117 }
   2118 
   2119 /*
   2120  * Detach a device.  Optionally forced (e.g. because of hardware
   2121  * removal) and quiet.  Returns zero if successful, non-zero
   2122  * (an error code) otherwise.
   2123  *
   2124  * Note that this code wants to be run from a process context, so
   2125  * that the detach can sleep to allow processes which have a device
   2126  * open to run and unwind their stacks.
   2127  *
   2128  * Caller must hold a reference with device_acquire or
   2129  * device_lookup_acquire.
   2130  */
   2131 int
   2132 config_detach_release(device_t dev, int flags)
   2133 {
   2134 	struct alldevs_foray af;
   2135 	struct cftable *ct;
   2136 	cfdata_t cf;
   2137 	const struct cfattach *ca;
   2138 	struct cfdriver *cd;
   2139 	device_t d __diagused;
   2140 	int rv = 0;
   2141 
   2142 	KERNEL_LOCK(1, NULL);
   2143 
   2144 	cf = dev->dv_cfdata;
   2145 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   2146 		cf->cf_fstate == FSTATE_STAR),
   2147 	    "config_detach: %s: bad device fstate: %d",
   2148 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   2149 
   2150 	cd = dev->dv_cfdriver;
   2151 	KASSERT(cd != NULL);
   2152 
   2153 	ca = dev->dv_cfattach;
   2154 	KASSERT(ca != NULL);
   2155 
   2156 	/*
   2157 	 * Only one detach at a time, please -- and not until fully
   2158 	 * attached.
   2159 	 */
   2160 	rv = config_detach_enter(dev);
   2161 	device_release(dev);
   2162 	if (rv) {
   2163 		KERNEL_UNLOCK_ONE(NULL);
   2164 		return rv;
   2165 	}
   2166 
   2167 	mutex_enter(&alldevs_lock);
   2168 	if (dev->dv_del_gen != 0) {
   2169 		mutex_exit(&alldevs_lock);
   2170 #ifdef DIAGNOSTIC
   2171 		printf("%s: %s is already detached\n", __func__,
   2172 		    device_xname(dev));
   2173 #endif /* DIAGNOSTIC */
   2174 		config_detach_exit(dev);
   2175 		KERNEL_UNLOCK_ONE(NULL);
   2176 		return ENOENT;
   2177 	}
   2178 	alldevs_nwrite++;
   2179 	mutex_exit(&alldevs_lock);
   2180 
   2181 	/*
   2182 	 * Call the driver's .ca_detach function, unless it has none or
   2183 	 * we are skipping it because it's unforced shutdown time and
   2184 	 * the driver didn't ask to detach on shutdown.
   2185 	 */
   2186 	if (!detachall &&
   2187 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   2188 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   2189 		rv = EOPNOTSUPP;
   2190 	} else if (ca->ca_detach != NULL) {
   2191 		rv = (*ca->ca_detach)(dev, flags);
   2192 	} else
   2193 		rv = EOPNOTSUPP;
   2194 
   2195 	KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d",
   2196 	    device_xname(dev), rv);
   2197 
   2198 	/*
   2199 	 * If it was not possible to detach the device, then we either
   2200 	 * panic() (for the forced but failed case), or return an error.
   2201 	 */
   2202 	if (rv) {
   2203 		/*
   2204 		 * Detach failed -- likely EOPNOTSUPP or EBUSY.  Driver
   2205 		 * must not have called config_detach_commit.
   2206 		 */
   2207 		KASSERTMSG(!dev->dv_detach_committed,
   2208 		    "%s committed to detaching and then backed out, error=%d",
   2209 		    device_xname(dev), rv);
   2210 		if (flags & DETACH_FORCE) {
   2211 			panic("config_detach: forced detach of %s failed (%d)",
   2212 			    device_xname(dev), rv);
   2213 		}
   2214 		goto out;
   2215 	}
   2216 
   2217 	/*
   2218 	 * The device has now been successfully detached.
   2219 	 */
   2220 	dev->dv_detach_done = true;
   2221 
   2222 	/*
   2223 	 * If .ca_detach didn't commit to detach, then do that for it.
   2224 	 * This wakes any pending device_lookup_acquire calls so they
   2225 	 * will fail.
   2226 	 */
   2227 	config_detach_commit(dev);
   2228 
   2229 	/*
   2230 	 * If it was possible to detach the device, ensure that the
   2231 	 * device is deactivated.
   2232 	 */
   2233 	dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */
   2234 
   2235 	/*
   2236 	 * Wait for all device_lookup_acquire references -- mostly, for
   2237 	 * all attempts to open the device -- to drain.  It is the
   2238 	 * responsibility of .ca_detach to ensure anything with open
   2239 	 * references will be interrupted and release them promptly,
   2240 	 * not block indefinitely.  All new attempts to acquire
   2241 	 * references will fail, as config_detach_commit has arranged
   2242 	 * by now.
   2243 	 */
   2244 	mutex_enter(&config_misc_lock);
   2245 	localcount_drain(dev->dv_localcount,
   2246 	    &config_misc_cv, &config_misc_lock);
   2247 	mutex_exit(&config_misc_lock);
   2248 
   2249 	/* Let userland know */
   2250 	devmon_report_device(dev, false);
   2251 
   2252 #ifdef DIAGNOSTIC
   2253 	/*
   2254 	 * Sanity: If you're successfully detached, you should have no
   2255 	 * children.  (Note that because children must be attached
   2256 	 * after parents, we only need to search the latter part of
   2257 	 * the list.)
   2258 	 */
   2259 	mutex_enter(&alldevs_lock);
   2260 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   2261 	    d = TAILQ_NEXT(d, dv_list)) {
   2262 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   2263 			printf("config_detach: detached device %s"
   2264 			    " has children %s\n", device_xname(dev),
   2265 			    device_xname(d));
   2266 			panic("config_detach");
   2267 		}
   2268 	}
   2269 	mutex_exit(&alldevs_lock);
   2270 #endif
   2271 
   2272 	/* notify the parent that the child is gone */
   2273 	if (dev->dv_parent) {
   2274 		device_t p = dev->dv_parent;
   2275 		if (p->dv_cfattach->ca_childdetached)
   2276 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   2277 	}
   2278 
   2279 	/*
   2280 	 * Mark cfdata to show that the unit can be reused, if possible.
   2281 	 */
   2282 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   2283 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   2284 			if (STREQ(cf->cf_name, cd->cd_name)) {
   2285 				if (cf->cf_fstate == FSTATE_FOUND &&
   2286 				    cf->cf_unit == dev->dv_unit)
   2287 					cf->cf_fstate = FSTATE_NOTFOUND;
   2288 			}
   2289 		}
   2290 	}
   2291 
   2292 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   2293 		aprint_normal_dev(dev, "detached\n");
   2294 
   2295 out:
   2296 	config_detach_exit(dev);
   2297 
   2298 	config_alldevs_enter(&af);
   2299 	KASSERT(alldevs_nwrite != 0);
   2300 	--alldevs_nwrite;
   2301 	if (rv == 0 && dev->dv_del_gen == 0) {
   2302 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   2303 			config_devunlink(dev, &af.af_garbage);
   2304 		else {
   2305 			dev->dv_del_gen = alldevs_gen;
   2306 			alldevs_garbage = true;
   2307 		}
   2308 	}
   2309 	config_alldevs_exit(&af);
   2310 
   2311 	KERNEL_UNLOCK_ONE(NULL);
   2312 
   2313 	return rv;
   2314 }
   2315 
   2316 /*
   2317  * config_detach(dev, flags)
   2318  *
   2319  *	Legacy entry point for callers that have not acquired a
   2320  *	reference to dev.
   2321  *
   2322  *	The caller is required to hold the kernel lock as a fragile
   2323  *	defence against races.
   2324  *
   2325  *	Callers should be converted to use device_acquire under a lock
   2326  *	taken also by .ca_childdetached to synchronize access to the
   2327  *	device_t, and then config_detach_release ouside the lock.
   2328  *	Alternatively, most drivers detach children only in their own
   2329  *	detach routines, which can be done with config_detach_children
   2330  *	instead.
   2331  */
   2332 int
   2333 config_detach(device_t dev, int flags)
   2334 {
   2335 
   2336 	device_acquire(dev);
   2337 	return config_detach_release(dev, flags);
   2338 }
   2339 
   2340 /*
   2341  * config_detach_commit(dev)
   2342  *
   2343  *	Issued by a driver's .ca_detach routine to notify anyone
   2344  *	waiting in device_lookup_acquire that the driver is committed
   2345  *	to detaching the device, which allows device_lookup_acquire to
   2346  *	wake up and fail immediately.
   2347  *
   2348  *	Safe to call multiple times -- idempotent.  Must be called
   2349  *	during config_detach_enter/exit.  Safe to use with
   2350  *	device_lookup because the device is not actually removed from
   2351  *	the table until after config_detach_exit.
   2352  */
   2353 void
   2354 config_detach_commit(device_t dev)
   2355 {
   2356 	struct lwp *l __diagused;
   2357 
   2358 	mutex_enter(&config_misc_lock);
   2359 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
   2360 	    device_xname(dev));
   2361 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
   2362 	    "lwp %ld [%s] @ %p detaching %s",
   2363 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
   2364 	    device_xname(dev));
   2365 	dev->dv_detach_committed = true;
   2366 	cv_broadcast(&config_misc_cv);
   2367 	mutex_exit(&config_misc_lock);
   2368 }
   2369 
   2370 int
   2371 config_detach_children(device_t parent, int flags)
   2372 {
   2373 	device_t dv;
   2374 	deviter_t di;
   2375 	int error = 0;
   2376 
   2377 	KASSERT(KERNEL_LOCKED_P());
   2378 
   2379 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   2380 	     dv = deviter_next(&di)) {
   2381 		if (device_parent(dv) != parent)
   2382 			continue;
   2383 		if ((error = config_detach(dv, flags)) != 0)
   2384 			break;
   2385 	}
   2386 	deviter_release(&di);
   2387 	return error;
   2388 }
   2389 
   2390 device_t
   2391 shutdown_first(struct shutdown_state *s)
   2392 {
   2393 	if (!s->initialized) {
   2394 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   2395 		s->initialized = true;
   2396 	}
   2397 	return shutdown_next(s);
   2398 }
   2399 
   2400 device_t
   2401 shutdown_next(struct shutdown_state *s)
   2402 {
   2403 	device_t dv;
   2404 
   2405 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   2406 		;
   2407 
   2408 	if (dv == NULL)
   2409 		s->initialized = false;
   2410 
   2411 	return dv;
   2412 }
   2413 
   2414 bool
   2415 config_detach_all(int how)
   2416 {
   2417 	static struct shutdown_state s;
   2418 	device_t curdev;
   2419 	bool progress = false;
   2420 	int flags;
   2421 
   2422 	KERNEL_LOCK(1, NULL);
   2423 
   2424 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   2425 		goto out;
   2426 
   2427 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   2428 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   2429 	else
   2430 		flags = DETACH_SHUTDOWN;
   2431 
   2432 	for (curdev = shutdown_first(&s); curdev != NULL;
   2433 	     curdev = shutdown_next(&s)) {
   2434 		aprint_debug(" detaching %s, ", device_xname(curdev));
   2435 		if (config_detach(curdev, flags) == 0) {
   2436 			progress = true;
   2437 			aprint_debug("success.");
   2438 		} else
   2439 			aprint_debug("failed.");
   2440 	}
   2441 
   2442 out:	KERNEL_UNLOCK_ONE(NULL);
   2443 	return progress;
   2444 }
   2445 
   2446 static bool
   2447 device_is_ancestor_of(device_t ancestor, device_t descendant)
   2448 {
   2449 	device_t dv;
   2450 
   2451 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   2452 		if (device_parent(dv) == ancestor)
   2453 			return true;
   2454 	}
   2455 	return false;
   2456 }
   2457 
   2458 int
   2459 config_deactivate(device_t dev)
   2460 {
   2461 	deviter_t di;
   2462 	const struct cfattach *ca;
   2463 	device_t descendant;
   2464 	int s, rv = 0, oflags;
   2465 
   2466 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   2467 	     descendant != NULL;
   2468 	     descendant = deviter_next(&di)) {
   2469 		if (dev != descendant &&
   2470 		    !device_is_ancestor_of(dev, descendant))
   2471 			continue;
   2472 
   2473 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   2474 			continue;
   2475 
   2476 		ca = descendant->dv_cfattach;
   2477 		oflags = descendant->dv_flags;
   2478 
   2479 		descendant->dv_flags &= ~DVF_ACTIVE;
   2480 		if (ca->ca_activate == NULL)
   2481 			continue;
   2482 		s = splhigh();
   2483 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   2484 		splx(s);
   2485 		if (rv != 0)
   2486 			descendant->dv_flags = oflags;
   2487 	}
   2488 	deviter_release(&di);
   2489 	return rv;
   2490 }
   2491 
   2492 /*
   2493  * Defer the configuration of the specified device until all
   2494  * of its parent's devices have been attached.
   2495  */
   2496 void
   2497 config_defer(device_t dev, void (*func)(device_t))
   2498 {
   2499 	struct deferred_config *dc;
   2500 
   2501 	if (dev->dv_parent == NULL)
   2502 		panic("config_defer: can't defer config of a root device");
   2503 
   2504 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2505 
   2506 	config_pending_incr(dev);
   2507 
   2508 	mutex_enter(&config_misc_lock);
   2509 #ifdef DIAGNOSTIC
   2510 	struct deferred_config *odc;
   2511 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   2512 		if (odc->dc_dev == dev)
   2513 			panic("config_defer: deferred twice");
   2514 	}
   2515 #endif
   2516 	dc->dc_dev = dev;
   2517 	dc->dc_func = func;
   2518 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   2519 	mutex_exit(&config_misc_lock);
   2520 }
   2521 
   2522 /*
   2523  * Defer some autoconfiguration for a device until after interrupts
   2524  * are enabled.
   2525  */
   2526 void
   2527 config_interrupts(device_t dev, void (*func)(device_t))
   2528 {
   2529 	struct deferred_config *dc;
   2530 
   2531 	/*
   2532 	 * If interrupts are enabled, callback now.
   2533 	 */
   2534 	if (cold == 0) {
   2535 		(*func)(dev);
   2536 		return;
   2537 	}
   2538 
   2539 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2540 
   2541 	config_pending_incr(dev);
   2542 
   2543 	mutex_enter(&config_misc_lock);
   2544 #ifdef DIAGNOSTIC
   2545 	struct deferred_config *odc;
   2546 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2547 		if (odc->dc_dev == dev)
   2548 			panic("config_interrupts: deferred twice");
   2549 	}
   2550 #endif
   2551 	dc->dc_dev = dev;
   2552 	dc->dc_func = func;
   2553 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2554 	mutex_exit(&config_misc_lock);
   2555 }
   2556 
   2557 /*
   2558  * Defer some autoconfiguration for a device until after root file system
   2559  * is mounted (to load firmware etc).
   2560  */
   2561 void
   2562 config_mountroot(device_t dev, void (*func)(device_t))
   2563 {
   2564 	struct deferred_config *dc;
   2565 
   2566 	/*
   2567 	 * If root file system is mounted, callback now.
   2568 	 */
   2569 	if (root_is_mounted) {
   2570 		(*func)(dev);
   2571 		return;
   2572 	}
   2573 
   2574 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2575 
   2576 	mutex_enter(&config_misc_lock);
   2577 #ifdef DIAGNOSTIC
   2578 	struct deferred_config *odc;
   2579 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2580 		if (odc->dc_dev == dev)
   2581 			panic("%s: deferred twice", __func__);
   2582 	}
   2583 #endif
   2584 
   2585 	dc->dc_dev = dev;
   2586 	dc->dc_func = func;
   2587 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2588 	mutex_exit(&config_misc_lock);
   2589 }
   2590 
   2591 /*
   2592  * Process a deferred configuration queue.
   2593  */
   2594 static void
   2595 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2596 {
   2597 	struct deferred_config *dc;
   2598 
   2599 	KASSERT(KERNEL_LOCKED_P());
   2600 
   2601 	mutex_enter(&config_misc_lock);
   2602 	dc = TAILQ_FIRST(queue);
   2603 	while (dc) {
   2604 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2605 			TAILQ_REMOVE(queue, dc, dc_queue);
   2606 			mutex_exit(&config_misc_lock);
   2607 
   2608 			(*dc->dc_func)(dc->dc_dev);
   2609 			config_pending_decr(dc->dc_dev);
   2610 			kmem_free(dc, sizeof(*dc));
   2611 
   2612 			mutex_enter(&config_misc_lock);
   2613 			/* Restart, queue might have changed */
   2614 			dc = TAILQ_FIRST(queue);
   2615 		} else {
   2616 			dc = TAILQ_NEXT(dc, dc_queue);
   2617 		}
   2618 	}
   2619 	mutex_exit(&config_misc_lock);
   2620 }
   2621 
   2622 /*
   2623  * Manipulate the config_pending semaphore.
   2624  */
   2625 void
   2626 config_pending_incr(device_t dev)
   2627 {
   2628 
   2629 	mutex_enter(&config_misc_lock);
   2630 	KASSERTMSG(dev->dv_pending < INT_MAX,
   2631 	    "%s: excess config_pending_incr", device_xname(dev));
   2632 	if (dev->dv_pending++ == 0)
   2633 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
   2634 #ifdef DEBUG_AUTOCONF
   2635 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2636 #endif
   2637 	mutex_exit(&config_misc_lock);
   2638 }
   2639 
   2640 void
   2641 config_pending_decr(device_t dev)
   2642 {
   2643 
   2644 	mutex_enter(&config_misc_lock);
   2645 	KASSERTMSG(dev->dv_pending > 0,
   2646 	    "%s: excess config_pending_decr", device_xname(dev));
   2647 	if (--dev->dv_pending == 0) {
   2648 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
   2649 		cv_broadcast(&config_misc_cv);
   2650 	}
   2651 #ifdef DEBUG_AUTOCONF
   2652 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
   2653 #endif
   2654 	mutex_exit(&config_misc_lock);
   2655 }
   2656 
   2657 /*
   2658  * Register a "finalization" routine.  Finalization routines are
   2659  * called iteratively once all real devices have been found during
   2660  * autoconfiguration, for as long as any one finalizer has done
   2661  * any work.
   2662  */
   2663 int
   2664 config_finalize_register(device_t dev, int (*fn)(device_t))
   2665 {
   2666 	struct finalize_hook *f;
   2667 	int error = 0;
   2668 
   2669 	KERNEL_LOCK(1, NULL);
   2670 
   2671 	/*
   2672 	 * If finalization has already been done, invoke the
   2673 	 * callback function now.
   2674 	 */
   2675 	if (config_finalize_done) {
   2676 		while ((*fn)(dev) != 0)
   2677 			/* loop */ ;
   2678 		goto out;
   2679 	}
   2680 
   2681 	/* Ensure this isn't already on the list. */
   2682 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2683 		if (f->f_func == fn && f->f_dev == dev) {
   2684 			error = EEXIST;
   2685 			goto out;
   2686 		}
   2687 	}
   2688 
   2689 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2690 	f->f_func = fn;
   2691 	f->f_dev = dev;
   2692 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2693 
   2694 	/* Success!  */
   2695 	error = 0;
   2696 
   2697 out:	KERNEL_UNLOCK_ONE(NULL);
   2698 	return error;
   2699 }
   2700 
   2701 void
   2702 config_finalize(void)
   2703 {
   2704 	struct finalize_hook *f;
   2705 	struct pdevinit *pdev;
   2706 	extern struct pdevinit pdevinit[];
   2707 	unsigned t0 = getticks();
   2708 	int errcnt, rv;
   2709 
   2710 	/*
   2711 	 * Now that device driver threads have been created, wait for
   2712 	 * them to finish any deferred autoconfiguration.
   2713 	 */
   2714 	mutex_enter(&config_misc_lock);
   2715 	while (!TAILQ_EMPTY(&config_pending)) {
   2716 		const unsigned t1 = getticks();
   2717 
   2718 		if (t1 - t0 >= hz) {
   2719 			void (*pr)(const char *, ...) __printflike(1,2);
   2720 			device_t dev;
   2721 
   2722 			if (t1 - t0 >= 60*hz) {
   2723 				pr = aprint_normal;
   2724 				t0 = t1;
   2725 			} else {
   2726 				pr = aprint_debug;
   2727 			}
   2728 
   2729 			(*pr)("waiting for devices:");
   2730 			TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
   2731 				(*pr)(" %s", device_xname(dev));
   2732 			(*pr)("\n");
   2733 		}
   2734 
   2735 		(void)cv_timedwait(&config_misc_cv, &config_misc_lock,
   2736 		    mstohz(1000));
   2737 	}
   2738 	mutex_exit(&config_misc_lock);
   2739 
   2740 	KERNEL_LOCK(1, NULL);
   2741 
   2742 	/* Attach pseudo-devices. */
   2743 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2744 		(*pdev->pdev_attach)(pdev->pdev_count);
   2745 
   2746 	/* Run the hooks until none of them does any work. */
   2747 	do {
   2748 		rv = 0;
   2749 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2750 			rv |= (*f->f_func)(f->f_dev);
   2751 	} while (rv != 0);
   2752 
   2753 	config_finalize_done = 1;
   2754 
   2755 	/* Now free all the hooks. */
   2756 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2757 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2758 		kmem_free(f, sizeof(*f));
   2759 	}
   2760 
   2761 	KERNEL_UNLOCK_ONE(NULL);
   2762 
   2763 	errcnt = aprint_get_error_count();
   2764 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2765 	    (boothowto & AB_VERBOSE) == 0) {
   2766 		mutex_enter(&config_misc_lock);
   2767 		if (config_do_twiddle) {
   2768 			config_do_twiddle = 0;
   2769 			printf_nolog(" done.\n");
   2770 		}
   2771 		mutex_exit(&config_misc_lock);
   2772 	}
   2773 	if (errcnt != 0) {
   2774 		printf("WARNING: %d error%s while detecting hardware; "
   2775 		    "check system log.\n", errcnt,
   2776 		    errcnt == 1 ? "" : "s");
   2777 	}
   2778 }
   2779 
   2780 void
   2781 config_twiddle_init(void)
   2782 {
   2783 
   2784 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2785 		config_do_twiddle = 1;
   2786 	}
   2787 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2788 }
   2789 
   2790 void
   2791 config_twiddle_fn(void *cookie)
   2792 {
   2793 
   2794 	mutex_enter(&config_misc_lock);
   2795 	if (config_do_twiddle) {
   2796 		twiddle();
   2797 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2798 	}
   2799 	mutex_exit(&config_misc_lock);
   2800 }
   2801 
   2802 static void
   2803 config_alldevs_enter(struct alldevs_foray *af)
   2804 {
   2805 	TAILQ_INIT(&af->af_garbage);
   2806 	mutex_enter(&alldevs_lock);
   2807 	config_collect_garbage(&af->af_garbage);
   2808 }
   2809 
   2810 static void
   2811 config_alldevs_exit(struct alldevs_foray *af)
   2812 {
   2813 	mutex_exit(&alldevs_lock);
   2814 	config_dump_garbage(&af->af_garbage);
   2815 }
   2816 
   2817 /*
   2818  * device_lookup:
   2819  *
   2820  *	Look up a device instance for a given driver.
   2821  *
   2822  *	Caller is responsible for ensuring the device's state is
   2823  *	stable, either by holding a reference already obtained with
   2824  *	device_lookup_acquire or by otherwise ensuring the device is
   2825  *	attached and can't be detached (e.g., holding an open device
   2826  *	node and ensuring *_detach calls vdevgone).
   2827  *
   2828  *	XXX Find a way to assert this.
   2829  *
   2830  *	Safe for use up to and including interrupt context at IPL_VM.
   2831  *	Never sleeps.
   2832  */
   2833 device_t
   2834 device_lookup(cfdriver_t cd, int unit)
   2835 {
   2836 	device_t dv;
   2837 
   2838 	mutex_enter(&alldevs_lock);
   2839 	if (unit < 0 || unit >= cd->cd_ndevs)
   2840 		dv = NULL;
   2841 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2842 		dv = NULL;
   2843 	mutex_exit(&alldevs_lock);
   2844 
   2845 	return dv;
   2846 }
   2847 
   2848 /*
   2849  * device_lookup_private:
   2850  *
   2851  *	Look up a softc instance for a given driver.
   2852  */
   2853 void *
   2854 device_lookup_private(cfdriver_t cd, int unit)
   2855 {
   2856 
   2857 	return device_private(device_lookup(cd, unit));
   2858 }
   2859 
   2860 /*
   2861  * device_lookup_acquire:
   2862  *
   2863  *	Look up a device instance for a given driver, and return a
   2864  *	reference to it that must be released by device_release.
   2865  *
   2866  *	=> If the device is still attaching, blocks until *_attach has
   2867  *	   returned.
   2868  *
   2869  *	=> If the device is detaching, blocks until *_detach has
   2870  *	   returned.  May succeed or fail in that case, depending on
   2871  *	   whether *_detach has backed out (EBUSY) or committed to
   2872  *	   detaching.
   2873  *
   2874  *	May sleep.
   2875  */
   2876 device_t
   2877 device_lookup_acquire(cfdriver_t cd, int unit)
   2878 {
   2879 	device_t dv;
   2880 
   2881 	ASSERT_SLEEPABLE();
   2882 
   2883 	/* XXX This should have a pserialized fast path -- TBD.  */
   2884 	mutex_enter(&config_misc_lock);
   2885 	mutex_enter(&alldevs_lock);
   2886 retry:	if (unit < 0 || unit >= cd->cd_ndevs ||
   2887 	    (dv = cd->cd_devs[unit]) == NULL ||
   2888 	    dv->dv_del_gen != 0 ||
   2889 	    dv->dv_detach_committed) {
   2890 		dv = NULL;
   2891 	} else {
   2892 		/*
   2893 		 * Wait for the device to stabilize, if attaching or
   2894 		 * detaching.  Either way we must wait for *_attach or
   2895 		 * *_detach to complete, and either way we must retry:
   2896 		 * even if detaching, *_detach might fail (EBUSY) so
   2897 		 * the device may still be there.
   2898 		 */
   2899 		if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
   2900 		    dv->dv_detaching != NULL) {
   2901 			mutex_exit(&alldevs_lock);
   2902 			cv_wait(&config_misc_cv, &config_misc_lock);
   2903 			mutex_enter(&alldevs_lock);
   2904 			goto retry;
   2905 		}
   2906 		device_acquire(dv);
   2907 	}
   2908 	mutex_exit(&alldevs_lock);
   2909 	mutex_exit(&config_misc_lock);
   2910 
   2911 	return dv;
   2912 }
   2913 
   2914 /*
   2915  * device_acquire:
   2916  *
   2917  *	Acquire a reference to a device.  It is the caller's
   2918  *	responsibility to ensure that the device's .ca_detach routine
   2919  *	cannot return before calling this.  Caller must release the
   2920  *	reference with device_release or config_detach_release.
   2921  */
   2922 void
   2923 device_acquire(device_t dv)
   2924 {
   2925 
   2926 	/*
   2927 	 * No lock because the caller has promised that this can't
   2928 	 * change concurrently with device_acquire.
   2929 	 */
   2930 	KASSERTMSG(!dv->dv_detach_done, "%s",
   2931 	    dv == NULL ? "(null)" : device_xname(dv));
   2932 	localcount_acquire(dv->dv_localcount);
   2933 }
   2934 
   2935 /*
   2936  * device_release:
   2937  *
   2938  *	Release a reference to a device acquired with device_acquire or
   2939  *	device_lookup_acquire.
   2940  */
   2941 void
   2942 device_release(device_t dv)
   2943 {
   2944 
   2945 	localcount_release(dv->dv_localcount,
   2946 	    &config_misc_cv, &config_misc_lock);
   2947 }
   2948 
   2949 /*
   2950  * device_find_by_xname:
   2951  *
   2952  *	Returns the device of the given name or NULL if it doesn't exist.
   2953  */
   2954 device_t
   2955 device_find_by_xname(const char *name)
   2956 {
   2957 	device_t dv;
   2958 	deviter_t di;
   2959 
   2960 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2961 		if (strcmp(device_xname(dv), name) == 0)
   2962 			break;
   2963 	}
   2964 	deviter_release(&di);
   2965 
   2966 	return dv;
   2967 }
   2968 
   2969 /*
   2970  * device_find_by_driver_unit:
   2971  *
   2972  *	Returns the device of the given driver name and unit or
   2973  *	NULL if it doesn't exist.
   2974  */
   2975 device_t
   2976 device_find_by_driver_unit(const char *name, int unit)
   2977 {
   2978 	struct cfdriver *cd;
   2979 
   2980 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2981 		return NULL;
   2982 	return device_lookup(cd, unit);
   2983 }
   2984 
   2985 static bool
   2986 match_strcmp(const char * const s1, const char * const s2)
   2987 {
   2988 	return strcmp(s1, s2) == 0;
   2989 }
   2990 
   2991 static bool
   2992 match_pmatch(const char * const s1, const char * const s2)
   2993 {
   2994 	return pmatch(s1, s2, NULL) == 2;
   2995 }
   2996 
   2997 static bool
   2998 strarray_match_internal(const char ** const strings,
   2999     unsigned int const nstrings, const char * const str,
   3000     unsigned int * const indexp,
   3001     bool (*match_fn)(const char *, const char *))
   3002 {
   3003 	unsigned int i;
   3004 
   3005 	if (strings == NULL || nstrings == 0) {
   3006 		return false;
   3007 	}
   3008 
   3009 	for (i = 0; i < nstrings; i++) {
   3010 		if ((*match_fn)(strings[i], str)) {
   3011 			*indexp = i;
   3012 			return true;
   3013 		}
   3014 	}
   3015 
   3016 	return false;
   3017 }
   3018 
   3019 static int
   3020 strarray_match(const char ** const strings, unsigned int const nstrings,
   3021     const char * const str)
   3022 {
   3023 	unsigned int idx;
   3024 
   3025 	if (strarray_match_internal(strings, nstrings, str, &idx,
   3026 				    match_strcmp)) {
   3027 		return (int)(nstrings - idx);
   3028 	}
   3029 	return 0;
   3030 }
   3031 
   3032 static int
   3033 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   3034     const char * const pattern)
   3035 {
   3036 	unsigned int idx;
   3037 
   3038 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
   3039 				    match_pmatch)) {
   3040 		return (int)(nstrings - idx);
   3041 	}
   3042 	return 0;
   3043 }
   3044 
   3045 static int
   3046 device_compatible_match_strarray_internal(
   3047     const char **device_compats, int ndevice_compats,
   3048     const struct device_compatible_entry *driver_compats,
   3049     const struct device_compatible_entry **matching_entryp,
   3050     int (*match_fn)(const char **, unsigned int, const char *))
   3051 {
   3052 	const struct device_compatible_entry *dce = NULL;
   3053 	int rv;
   3054 
   3055 	if (ndevice_compats == 0 || device_compats == NULL ||
   3056 	    driver_compats == NULL)
   3057 		return 0;
   3058 
   3059 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   3060 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
   3061 		if (rv != 0) {
   3062 			if (matching_entryp != NULL) {
   3063 				*matching_entryp = dce;
   3064 			}
   3065 			return rv;
   3066 		}
   3067 	}
   3068 	return 0;
   3069 }
   3070 
   3071 /*
   3072  * device_compatible_match:
   3073  *
   3074  *	Match a driver's "compatible" data against a device's
   3075  *	"compatible" strings.  Returns resulted weighted by
   3076  *	which device "compatible" string was matched.
   3077  */
   3078 int
   3079 device_compatible_match(const char **device_compats, int ndevice_compats,
   3080     const struct device_compatible_entry *driver_compats)
   3081 {
   3082 	return device_compatible_match_strarray_internal(device_compats,
   3083 	    ndevice_compats, driver_compats, NULL, strarray_match);
   3084 }
   3085 
   3086 /*
   3087  * device_compatible_pmatch:
   3088  *
   3089  *	Like device_compatible_match(), but uses pmatch(9) to compare
   3090  *	the device "compatible" strings against patterns in the
   3091  *	driver's "compatible" data.
   3092  */
   3093 int
   3094 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   3095     const struct device_compatible_entry *driver_compats)
   3096 {
   3097 	return device_compatible_match_strarray_internal(device_compats,
   3098 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
   3099 }
   3100 
   3101 static int
   3102 device_compatible_match_strlist_internal(
   3103     const char * const device_compats, size_t const device_compatsize,
   3104     const struct device_compatible_entry *driver_compats,
   3105     const struct device_compatible_entry **matching_entryp,
   3106     int (*match_fn)(const char *, size_t, const char *))
   3107 {
   3108 	const struct device_compatible_entry *dce = NULL;
   3109 	int rv;
   3110 
   3111 	if (device_compats == NULL || device_compatsize == 0 ||
   3112 	    driver_compats == NULL)
   3113 		return 0;
   3114 
   3115 	for (dce = driver_compats; dce->compat != NULL; dce++) {
   3116 		rv = (*match_fn)(device_compats, device_compatsize,
   3117 		    dce->compat);
   3118 		if (rv != 0) {
   3119 			if (matching_entryp != NULL) {
   3120 				*matching_entryp = dce;
   3121 			}
   3122 			return rv;
   3123 		}
   3124 	}
   3125 	return 0;
   3126 }
   3127 
   3128 /*
   3129  * device_compatible_match_strlist:
   3130  *
   3131  *	Like device_compatible_match(), but take the device
   3132  *	"compatible" strings as an OpenFirmware-style string
   3133  *	list.
   3134  */
   3135 int
   3136 device_compatible_match_strlist(
   3137     const char * const device_compats, size_t const device_compatsize,
   3138     const struct device_compatible_entry *driver_compats)
   3139 {
   3140 	return device_compatible_match_strlist_internal(device_compats,
   3141 	    device_compatsize, driver_compats, NULL, strlist_match);
   3142 }
   3143 
   3144 /*
   3145  * device_compatible_pmatch_strlist:
   3146  *
   3147  *	Like device_compatible_pmatch(), but take the device
   3148  *	"compatible" strings as an OpenFirmware-style string
   3149  *	list.
   3150  */
   3151 int
   3152 device_compatible_pmatch_strlist(
   3153     const char * const device_compats, size_t const device_compatsize,
   3154     const struct device_compatible_entry *driver_compats)
   3155 {
   3156 	return device_compatible_match_strlist_internal(device_compats,
   3157 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
   3158 }
   3159 
   3160 static int
   3161 device_compatible_match_id_internal(
   3162     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   3163     const struct device_compatible_entry *driver_compats,
   3164     const struct device_compatible_entry **matching_entryp)
   3165 {
   3166 	const struct device_compatible_entry *dce = NULL;
   3167 
   3168 	if (mask == 0)
   3169 		return 0;
   3170 
   3171 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
   3172 		if ((id & mask) == dce->id) {
   3173 			if (matching_entryp != NULL) {
   3174 				*matching_entryp = dce;
   3175 			}
   3176 			return 1;
   3177 		}
   3178 	}
   3179 	return 0;
   3180 }
   3181 
   3182 /*
   3183  * device_compatible_match_id:
   3184  *
   3185  *	Like device_compatible_match(), but takes a single
   3186  *	unsigned integer device ID.
   3187  */
   3188 int
   3189 device_compatible_match_id(
   3190     uintptr_t const id, uintptr_t const sentinel_id,
   3191     const struct device_compatible_entry *driver_compats)
   3192 {
   3193 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
   3194 	    sentinel_id, driver_compats, NULL);
   3195 }
   3196 
   3197 /*
   3198  * device_compatible_lookup:
   3199  *
   3200  *	Look up and return the device_compatible_entry, using the
   3201  *	same matching criteria used by device_compatible_match().
   3202  */
   3203 const struct device_compatible_entry *
   3204 device_compatible_lookup(const char **device_compats, int ndevice_compats,
   3205 			 const struct device_compatible_entry *driver_compats)
   3206 {
   3207 	const struct device_compatible_entry *dce;
   3208 
   3209 	if (device_compatible_match_strarray_internal(device_compats,
   3210 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
   3211 		return dce;
   3212 	}
   3213 	return NULL;
   3214 }
   3215 
   3216 /*
   3217  * device_compatible_plookup:
   3218  *
   3219  *	Look up and return the device_compatible_entry, using the
   3220  *	same matching criteria used by device_compatible_pmatch().
   3221  */
   3222 const struct device_compatible_entry *
   3223 device_compatible_plookup(const char **device_compats, int ndevice_compats,
   3224 			  const struct device_compatible_entry *driver_compats)
   3225 {
   3226 	const struct device_compatible_entry *dce;
   3227 
   3228 	if (device_compatible_match_strarray_internal(device_compats,
   3229 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
   3230 		return dce;
   3231 	}
   3232 	return NULL;
   3233 }
   3234 
   3235 /*
   3236  * device_compatible_lookup_strlist:
   3237  *
   3238  *	Like device_compatible_lookup(), but take the device
   3239  *	"compatible" strings as an OpenFirmware-style string
   3240  *	list.
   3241  */
   3242 const struct device_compatible_entry *
   3243 device_compatible_lookup_strlist(
   3244     const char * const device_compats, size_t const device_compatsize,
   3245     const struct device_compatible_entry *driver_compats)
   3246 {
   3247 	const struct device_compatible_entry *dce;
   3248 
   3249 	if (device_compatible_match_strlist_internal(device_compats,
   3250 	    device_compatsize, driver_compats, &dce, strlist_match)) {
   3251 		return dce;
   3252 	}
   3253 	return NULL;
   3254 }
   3255 
   3256 /*
   3257  * device_compatible_plookup_strlist:
   3258  *
   3259  *	Like device_compatible_plookup(), but take the device
   3260  *	"compatible" strings as an OpenFirmware-style string
   3261  *	list.
   3262  */
   3263 const struct device_compatible_entry *
   3264 device_compatible_plookup_strlist(
   3265     const char * const device_compats, size_t const device_compatsize,
   3266     const struct device_compatible_entry *driver_compats)
   3267 {
   3268 	const struct device_compatible_entry *dce;
   3269 
   3270 	if (device_compatible_match_strlist_internal(device_compats,
   3271 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
   3272 		return dce;
   3273 	}
   3274 	return NULL;
   3275 }
   3276 
   3277 /*
   3278  * device_compatible_lookup_id:
   3279  *
   3280  *	Like device_compatible_lookup(), but takes a single
   3281  *	unsigned integer device ID.
   3282  */
   3283 const struct device_compatible_entry *
   3284 device_compatible_lookup_id(
   3285     uintptr_t const id, uintptr_t const sentinel_id,
   3286     const struct device_compatible_entry *driver_compats)
   3287 {
   3288 	const struct device_compatible_entry *dce;
   3289 
   3290 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
   3291 	    sentinel_id, driver_compats, &dce)) {
   3292 		return dce;
   3293 	}
   3294 	return NULL;
   3295 }
   3296 
   3297 /*
   3298  * Power management related functions.
   3299  */
   3300 
   3301 bool
   3302 device_pmf_is_registered(device_t dev)
   3303 {
   3304 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   3305 }
   3306 
   3307 bool
   3308 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   3309 {
   3310 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3311 		return true;
   3312 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3313 		return false;
   3314 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3315 	    dev->dv_driver_suspend != NULL &&
   3316 	    !(*dev->dv_driver_suspend)(dev, qual))
   3317 		return false;
   3318 
   3319 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   3320 	return true;
   3321 }
   3322 
   3323 bool
   3324 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   3325 {
   3326 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3327 		return true;
   3328 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3329 		return false;
   3330 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   3331 	    dev->dv_driver_resume != NULL &&
   3332 	    !(*dev->dv_driver_resume)(dev, qual))
   3333 		return false;
   3334 
   3335 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   3336 	return true;
   3337 }
   3338 
   3339 bool
   3340 device_pmf_driver_shutdown(device_t dev, int how)
   3341 {
   3342 
   3343 	if (*dev->dv_driver_shutdown != NULL &&
   3344 	    !(*dev->dv_driver_shutdown)(dev, how))
   3345 		return false;
   3346 	return true;
   3347 }
   3348 
   3349 void
   3350 device_pmf_driver_register(device_t dev,
   3351     bool (*suspend)(device_t, const pmf_qual_t *),
   3352     bool (*resume)(device_t, const pmf_qual_t *),
   3353     bool (*shutdown)(device_t, int))
   3354 {
   3355 
   3356 	dev->dv_driver_suspend = suspend;
   3357 	dev->dv_driver_resume = resume;
   3358 	dev->dv_driver_shutdown = shutdown;
   3359 	dev->dv_flags |= DVF_POWER_HANDLERS;
   3360 }
   3361 
   3362 void
   3363 device_pmf_driver_deregister(device_t dev)
   3364 {
   3365 	device_lock_t dvl = device_getlock(dev);
   3366 
   3367 	dev->dv_driver_suspend = NULL;
   3368 	dev->dv_driver_resume = NULL;
   3369 
   3370 	mutex_enter(&dvl->dvl_mtx);
   3371 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   3372 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   3373 		/* Wake a thread that waits for the lock.  That
   3374 		 * thread will fail to acquire the lock, and then
   3375 		 * it will wake the next thread that waits for the
   3376 		 * lock, or else it will wake us.
   3377 		 */
   3378 		cv_signal(&dvl->dvl_cv);
   3379 		pmflock_debug(dev, __func__, __LINE__);
   3380 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3381 		pmflock_debug(dev, __func__, __LINE__);
   3382 	}
   3383 	mutex_exit(&dvl->dvl_mtx);
   3384 }
   3385 
   3386 void
   3387 device_pmf_driver_child_register(device_t dev)
   3388 {
   3389 	device_t parent = device_parent(dev);
   3390 
   3391 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   3392 		return;
   3393 	(*parent->dv_driver_child_register)(dev);
   3394 }
   3395 
   3396 void
   3397 device_pmf_driver_set_child_register(device_t dev,
   3398     void (*child_register)(device_t))
   3399 {
   3400 	dev->dv_driver_child_register = child_register;
   3401 }
   3402 
   3403 static void
   3404 pmflock_debug(device_t dev, const char *func, int line)
   3405 {
   3406 #ifdef PMFLOCK_DEBUG
   3407 	device_lock_t dvl = device_getlock(dev);
   3408 	const char *curlwp_name;
   3409 
   3410 	if (curlwp->l_name != NULL)
   3411 		curlwp_name = curlwp->l_name;
   3412 	else
   3413 		curlwp_name = curlwp->l_proc->p_comm;
   3414 
   3415 	aprint_debug_dev(dev,
   3416 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   3417 	    curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   3418 #endif	/* PMFLOCK_DEBUG */
   3419 }
   3420 
   3421 static bool
   3422 device_pmf_lock1(device_t dev)
   3423 {
   3424 	device_lock_t dvl = device_getlock(dev);
   3425 
   3426 	while (device_pmf_is_registered(dev) &&
   3427 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   3428 		dvl->dvl_nwait++;
   3429 		pmflock_debug(dev, __func__, __LINE__);
   3430 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   3431 		pmflock_debug(dev, __func__, __LINE__);
   3432 		dvl->dvl_nwait--;
   3433 	}
   3434 	if (!device_pmf_is_registered(dev)) {
   3435 		pmflock_debug(dev, __func__, __LINE__);
   3436 		/* We could not acquire the lock, but some other thread may
   3437 		 * wait for it, also.  Wake that thread.
   3438 		 */
   3439 		cv_signal(&dvl->dvl_cv);
   3440 		return false;
   3441 	}
   3442 	dvl->dvl_nlock++;
   3443 	dvl->dvl_holder = curlwp;
   3444 	pmflock_debug(dev, __func__, __LINE__);
   3445 	return true;
   3446 }
   3447 
   3448 bool
   3449 device_pmf_lock(device_t dev)
   3450 {
   3451 	bool rc;
   3452 	device_lock_t dvl = device_getlock(dev);
   3453 
   3454 	mutex_enter(&dvl->dvl_mtx);
   3455 	rc = device_pmf_lock1(dev);
   3456 	mutex_exit(&dvl->dvl_mtx);
   3457 
   3458 	return rc;
   3459 }
   3460 
   3461 void
   3462 device_pmf_unlock(device_t dev)
   3463 {
   3464 	device_lock_t dvl = device_getlock(dev);
   3465 
   3466 	KASSERT(dvl->dvl_nlock > 0);
   3467 	mutex_enter(&dvl->dvl_mtx);
   3468 	if (--dvl->dvl_nlock == 0)
   3469 		dvl->dvl_holder = NULL;
   3470 	cv_signal(&dvl->dvl_cv);
   3471 	pmflock_debug(dev, __func__, __LINE__);
   3472 	mutex_exit(&dvl->dvl_mtx);
   3473 }
   3474 
   3475 device_lock_t
   3476 device_getlock(device_t dev)
   3477 {
   3478 	return &dev->dv_lock;
   3479 }
   3480 
   3481 void *
   3482 device_pmf_bus_private(device_t dev)
   3483 {
   3484 	return dev->dv_bus_private;
   3485 }
   3486 
   3487 bool
   3488 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   3489 {
   3490 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   3491 		return true;
   3492 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   3493 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   3494 		return false;
   3495 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3496 	    dev->dv_bus_suspend != NULL &&
   3497 	    !(*dev->dv_bus_suspend)(dev, qual))
   3498 		return false;
   3499 
   3500 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   3501 	return true;
   3502 }
   3503 
   3504 bool
   3505 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   3506 {
   3507 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   3508 		return true;
   3509 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   3510 	    dev->dv_bus_resume != NULL &&
   3511 	    !(*dev->dv_bus_resume)(dev, qual))
   3512 		return false;
   3513 
   3514 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   3515 	return true;
   3516 }
   3517 
   3518 bool
   3519 device_pmf_bus_shutdown(device_t dev, int how)
   3520 {
   3521 
   3522 	if (*dev->dv_bus_shutdown != NULL &&
   3523 	    !(*dev->dv_bus_shutdown)(dev, how))
   3524 		return false;
   3525 	return true;
   3526 }
   3527 
   3528 void
   3529 device_pmf_bus_register(device_t dev, void *priv,
   3530     bool (*suspend)(device_t, const pmf_qual_t *),
   3531     bool (*resume)(device_t, const pmf_qual_t *),
   3532     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   3533 {
   3534 	dev->dv_bus_private = priv;
   3535 	dev->dv_bus_resume = resume;
   3536 	dev->dv_bus_suspend = suspend;
   3537 	dev->dv_bus_shutdown = shutdown;
   3538 	dev->dv_bus_deregister = deregister;
   3539 }
   3540 
   3541 void
   3542 device_pmf_bus_deregister(device_t dev)
   3543 {
   3544 	if (dev->dv_bus_deregister == NULL)
   3545 		return;
   3546 	(*dev->dv_bus_deregister)(dev);
   3547 	dev->dv_bus_private = NULL;
   3548 	dev->dv_bus_suspend = NULL;
   3549 	dev->dv_bus_resume = NULL;
   3550 	dev->dv_bus_deregister = NULL;
   3551 }
   3552 
   3553 void *
   3554 device_pmf_class_private(device_t dev)
   3555 {
   3556 	return dev->dv_class_private;
   3557 }
   3558 
   3559 bool
   3560 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   3561 {
   3562 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   3563 		return true;
   3564 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3565 	    dev->dv_class_suspend != NULL &&
   3566 	    !(*dev->dv_class_suspend)(dev, qual))
   3567 		return false;
   3568 
   3569 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   3570 	return true;
   3571 }
   3572 
   3573 bool
   3574 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   3575 {
   3576 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   3577 		return true;
   3578 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   3579 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   3580 		return false;
   3581 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   3582 	    dev->dv_class_resume != NULL &&
   3583 	    !(*dev->dv_class_resume)(dev, qual))
   3584 		return false;
   3585 
   3586 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   3587 	return true;
   3588 }
   3589 
   3590 void
   3591 device_pmf_class_register(device_t dev, void *priv,
   3592     bool (*suspend)(device_t, const pmf_qual_t *),
   3593     bool (*resume)(device_t, const pmf_qual_t *),
   3594     void (*deregister)(device_t))
   3595 {
   3596 	dev->dv_class_private = priv;
   3597 	dev->dv_class_suspend = suspend;
   3598 	dev->dv_class_resume = resume;
   3599 	dev->dv_class_deregister = deregister;
   3600 }
   3601 
   3602 void
   3603 device_pmf_class_deregister(device_t dev)
   3604 {
   3605 	if (dev->dv_class_deregister == NULL)
   3606 		return;
   3607 	(*dev->dv_class_deregister)(dev);
   3608 	dev->dv_class_private = NULL;
   3609 	dev->dv_class_suspend = NULL;
   3610 	dev->dv_class_resume = NULL;
   3611 	dev->dv_class_deregister = NULL;
   3612 }
   3613 
   3614 bool
   3615 device_active(device_t dev, devactive_t type)
   3616 {
   3617 	size_t i;
   3618 
   3619 	if (dev->dv_activity_count == 0)
   3620 		return false;
   3621 
   3622 	for (i = 0; i < dev->dv_activity_count; ++i) {
   3623 		if (dev->dv_activity_handlers[i] == NULL)
   3624 			break;
   3625 		(*dev->dv_activity_handlers[i])(dev, type);
   3626 	}
   3627 
   3628 	return true;
   3629 }
   3630 
   3631 bool
   3632 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   3633 {
   3634 	void (**new_handlers)(device_t, devactive_t);
   3635 	void (**old_handlers)(device_t, devactive_t);
   3636 	size_t i, old_size, new_size;
   3637 	int s;
   3638 
   3639 	old_handlers = dev->dv_activity_handlers;
   3640 	old_size = dev->dv_activity_count;
   3641 
   3642 	KASSERT(old_size == 0 || old_handlers != NULL);
   3643 
   3644 	for (i = 0; i < old_size; ++i) {
   3645 		KASSERT(old_handlers[i] != handler);
   3646 		if (old_handlers[i] == NULL) {
   3647 			old_handlers[i] = handler;
   3648 			return true;
   3649 		}
   3650 	}
   3651 
   3652 	new_size = old_size + 4;
   3653 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
   3654 
   3655 	for (i = 0; i < old_size; ++i)
   3656 		new_handlers[i] = old_handlers[i];
   3657 	new_handlers[old_size] = handler;
   3658 	for (i = old_size+1; i < new_size; ++i)
   3659 		new_handlers[i] = NULL;
   3660 
   3661 	s = splhigh();
   3662 	dev->dv_activity_count = new_size;
   3663 	dev->dv_activity_handlers = new_handlers;
   3664 	splx(s);
   3665 
   3666 	if (old_size > 0)
   3667 		kmem_free(old_handlers, sizeof(void *) * old_size);
   3668 
   3669 	return true;
   3670 }
   3671 
   3672 void
   3673 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   3674 {
   3675 	void (**old_handlers)(device_t, devactive_t);
   3676 	size_t i, old_size;
   3677 	int s;
   3678 
   3679 	old_handlers = dev->dv_activity_handlers;
   3680 	old_size = dev->dv_activity_count;
   3681 
   3682 	for (i = 0; i < old_size; ++i) {
   3683 		if (old_handlers[i] == handler)
   3684 			break;
   3685 		if (old_handlers[i] == NULL)
   3686 			return; /* XXX panic? */
   3687 	}
   3688 
   3689 	if (i == old_size)
   3690 		return; /* XXX panic? */
   3691 
   3692 	for (; i < old_size - 1; ++i) {
   3693 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   3694 			continue;
   3695 
   3696 		if (i == 0) {
   3697 			s = splhigh();
   3698 			dev->dv_activity_count = 0;
   3699 			dev->dv_activity_handlers = NULL;
   3700 			splx(s);
   3701 			kmem_free(old_handlers, sizeof(void *) * old_size);
   3702 		}
   3703 		return;
   3704 	}
   3705 	old_handlers[i] = NULL;
   3706 }
   3707 
   3708 /* Return true iff the device_t `dev' exists at generation `gen'. */
   3709 static bool
   3710 device_exists_at(device_t dv, devgen_t gen)
   3711 {
   3712 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   3713 	    dv->dv_add_gen <= gen;
   3714 }
   3715 
   3716 static bool
   3717 deviter_visits(const deviter_t *di, device_t dv)
   3718 {
   3719 	return device_exists_at(dv, di->di_gen);
   3720 }
   3721 
   3722 /*
   3723  * Device Iteration
   3724  *
   3725  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   3726  *     each device_t's in the device tree.
   3727  *
   3728  * deviter_init(di, flags): initialize the device iterator `di'
   3729  *     to "walk" the device tree.  deviter_next(di) will return
   3730  *     the first device_t in the device tree, or NULL if there are
   3731  *     no devices.
   3732  *
   3733  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   3734  *     caller intends to modify the device tree by calling
   3735  *     config_detach(9) on devices in the order that the iterator
   3736  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   3737  *     nearest the "root" of the device tree to be returned, first;
   3738  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   3739  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   3740  *     indicating both that deviter_init() should not respect any
   3741  *     locks on the device tree, and that deviter_next(di) may run
   3742  *     in more than one LWP before the walk has finished.
   3743  *
   3744  *     Only one DEVITER_F_RW iterator may be in the device tree at
   3745  *     once.
   3746  *
   3747  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   3748  *
   3749  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   3750  *     DEVITER_F_LEAVES_FIRST are used in combination.
   3751  *
   3752  * deviter_first(di, flags): initialize the device iterator `di'
   3753  *     and return the first device_t in the device tree, or NULL
   3754  *     if there are no devices.  The statement
   3755  *
   3756  *         dv = deviter_first(di);
   3757  *
   3758  *     is shorthand for
   3759  *
   3760  *         deviter_init(di);
   3761  *         dv = deviter_next(di);
   3762  *
   3763  * deviter_next(di): return the next device_t in the device tree,
   3764  *     or NULL if there are no more devices.  deviter_next(di)
   3765  *     is undefined if `di' was not initialized with deviter_init() or
   3766  *     deviter_first().
   3767  *
   3768  * deviter_release(di): stops iteration (subsequent calls to
   3769  *     deviter_next() will return NULL), releases any locks and
   3770  *     resources held by the device iterator.
   3771  *
   3772  * Device iteration does not return device_t's in any particular
   3773  * order.  An iterator will never return the same device_t twice.
   3774  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   3775  * is called repeatedly on the same `di', it will eventually return
   3776  * NULL.  It is ok to attach/detach devices during device iteration.
   3777  */
   3778 void
   3779 deviter_init(deviter_t *di, deviter_flags_t flags)
   3780 {
   3781 	device_t dv;
   3782 
   3783 	memset(di, 0, sizeof(*di));
   3784 
   3785 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   3786 		flags |= DEVITER_F_RW;
   3787 
   3788 	mutex_enter(&alldevs_lock);
   3789 	if ((flags & DEVITER_F_RW) != 0)
   3790 		alldevs_nwrite++;
   3791 	else
   3792 		alldevs_nread++;
   3793 	di->di_gen = alldevs_gen++;
   3794 	di->di_flags = flags;
   3795 
   3796 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3797 	case DEVITER_F_LEAVES_FIRST:
   3798 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3799 			if (!deviter_visits(di, dv))
   3800 				continue;
   3801 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   3802 		}
   3803 		break;
   3804 	case DEVITER_F_ROOT_FIRST:
   3805 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   3806 			if (!deviter_visits(di, dv))
   3807 				continue;
   3808 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   3809 		}
   3810 		break;
   3811 	default:
   3812 		break;
   3813 	}
   3814 
   3815 	deviter_reinit(di);
   3816 	mutex_exit(&alldevs_lock);
   3817 }
   3818 
   3819 static void
   3820 deviter_reinit(deviter_t *di)
   3821 {
   3822 
   3823 	KASSERT(mutex_owned(&alldevs_lock));
   3824 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3825 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   3826 	else
   3827 		di->di_prev = TAILQ_FIRST(&alldevs);
   3828 }
   3829 
   3830 device_t
   3831 deviter_first(deviter_t *di, deviter_flags_t flags)
   3832 {
   3833 
   3834 	deviter_init(di, flags);
   3835 	return deviter_next(di);
   3836 }
   3837 
   3838 static device_t
   3839 deviter_next2(deviter_t *di)
   3840 {
   3841 	device_t dv;
   3842 
   3843 	KASSERT(mutex_owned(&alldevs_lock));
   3844 
   3845 	dv = di->di_prev;
   3846 
   3847 	if (dv == NULL)
   3848 		return NULL;
   3849 
   3850 	if ((di->di_flags & DEVITER_F_RW) != 0)
   3851 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   3852 	else
   3853 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   3854 
   3855 	return dv;
   3856 }
   3857 
   3858 static device_t
   3859 deviter_next1(deviter_t *di)
   3860 {
   3861 	device_t dv;
   3862 
   3863 	KASSERT(mutex_owned(&alldevs_lock));
   3864 
   3865 	do {
   3866 		dv = deviter_next2(di);
   3867 	} while (dv != NULL && !deviter_visits(di, dv));
   3868 
   3869 	return dv;
   3870 }
   3871 
   3872 device_t
   3873 deviter_next(deviter_t *di)
   3874 {
   3875 	device_t dv = NULL;
   3876 
   3877 	mutex_enter(&alldevs_lock);
   3878 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   3879 	case 0:
   3880 		dv = deviter_next1(di);
   3881 		break;
   3882 	case DEVITER_F_LEAVES_FIRST:
   3883 		while (di->di_curdepth >= 0) {
   3884 			if ((dv = deviter_next1(di)) == NULL) {
   3885 				di->di_curdepth--;
   3886 				deviter_reinit(di);
   3887 			} else if (dv->dv_depth == di->di_curdepth)
   3888 				break;
   3889 		}
   3890 		break;
   3891 	case DEVITER_F_ROOT_FIRST:
   3892 		while (di->di_curdepth <= di->di_maxdepth) {
   3893 			if ((dv = deviter_next1(di)) == NULL) {
   3894 				di->di_curdepth++;
   3895 				deviter_reinit(di);
   3896 			} else if (dv->dv_depth == di->di_curdepth)
   3897 				break;
   3898 		}
   3899 		break;
   3900 	default:
   3901 		break;
   3902 	}
   3903 	mutex_exit(&alldevs_lock);
   3904 
   3905 	return dv;
   3906 }
   3907 
   3908 void
   3909 deviter_release(deviter_t *di)
   3910 {
   3911 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3912 
   3913 	mutex_enter(&alldevs_lock);
   3914 	if (rw)
   3915 		--alldevs_nwrite;
   3916 	else
   3917 		--alldevs_nread;
   3918 	/* XXX wake a garbage-collection thread */
   3919 	mutex_exit(&alldevs_lock);
   3920 }
   3921 
   3922 const char *
   3923 cfdata_ifattr(const struct cfdata *cf)
   3924 {
   3925 	return cf->cf_pspec->cfp_iattr;
   3926 }
   3927 
   3928 bool
   3929 ifattr_match(const char *snull, const char *t)
   3930 {
   3931 	return (snull == NULL) || strcmp(snull, t) == 0;
   3932 }
   3933 
   3934 void
   3935 null_childdetached(device_t self, device_t child)
   3936 {
   3937 	/* do nothing */
   3938 }
   3939 
   3940 static void
   3941 sysctl_detach_setup(struct sysctllog **clog)
   3942 {
   3943 
   3944 	sysctl_createv(clog, 0, NULL, NULL,
   3945 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3946 		CTLTYPE_BOOL, "detachall",
   3947 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3948 		NULL, 0, &detachall, 0,
   3949 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3950 }
   3951