Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: sys_sched.c,v 1.50 2023/04/09 09:18:09 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * System calls relating to the scheduler.
     31  *
     32  * Lock order:
     33  *
     34  *	cpu_lock ->
     35  *	    proc_lock ->
     36  *		proc_t::p_lock ->
     37  *		    lwp_t::lwp_lock
     38  *
     39  * TODO:
     40  *  - Handle pthread_setschedprio() as defined by POSIX;
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.50 2023/04/09 09:18:09 riastradh Exp $");
     45 
     46 #include <sys/param.h>
     47 
     48 #include <sys/cpu.h>
     49 #include <sys/kauth.h>
     50 #include <sys/kmem.h>
     51 #include <sys/lwp.h>
     52 #include <sys/mutex.h>
     53 #include <sys/proc.h>
     54 #include <sys/pset.h>
     55 #include <sys/sched.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/sysctl.h>
     58 #include <sys/systm.h>
     59 #include <sys/types.h>
     60 #include <sys/unistd.h>
     61 
     62 static struct sysctllog *sched_sysctl_log;
     63 static kauth_listener_t sched_listener;
     64 
     65 /*
     66  * Convert user priority or the in-kernel priority or convert the current
     67  * priority to the appropriate range according to the policy change.
     68  */
     69 static pri_t
     70 convert_pri(lwp_t *l, int policy, pri_t pri)
     71 {
     72 
     73 	/* Convert user priority to the in-kernel */
     74 	if (pri != PRI_NONE) {
     75 		/* Only for real-time threads */
     76 		KASSERT(pri >= SCHED_PRI_MIN);
     77 		KASSERT(pri <= SCHED_PRI_MAX);
     78 		KASSERT(policy != SCHED_OTHER);
     79 		return PRI_USER_RT + pri;
     80 	}
     81 
     82 	/* Neither policy, nor priority change */
     83 	if (l->l_class == policy)
     84 		return l->l_priority;
     85 
     86 	/* Time-sharing -> real-time */
     87 	if (l->l_class == SCHED_OTHER) {
     88 		KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
     89 		return PRI_USER_RT;
     90 	}
     91 
     92 	/* Real-time -> time-sharing */
     93 	if (policy == SCHED_OTHER) {
     94 		KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
     95 		/*
     96 		 * this is a bit arbitrary because the priority is dynamic
     97 		 * for SCHED_OTHER threads and will likely be changed by
     98 		 * the scheduler soon anyway.
     99 		 */
    100 		return l->l_priority - PRI_USER_RT;
    101 	}
    102 
    103 	/* Real-time -> real-time */
    104 	return l->l_priority;
    105 }
    106 
    107 int
    108 do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
    109     const struct sched_param *params)
    110 {
    111 	struct proc *p;
    112 	struct lwp *t;
    113 	pri_t pri;
    114 	u_int lcnt;
    115 	int error;
    116 
    117 	error = 0;
    118 
    119 	pri = params->sched_priority;
    120 
    121 	/* If no parameters specified, just return (this should not happen) */
    122 	if (pri == PRI_NONE && policy == SCHED_NONE)
    123 		return 0;
    124 
    125 	/* Validate scheduling class */
    126 	if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
    127 		return EINVAL;
    128 
    129 	/* Validate priority */
    130 	if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
    131 		return EINVAL;
    132 
    133 	if (pid != 0) {
    134 		/* Find the process */
    135 		mutex_enter(&proc_lock);
    136 		p = proc_find(pid);
    137 		if (p == NULL) {
    138 			mutex_exit(&proc_lock);
    139 			return ESRCH;
    140 		}
    141 		mutex_enter(p->p_lock);
    142 		mutex_exit(&proc_lock);
    143 		/* Disallow modification of system processes */
    144 		if ((p->p_flag & PK_SYSTEM) != 0) {
    145 			mutex_exit(p->p_lock);
    146 			return EPERM;
    147 		}
    148 	} else {
    149 		/* Use the calling process */
    150 		p = curlwp->l_proc;
    151 		mutex_enter(p->p_lock);
    152 	}
    153 
    154 	/* Find the LWP(s) */
    155 	lcnt = 0;
    156 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    157 		pri_t kpri;
    158 		int lpolicy;
    159 
    160 		if (lid && lid != t->l_lid)
    161 			continue;
    162 
    163 		lcnt++;
    164 		lwp_lock(t);
    165 		lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
    166 
    167 		/* Disallow setting of priority for SCHED_OTHER threads */
    168 		if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
    169 			lwp_unlock(t);
    170 			error = EINVAL;
    171 			break;
    172 		}
    173 
    174 		/* Convert priority, if needed */
    175 		kpri = convert_pri(t, lpolicy, pri);
    176 
    177 		/* Check the permission */
    178 		error = kauth_authorize_process(kauth_cred_get(),
    179 		    KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
    180 		    KAUTH_ARG(kpri));
    181 		if (error) {
    182 			lwp_unlock(t);
    183 			break;
    184 		}
    185 
    186 		/* Set the scheduling class, change the priority */
    187 		t->l_class = lpolicy;
    188 		lwp_changepri(t, kpri);
    189 		lwp_unlock(t);
    190 	}
    191 	mutex_exit(p->p_lock);
    192 	return (lcnt == 0) ? ESRCH : error;
    193 }
    194 
    195 /*
    196  * Set scheduling parameters.
    197  */
    198 int
    199 sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
    200     register_t *retval)
    201 {
    202 	/* {
    203 		syscallarg(pid_t) pid;
    204 		syscallarg(lwpid_t) lid;
    205 		syscallarg(int) policy;
    206 		syscallarg(const struct sched_param *) params;
    207 	} */
    208 	struct sched_param params;
    209 	int error;
    210 
    211 	/* Get the parameters from the user-space */
    212 	error = copyin(SCARG(uap, params), &params, sizeof(params));
    213 	if (error)
    214 		goto out;
    215 
    216 	error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
    217 	    SCARG(uap, policy), &params);
    218 out:
    219 	return error;
    220 }
    221 
    222 /*
    223  * do_sched_getparam:
    224  *
    225  * if lid=0, returns the parameter of the first LWP in the process.
    226  */
    227 int
    228 do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
    229     struct sched_param *params)
    230 {
    231 	struct sched_param lparams;
    232 	struct lwp *t;
    233 	int error, lpolicy;
    234 
    235 	if (pid < 0 || lid < 0)
    236 		return EINVAL;
    237 
    238 	t = lwp_find2(pid, lid); /* acquire p_lock */
    239 	if (t == NULL)
    240 		return ESRCH;
    241 
    242 	/* Check the permission */
    243 	error = kauth_authorize_process(kauth_cred_get(),
    244 	    KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
    245 	if (error != 0) {
    246 		mutex_exit(t->l_proc->p_lock);
    247 		return error;
    248 	}
    249 
    250 	lwp_lock(t);
    251 	lparams.sched_priority = t->l_priority;
    252 	lpolicy = t->l_class;
    253 	lwp_unlock(t);
    254 	mutex_exit(t->l_proc->p_lock);
    255 
    256 	/*
    257 	 * convert to the user-visible priority value.
    258 	 * it's an inversion of convert_pri().
    259 	 *
    260 	 * the SCHED_OTHER case is a bit arbitrary given that
    261 	 *	- we don't allow setting the priority.
    262 	 *	- the priority is dynamic.
    263 	 */
    264 	switch (lpolicy) {
    265 	case SCHED_OTHER:
    266 		lparams.sched_priority -= PRI_USER;
    267 		break;
    268 	case SCHED_RR:
    269 	case SCHED_FIFO:
    270 		lparams.sched_priority -= PRI_USER_RT;
    271 		break;
    272 	}
    273 
    274 	if (policy != NULL)
    275 		*policy = lpolicy;
    276 
    277 	if (params != NULL)
    278 		*params = lparams;
    279 
    280 	return error;
    281 }
    282 
    283 /*
    284  * Get scheduling parameters.
    285  */
    286 int
    287 sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
    288     register_t *retval)
    289 {
    290 	/* {
    291 		syscallarg(pid_t) pid;
    292 		syscallarg(lwpid_t) lid;
    293 		syscallarg(int *) policy;
    294 		syscallarg(struct sched_param *) params;
    295 	} */
    296 	struct sched_param params;
    297 	int error, policy;
    298 
    299 	error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
    300 	    &params);
    301 	if (error)
    302 		goto out;
    303 
    304 	error = copyout(&params, SCARG(uap, params), sizeof(params));
    305 	if (error == 0 && SCARG(uap, policy) != NULL)
    306 		error = copyout(&policy, SCARG(uap, policy), sizeof(int));
    307 out:
    308 	return error;
    309 }
    310 
    311 /*
    312  * Allocate the CPU set, and get it from userspace.
    313  */
    314 static int
    315 genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
    316 {
    317 	kcpuset_t *kset;
    318 	int error;
    319 
    320 	kcpuset_create(&kset, true);
    321 	error = kcpuset_copyin(sset, kset, size);
    322 	if (error) {
    323 		kcpuset_unuse(kset, NULL);
    324 	} else {
    325 		*dset = kset;
    326 	}
    327 	return error;
    328 }
    329 
    330 /*
    331  * Set affinity.
    332  */
    333 int
    334 sys__sched_setaffinity(struct lwp *l,
    335     const struct sys__sched_setaffinity_args *uap, register_t *retval)
    336 {
    337 	/* {
    338 		syscallarg(pid_t) pid;
    339 		syscallarg(lwpid_t) lid;
    340 		syscallarg(size_t) size;
    341 		syscallarg(const cpuset_t *) cpuset;
    342 	} */
    343 	kcpuset_t *kcset, *kcpulst = NULL;
    344 	struct cpu_info *ici, *ci;
    345 	struct proc *p;
    346 	struct lwp *t;
    347 	CPU_INFO_ITERATOR cii;
    348 	bool alloff;
    349 	lwpid_t lid;
    350 	u_int lcnt;
    351 	int error;
    352 
    353 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    354 	if (error)
    355 		return error;
    356 
    357 	/*
    358 	 * Traverse _each_ CPU to:
    359 	 *  - Check that CPUs in the mask have no assigned processor set.
    360 	 *  - Check that at least one CPU from the mask is online.
    361 	 *  - Find the first target CPU to migrate.
    362 	 *
    363 	 * To avoid the race with CPU online/offline calls and processor sets,
    364 	 * cpu_lock will be locked for the entire operation.
    365 	 */
    366 	ci = NULL;
    367 	alloff = false;
    368 	mutex_enter(&cpu_lock);
    369 	for (CPU_INFO_FOREACH(cii, ici)) {
    370 		struct schedstate_percpu *ispc;
    371 
    372 		if (!kcpuset_isset(kcset, cpu_index(ici))) {
    373 			continue;
    374 		}
    375 
    376 		ispc = &ici->ci_schedstate;
    377 		/* Check that CPU is not in the processor-set */
    378 		if (ispc->spc_psid != PS_NONE) {
    379 			error = EPERM;
    380 			goto out;
    381 		}
    382 		/* Skip offline CPUs */
    383 		if (ispc->spc_flags & SPCF_OFFLINE) {
    384 			alloff = true;
    385 			continue;
    386 		}
    387 		/* Target CPU to migrate */
    388 		if (ci == NULL) {
    389 			ci = ici;
    390 		}
    391 	}
    392 	if (ci == NULL) {
    393 		if (alloff) {
    394 			/* All CPUs in the set are offline */
    395 			error = EPERM;
    396 			goto out;
    397 		}
    398 		/* Empty set */
    399 		kcpuset_unuse(kcset, &kcpulst);
    400 		kcset = NULL;
    401 	}
    402 
    403 	if (SCARG(uap, pid) != 0) {
    404 		/* Find the process */
    405 		mutex_enter(&proc_lock);
    406 		p = proc_find(SCARG(uap, pid));
    407 		if (p == NULL) {
    408 			mutex_exit(&proc_lock);
    409 			error = ESRCH;
    410 			goto out;
    411 		}
    412 		mutex_enter(p->p_lock);
    413 		mutex_exit(&proc_lock);
    414 		/* Disallow modification of system processes. */
    415 		if ((p->p_flag & PK_SYSTEM) != 0) {
    416 			mutex_exit(p->p_lock);
    417 			error = EPERM;
    418 			goto out;
    419 		}
    420 	} else {
    421 		/* Use the calling process */
    422 		p = l->l_proc;
    423 		mutex_enter(p->p_lock);
    424 	}
    425 
    426 	/*
    427 	 * Check the permission.
    428 	 */
    429 	error = kauth_authorize_process(l->l_cred,
    430 	    KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
    431 	if (error != 0) {
    432 		mutex_exit(p->p_lock);
    433 		goto out;
    434 	}
    435 
    436 	/* Iterate through LWP(s). */
    437 	lcnt = 0;
    438 	lid = SCARG(uap, lid);
    439 	LIST_FOREACH(t, &p->p_lwps, l_sibling) {
    440 		if (lid && lid != t->l_lid) {
    441 			continue;
    442 		}
    443 		lwp_lock(t);
    444 		/* No affinity for zombie LWPs. */
    445 		if (t->l_stat == LSZOMB) {
    446 			lwp_unlock(t);
    447 			continue;
    448 		}
    449 		/* First, release existing affinity, if any. */
    450 		if (t->l_affinity) {
    451 			kcpuset_unuse(t->l_affinity, &kcpulst);
    452 		}
    453 		if (kcset) {
    454 			/*
    455 			 * Hold a reference on affinity mask, assign mask to
    456 			 * LWP and migrate it to another CPU (unlocks LWP).
    457 			 */
    458 			kcpuset_use(kcset);
    459 			t->l_affinity = kcset;
    460 			lwp_migrate(t, ci);
    461 		} else {
    462 			/* Old affinity mask is released, just clear. */
    463 			t->l_affinity = NULL;
    464 			lwp_unlock(t);
    465 		}
    466 		lcnt++;
    467 	}
    468 	mutex_exit(p->p_lock);
    469 	if (lcnt == 0) {
    470 		error = ESRCH;
    471 	}
    472 out:
    473 	mutex_exit(&cpu_lock);
    474 
    475 	/*
    476 	 * Drop the initial reference (LWPs, if any, have the ownership now),
    477 	 * and destroy whatever is in the G/C list, if filled.
    478 	 */
    479 	if (kcset) {
    480 		kcpuset_unuse(kcset, &kcpulst);
    481 	}
    482 	if (kcpulst) {
    483 		kcpuset_destroy(kcpulst);
    484 	}
    485 	return error;
    486 }
    487 
    488 /*
    489  * Get affinity.
    490  */
    491 int
    492 sys__sched_getaffinity(struct lwp *l,
    493     const struct sys__sched_getaffinity_args *uap, register_t *retval)
    494 {
    495 	/* {
    496 		syscallarg(pid_t) pid;
    497 		syscallarg(lwpid_t) lid;
    498 		syscallarg(size_t) size;
    499 		syscallarg(cpuset_t *) cpuset;
    500 	} */
    501 	struct lwp *t;
    502 	kcpuset_t *kcset;
    503 	int error;
    504 
    505 	if (SCARG(uap, pid) < 0 || SCARG(uap, lid) < 0)
    506 		return EINVAL;
    507 
    508 	error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
    509 	if (error)
    510 		return error;
    511 
    512 	/* Locks the LWP */
    513 	t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
    514 	if (t == NULL) {
    515 		error = ESRCH;
    516 		goto out;
    517 	}
    518 	/* Check the permission */
    519 	if (kauth_authorize_process(l->l_cred,
    520 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
    521 		mutex_exit(t->l_proc->p_lock);
    522 		error = EPERM;
    523 		goto out;
    524 	}
    525 	lwp_lock(t);
    526 	if (t->l_affinity) {
    527 		kcpuset_copy(kcset, t->l_affinity);
    528 	} else {
    529 		kcpuset_zero(kcset);
    530 	}
    531 	lwp_unlock(t);
    532 	mutex_exit(t->l_proc->p_lock);
    533 
    534 	error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
    535 out:
    536 	kcpuset_unuse(kcset, NULL);
    537 	return error;
    538 }
    539 
    540 /*
    541  * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
    542  * analogue of priority inheritance: temp raise the priority
    543  * of the caller when accessing a protected resource.
    544  */
    545 int
    546 sys__sched_protect(struct lwp *l,
    547     const struct sys__sched_protect_args *uap, register_t *retval)
    548 {
    549         /* {
    550                 syscallarg(int) priority;
    551 		syscallarg(int *) opriority;
    552         } */
    553 	int error;
    554 	pri_t pri;
    555 
    556 	KASSERT(l->l_inheritedprio == -1);
    557 	KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
    558 
    559 	pri = SCARG(uap, priority);
    560 	error = 0;
    561 	lwp_lock(l);
    562 	if (pri == -1) {
    563 		/* back out priority changes */
    564 		switch(l->l_protectdepth) {
    565 		case 0:
    566 			error = EINVAL;
    567 			break;
    568 		case 1:
    569 			l->l_protectdepth = 0;
    570 			l->l_protectprio = -1;
    571 			l->l_auxprio = -1;
    572 			break;
    573 		default:
    574 			l->l_protectdepth--;
    575 			break;
    576 		}
    577 	} else if (pri < 0) {
    578 		/* Just retrieve the current value, for debugging */
    579 		if (l->l_protectprio == -1)
    580 			error = ENOENT;
    581 		else
    582 			*retval = l->l_protectprio - PRI_USER_RT;
    583 	} else if (__predict_false(pri < SCHED_PRI_MIN ||
    584 	    pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
    585 		/* must fail if existing priority is higher */
    586 		error = EPERM;
    587 	} else {
    588 		/* play along but make no changes if not a realtime LWP. */
    589 		l->l_protectdepth++;
    590 		pri += PRI_USER_RT;
    591 		if (__predict_true(l->l_class != SCHED_OTHER &&
    592 		    pri > l->l_protectprio)) {
    593 			l->l_protectprio = pri;
    594 			l->l_auxprio = pri;
    595 		}
    596 	}
    597 	lwp_unlock(l);
    598 
    599 	return error;
    600 }
    601 
    602 /*
    603  * Yield.
    604  */
    605 int
    606 sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
    607 {
    608 
    609 	yield();
    610 	return 0;
    611 }
    612 
    613 /*
    614  * Sysctl nodes and initialization.
    615  */
    616 static void
    617 sysctl_sched_setup(struct sysctllog **clog)
    618 {
    619 	const struct sysctlnode *node = NULL;
    620 
    621 	sysctl_createv(clog, 0, NULL, NULL,
    622 		CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
    623 		CTLTYPE_INT, "posix_sched",
    624 		SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
    625 			     "Process Scheduling option to which the "
    626 			     "system attempts to conform"),
    627 		NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
    628 		CTL_KERN, CTL_CREATE, CTL_EOL);
    629 	sysctl_createv(clog, 0, NULL, &node,
    630 		CTLFLAG_PERMANENT,
    631 		CTLTYPE_NODE, "sched",
    632 		SYSCTL_DESCR("Scheduler options"),
    633 		NULL, 0, NULL, 0,
    634 		CTL_KERN, CTL_CREATE, CTL_EOL);
    635 
    636 	if (node == NULL)
    637 		return;
    638 
    639 	sysctl_createv(clog, 0, &node, NULL,
    640 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    641 		CTLTYPE_INT, "pri_min",
    642 		SYSCTL_DESCR("Minimal POSIX real-time priority"),
    643 		NULL, SCHED_PRI_MIN, NULL, 0,
    644 		CTL_CREATE, CTL_EOL);
    645 	sysctl_createv(clog, 0, &node, NULL,
    646 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
    647 		CTLTYPE_INT, "pri_max",
    648 		SYSCTL_DESCR("Maximal POSIX real-time priority"),
    649 		NULL, SCHED_PRI_MAX, NULL, 0,
    650 		CTL_CREATE, CTL_EOL);
    651 }
    652 
    653 static int
    654 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    655     void *arg0, void *arg1, void *arg2, void *arg3)
    656 {
    657 	struct proc *p;
    658 	int result;
    659 
    660 	result = KAUTH_RESULT_DEFER;
    661 	p = arg0;
    662 
    663 	switch (action) {
    664 	case KAUTH_PROCESS_SCHEDULER_GETPARAM:
    665 		if (kauth_cred_uidmatch(cred, p->p_cred))
    666 			result = KAUTH_RESULT_ALLOW;
    667 		break;
    668 
    669 	case KAUTH_PROCESS_SCHEDULER_SETPARAM:
    670 		if (kauth_cred_uidmatch(cred, p->p_cred)) {
    671 			struct lwp *l;
    672 			int policy;
    673 			pri_t priority;
    674 
    675 			l = arg1;
    676 			policy = (int)(unsigned long)arg2;
    677 			priority = (pri_t)(unsigned long)arg3;
    678 
    679 			if ((policy == l->l_class ||
    680 			    (policy != SCHED_FIFO && policy != SCHED_RR)) &&
    681 			    priority <= l->l_priority)
    682 				result = KAUTH_RESULT_ALLOW;
    683 		}
    684 
    685 		break;
    686 
    687 	case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
    688 		result = KAUTH_RESULT_ALLOW;
    689 		break;
    690 
    691 	case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
    692 		/* Privileged; we let the secmodel handle this. */
    693 		break;
    694 
    695 	default:
    696 		break;
    697 	}
    698 
    699 	return result;
    700 }
    701 
    702 void
    703 sched_init(void)
    704 {
    705 
    706 	sysctl_sched_setup(&sched_sysctl_log);
    707 
    708 	sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    709 	    sched_listener_cb, NULL);
    710 }
    711