1 /* $NetBSD: drm_dp_helper.c,v 1.17 2023/08/08 06:58:20 mrg Exp $ */ 2 3 /* 4 * Copyright 2009 Keith Packard 5 * 6 * Permission to use, copy, modify, distribute, and sell this software and its 7 * documentation for any purpose is hereby granted without fee, provided that 8 * the above copyright notice appear in all copies and that both that copyright 9 * notice and this permission notice appear in supporting documentation, and 10 * that the name of the copyright holders not be used in advertising or 11 * publicity pertaining to distribution of the software without specific, 12 * written prior permission. The copyright holders make no representations 13 * about the suitability of this software for any purpose. It is provided "as 14 * is" without express or implied warranty. 15 * 16 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 17 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 18 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 19 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 20 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 21 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 22 * OF THIS SOFTWARE. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: drm_dp_helper.c,v 1.17 2023/08/08 06:58:20 mrg Exp $"); 27 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/i2c.h> 31 #include <linux/init.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/sched.h> 35 #include <linux/seq_file.h> 36 37 #include <drm/drm_dp_helper.h> 38 #include <drm/drm_print.h> 39 #include <drm/drm_vblank.h> 40 #include <drm/drm_dp_mst_helper.h> 41 42 #include "drm_crtc_helper_internal.h" 43 44 #include <linux/nbsd-namespace.h> 45 46 /** 47 * DOC: dp helpers 48 * 49 * These functions contain some common logic and helpers at various abstraction 50 * levels to deal with Display Port sink devices and related things like DP aux 51 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD 52 * blocks, ... 53 */ 54 55 /* Helpers for DP link training */ 56 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r) 57 { 58 return link_status[r - DP_LANE0_1_STATUS]; 59 } 60 61 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE], 62 int lane) 63 { 64 int i = DP_LANE0_1_STATUS + (lane >> 1); 65 int s = (lane & 1) * 4; 66 u8 l = dp_link_status(link_status, i); 67 return (l >> s) & 0xf; 68 } 69 70 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 71 int lane_count) 72 { 73 u8 lane_align; 74 u8 lane_status; 75 int lane; 76 77 lane_align = dp_link_status(link_status, 78 DP_LANE_ALIGN_STATUS_UPDATED); 79 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 80 return false; 81 for (lane = 0; lane < lane_count; lane++) { 82 lane_status = dp_get_lane_status(link_status, lane); 83 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) 84 return false; 85 } 86 return true; 87 } 88 EXPORT_SYMBOL(drm_dp_channel_eq_ok); 89 90 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 91 int lane_count) 92 { 93 int lane; 94 u8 lane_status; 95 96 for (lane = 0; lane < lane_count; lane++) { 97 lane_status = dp_get_lane_status(link_status, lane); 98 if ((lane_status & DP_LANE_CR_DONE) == 0) 99 return false; 100 } 101 return true; 102 } 103 EXPORT_SYMBOL(drm_dp_clock_recovery_ok); 104 105 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE], 106 int lane) 107 { 108 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 109 int s = ((lane & 1) ? 110 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 111 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 112 u8 l = dp_link_status(link_status, i); 113 114 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 115 } 116 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage); 117 118 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE], 119 int lane) 120 { 121 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 122 int s = ((lane & 1) ? 123 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 124 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 125 u8 l = dp_link_status(link_status, i); 126 127 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 128 } 129 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis); 130 131 #ifndef __NetBSD__ 132 /* 133 * XXXGCC12 134 * this unused function is bad. DP_LINK_STATUS_SIZE is 6, and 135 * DP_ADJUST_REQUEST_POST_CURSOR2 triggers an offset of 10 into link_status[]. 136 * fortunately, it is not used. 137 */ 138 u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE], 139 unsigned int lane) 140 { 141 unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2; 142 u8 value = dp_link_status(link_status, offset); 143 144 return (value >> (lane << 1)) & 0x3; 145 } 146 EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor); 147 #endif 148 149 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 150 { 151 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 152 DP_TRAINING_AUX_RD_MASK; 153 154 if (rd_interval > 4) 155 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n", 156 rd_interval); 157 158 if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 159 rd_interval = 100; 160 else 161 rd_interval *= 4 * USEC_PER_MSEC; 162 163 usleep_range(rd_interval, rd_interval * 2); 164 } 165 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay); 166 167 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 168 { 169 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 170 DP_TRAINING_AUX_RD_MASK; 171 172 if (rd_interval > 4) 173 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n", 174 rd_interval); 175 176 if (rd_interval == 0) 177 rd_interval = 400; 178 else 179 rd_interval *= 4 * USEC_PER_MSEC; 180 181 usleep_range(rd_interval, rd_interval * 2); 182 } 183 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay); 184 185 u8 drm_dp_link_rate_to_bw_code(int link_rate) 186 { 187 /* Spec says link_bw = link_rate / 0.27Gbps */ 188 return link_rate / 27000; 189 } 190 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code); 191 192 int drm_dp_bw_code_to_link_rate(u8 link_bw) 193 { 194 /* Spec says link_rate = link_bw * 0.27Gbps */ 195 return link_bw * 27000; 196 } 197 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate); 198 199 #define AUX_RETRY_INTERVAL 500 /* us */ 200 201 static inline void 202 drm_dp_dump_access(const struct drm_dp_aux *aux, 203 u8 request, uint offset, void *buffer, int ret) 204 { 205 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-"; 206 207 if (ret > 0) 208 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n", 209 aux->name, offset, arrow, ret, min(ret, 20), buffer); 210 else 211 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n", 212 aux->name, offset, arrow, ret); 213 } 214 215 /** 216 * DOC: dp helpers 217 * 218 * The DisplayPort AUX channel is an abstraction to allow generic, driver- 219 * independent access to AUX functionality. Drivers can take advantage of 220 * this by filling in the fields of the drm_dp_aux structure. 221 * 222 * Transactions are described using a hardware-independent drm_dp_aux_msg 223 * structure, which is passed into a driver's .transfer() implementation. 224 * Both native and I2C-over-AUX transactions are supported. 225 */ 226 227 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request, 228 unsigned int offset, void *buffer, size_t size) 229 { 230 struct drm_dp_aux_msg msg; 231 unsigned int retry, native_reply; 232 int err = 0, ret = 0; 233 234 memset(&msg, 0, sizeof(msg)); 235 msg.address = offset; 236 msg.request = request; 237 msg.buffer = buffer; 238 msg.size = size; 239 240 mutex_lock(&aux->hw_mutex); 241 242 /* 243 * The specification doesn't give any recommendation on how often to 244 * retry native transactions. We used to retry 7 times like for 245 * aux i2c transactions but real world devices this wasn't 246 * sufficient, bump to 32 which makes Dell 4k monitors happier. 247 */ 248 for (retry = 0; retry < 32; retry++) { 249 if (ret != 0 && ret != -ETIMEDOUT) { 250 usleep_range(AUX_RETRY_INTERVAL, 251 AUX_RETRY_INTERVAL + 100); 252 } 253 254 ret = aux->transfer(aux, &msg); 255 if (ret >= 0) { 256 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK; 257 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) { 258 if (ret == size) 259 goto unlock; 260 261 ret = -EPROTO; 262 } else 263 ret = -EIO; 264 } 265 266 /* 267 * We want the error we return to be the error we received on 268 * the first transaction, since we may get a different error the 269 * next time we retry 270 */ 271 if (!err) 272 err = ret; 273 } 274 275 DRM_DEBUG_KMS("Too many retries, giving up. First error: %d\n", err); 276 ret = err; 277 278 unlock: 279 mutex_unlock(&aux->hw_mutex); 280 return ret; 281 } 282 283 /** 284 * drm_dp_dpcd_read() - read a series of bytes from the DPCD 285 * @aux: DisplayPort AUX channel (SST or MST) 286 * @offset: address of the (first) register to read 287 * @buffer: buffer to store the register values 288 * @size: number of bytes in @buffer 289 * 290 * Returns the number of bytes transferred on success, or a negative error 291 * code on failure. -EIO is returned if the request was NAKed by the sink or 292 * if the retry count was exceeded. If not all bytes were transferred, this 293 * function returns -EPROTO. Errors from the underlying AUX channel transfer 294 * function, with the exception of -EBUSY (which causes the transaction to 295 * be retried), are propagated to the caller. 296 */ 297 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset, 298 void *buffer, size_t size) 299 { 300 int ret; 301 302 /* 303 * HP ZR24w corrupts the first DPCD access after entering power save 304 * mode. Eg. on a read, the entire buffer will be filled with the same 305 * byte. Do a throw away read to avoid corrupting anything we care 306 * about. Afterwards things will work correctly until the monitor 307 * gets woken up and subsequently re-enters power save mode. 308 * 309 * The user pressing any button on the monitor is enough to wake it 310 * up, so there is no particularly good place to do the workaround. 311 * We just have to do it before any DPCD access and hope that the 312 * monitor doesn't power down exactly after the throw away read. 313 */ 314 if (!aux->is_remote) { 315 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV, 316 buffer, 1); 317 if (ret != 1) 318 goto out; 319 } 320 321 if (aux->is_remote) 322 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size); 323 else 324 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, 325 buffer, size); 326 327 out: 328 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret); 329 return ret; 330 } 331 EXPORT_SYMBOL(drm_dp_dpcd_read); 332 333 /** 334 * drm_dp_dpcd_write() - write a series of bytes to the DPCD 335 * @aux: DisplayPort AUX channel (SST or MST) 336 * @offset: address of the (first) register to write 337 * @buffer: buffer containing the values to write 338 * @size: number of bytes in @buffer 339 * 340 * Returns the number of bytes transferred on success, or a negative error 341 * code on failure. -EIO is returned if the request was NAKed by the sink or 342 * if the retry count was exceeded. If not all bytes were transferred, this 343 * function returns -EPROTO. Errors from the underlying AUX channel transfer 344 * function, with the exception of -EBUSY (which causes the transaction to 345 * be retried), are propagated to the caller. 346 */ 347 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset, 348 void *buffer, size_t size) 349 { 350 int ret; 351 352 if (aux->is_remote) 353 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size); 354 else 355 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, 356 buffer, size); 357 358 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret); 359 return ret; 360 } 361 EXPORT_SYMBOL(drm_dp_dpcd_write); 362 363 /** 364 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207) 365 * @aux: DisplayPort AUX channel 366 * @status: buffer to store the link status in (must be at least 6 bytes) 367 * 368 * Returns the number of bytes transferred on success or a negative error 369 * code on failure. 370 */ 371 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux, 372 u8 status[DP_LINK_STATUS_SIZE]) 373 { 374 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status, 375 DP_LINK_STATUS_SIZE); 376 } 377 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status); 378 379 /** 380 * drm_dp_downstream_max_clock() - extract branch device max 381 * pixel rate for legacy VGA 382 * converter or max TMDS clock 383 * rate for others 384 * @dpcd: DisplayPort configuration data 385 * @port_cap: port capabilities 386 * 387 * Returns max clock in kHz on success or 0 if max clock not defined 388 */ 389 int drm_dp_downstream_max_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 390 const u8 port_cap[4]) 391 { 392 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 393 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 394 DP_DETAILED_CAP_INFO_AVAILABLE; 395 396 if (!detailed_cap_info) 397 return 0; 398 399 switch (type) { 400 case DP_DS_PORT_TYPE_VGA: 401 return port_cap[1] * 8 * 1000; 402 case DP_DS_PORT_TYPE_DVI: 403 case DP_DS_PORT_TYPE_HDMI: 404 case DP_DS_PORT_TYPE_DP_DUALMODE: 405 return port_cap[1] * 2500; 406 default: 407 return 0; 408 } 409 } 410 EXPORT_SYMBOL(drm_dp_downstream_max_clock); 411 412 /** 413 * drm_dp_downstream_max_bpc() - extract branch device max 414 * bits per component 415 * @dpcd: DisplayPort configuration data 416 * @port_cap: port capabilities 417 * 418 * Returns max bpc on success or 0 if max bpc not defined 419 */ 420 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 421 const u8 port_cap[4]) 422 { 423 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 424 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 425 DP_DETAILED_CAP_INFO_AVAILABLE; 426 int bpc; 427 428 if (!detailed_cap_info) 429 return 0; 430 431 switch (type) { 432 case DP_DS_PORT_TYPE_VGA: 433 case DP_DS_PORT_TYPE_DVI: 434 case DP_DS_PORT_TYPE_HDMI: 435 case DP_DS_PORT_TYPE_DP_DUALMODE: 436 bpc = port_cap[2] & DP_DS_MAX_BPC_MASK; 437 438 switch (bpc) { 439 case DP_DS_8BPC: 440 return 8; 441 case DP_DS_10BPC: 442 return 10; 443 case DP_DS_12BPC: 444 return 12; 445 case DP_DS_16BPC: 446 return 16; 447 } 448 /* fall through */ 449 default: 450 return 0; 451 } 452 } 453 EXPORT_SYMBOL(drm_dp_downstream_max_bpc); 454 455 /** 456 * drm_dp_downstream_id() - identify branch device 457 * @aux: DisplayPort AUX channel 458 * @id: DisplayPort branch device id 459 * 460 * Returns branch device id on success or NULL on failure 461 */ 462 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6]) 463 { 464 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6); 465 } 466 EXPORT_SYMBOL(drm_dp_downstream_id); 467 468 /** 469 * drm_dp_downstream_debug() - debug DP branch devices 470 * @m: pointer for debugfs file 471 * @dpcd: DisplayPort configuration data 472 * @port_cap: port capabilities 473 * @aux: DisplayPort AUX channel 474 * 475 */ 476 #ifndef __NetBSD__ 477 void drm_dp_downstream_debug(struct seq_file *m, 478 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 479 const u8 port_cap[4], struct drm_dp_aux *aux) 480 { 481 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 482 DP_DETAILED_CAP_INFO_AVAILABLE; 483 int clk; 484 int bpc; 485 char id[7]; 486 int len; 487 uint8_t rev[2]; 488 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 489 bool branch_device = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 490 DP_DWN_STRM_PORT_PRESENT; 491 492 seq_printf(m, "\tDP branch device present: %s\n", 493 branch_device ? "yes" : "no"); 494 495 if (!branch_device) 496 return; 497 498 switch (type) { 499 case DP_DS_PORT_TYPE_DP: 500 seq_puts(m, "\t\tType: DisplayPort\n"); 501 break; 502 case DP_DS_PORT_TYPE_VGA: 503 seq_puts(m, "\t\tType: VGA\n"); 504 break; 505 case DP_DS_PORT_TYPE_DVI: 506 seq_puts(m, "\t\tType: DVI\n"); 507 break; 508 case DP_DS_PORT_TYPE_HDMI: 509 seq_puts(m, "\t\tType: HDMI\n"); 510 break; 511 case DP_DS_PORT_TYPE_NON_EDID: 512 seq_puts(m, "\t\tType: others without EDID support\n"); 513 break; 514 case DP_DS_PORT_TYPE_DP_DUALMODE: 515 seq_puts(m, "\t\tType: DP++\n"); 516 break; 517 case DP_DS_PORT_TYPE_WIRELESS: 518 seq_puts(m, "\t\tType: Wireless\n"); 519 break; 520 default: 521 seq_puts(m, "\t\tType: N/A\n"); 522 } 523 524 memset(id, 0, sizeof(id)); 525 drm_dp_downstream_id(aux, id); 526 seq_printf(m, "\t\tID: %s\n", id); 527 528 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1); 529 if (len > 0) 530 seq_printf(m, "\t\tHW: %d.%d\n", 531 (rev[0] & 0xf0) >> 4, rev[0] & 0xf); 532 533 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2); 534 if (len > 0) 535 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]); 536 537 if (detailed_cap_info) { 538 clk = drm_dp_downstream_max_clock(dpcd, port_cap); 539 540 if (clk > 0) { 541 if (type == DP_DS_PORT_TYPE_VGA) 542 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk); 543 else 544 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk); 545 } 546 547 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap); 548 549 if (bpc > 0) 550 seq_printf(m, "\t\tMax bpc: %d\n", bpc); 551 } 552 } 553 EXPORT_SYMBOL(drm_dp_downstream_debug); 554 #endif 555 556 /* 557 * I2C-over-AUX implementation 558 */ 559 560 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter) 561 { 562 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 563 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 564 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 565 I2C_FUNC_10BIT_ADDR; 566 } 567 568 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg) 569 { 570 /* 571 * In case of i2c defer or short i2c ack reply to a write, 572 * we need to switch to WRITE_STATUS_UPDATE to drain the 573 * rest of the message 574 */ 575 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) { 576 msg->request &= DP_AUX_I2C_MOT; 577 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE; 578 } 579 } 580 581 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */ 582 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */ 583 #define AUX_STOP_LEN 4 584 #define AUX_CMD_LEN 4 585 #define AUX_ADDRESS_LEN 20 586 #define AUX_REPLY_PAD_LEN 4 587 #define AUX_LENGTH_LEN 8 588 589 /* 590 * Calculate the duration of the AUX request/reply in usec. Gives the 591 * "best" case estimate, ie. successful while as short as possible. 592 */ 593 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg) 594 { 595 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 596 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN; 597 598 if ((msg->request & DP_AUX_I2C_READ) == 0) 599 len += msg->size * 8; 600 601 return len; 602 } 603 604 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg) 605 { 606 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 607 AUX_CMD_LEN + AUX_REPLY_PAD_LEN; 608 609 /* 610 * For read we expect what was asked. For writes there will 611 * be 0 or 1 data bytes. Assume 0 for the "best" case. 612 */ 613 if (msg->request & DP_AUX_I2C_READ) 614 len += msg->size * 8; 615 616 return len; 617 } 618 619 #define I2C_START_LEN 1 620 #define I2C_STOP_LEN 1 621 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */ 622 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */ 623 624 /* 625 * Calculate the length of the i2c transfer in usec, assuming 626 * the i2c bus speed is as specified. Gives the the "worst" 627 * case estimate, ie. successful while as long as possible. 628 * Doesn't account the the "MOT" bit, and instead assumes each 629 * message includes a START, ADDRESS and STOP. Neither does it 630 * account for additional random variables such as clock stretching. 631 */ 632 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg, 633 int i2c_speed_khz) 634 { 635 /* AUX bitrate is 1MHz, i2c bitrate as specified */ 636 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN + 637 msg->size * I2C_DATA_LEN + 638 I2C_STOP_LEN) * 1000, i2c_speed_khz); 639 } 640 641 /* 642 * Deterine how many retries should be attempted to successfully transfer 643 * the specified message, based on the estimated durations of the 644 * i2c and AUX transfers. 645 */ 646 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg, 647 int i2c_speed_khz) 648 { 649 int aux_time_us = drm_dp_aux_req_duration(msg) + 650 drm_dp_aux_reply_duration(msg); 651 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz); 652 653 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL); 654 } 655 656 /* 657 * FIXME currently assumes 10 kHz as some real world devices seem 658 * to require it. We should query/set the speed via DPCD if supported. 659 */ 660 static int dp_aux_i2c_speed_khz __read_mostly = 10; 661 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644); 662 MODULE_PARM_DESC(dp_aux_i2c_speed_khz, 663 "Assumed speed of the i2c bus in kHz, (1-400, default 10)"); 664 665 /* 666 * Transfer a single I2C-over-AUX message and handle various error conditions, 667 * retrying the transaction as appropriate. It is assumed that the 668 * &drm_dp_aux.transfer function does not modify anything in the msg other than the 669 * reply field. 670 * 671 * Returns bytes transferred on success, or a negative error code on failure. 672 */ 673 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 674 { 675 unsigned int retry, defer_i2c; 676 int ret; 677 /* 678 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device 679 * is required to retry at least seven times upon receiving AUX_DEFER 680 * before giving up the AUX transaction. 681 * 682 * We also try to account for the i2c bus speed. 683 */ 684 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)); 685 686 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) { 687 ret = aux->transfer(aux, msg); 688 if (ret < 0) { 689 if (ret == -EBUSY) 690 continue; 691 692 /* 693 * While timeouts can be errors, they're usually normal 694 * behavior (for instance, when a driver tries to 695 * communicate with a non-existant DisplayPort device). 696 * Avoid spamming the kernel log with timeout errors. 697 */ 698 if (ret == -ETIMEDOUT) 699 DRM_DEBUG_KMS_RATELIMITED("transaction timed out\n"); 700 else 701 DRM_DEBUG_KMS("transaction failed: %d\n", ret); 702 703 return ret; 704 } 705 706 707 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) { 708 case DP_AUX_NATIVE_REPLY_ACK: 709 /* 710 * For I2C-over-AUX transactions this isn't enough, we 711 * need to check for the I2C ACK reply. 712 */ 713 break; 714 715 case DP_AUX_NATIVE_REPLY_NACK: 716 DRM_DEBUG_KMS("native nack (result=%d, size=%zu)\n", ret, msg->size); 717 return -EREMOTEIO; 718 719 case DP_AUX_NATIVE_REPLY_DEFER: 720 DRM_DEBUG_KMS("native defer\n"); 721 /* 722 * We could check for I2C bit rate capabilities and if 723 * available adjust this interval. We could also be 724 * more careful with DP-to-legacy adapters where a 725 * long legacy cable may force very low I2C bit rates. 726 * 727 * For now just defer for long enough to hopefully be 728 * safe for all use-cases. 729 */ 730 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 731 continue; 732 733 default: 734 DRM_ERROR("invalid native reply %#04x\n", msg->reply); 735 return -EREMOTEIO; 736 } 737 738 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) { 739 case DP_AUX_I2C_REPLY_ACK: 740 /* 741 * Both native ACK and I2C ACK replies received. We 742 * can assume the transfer was successful. 743 */ 744 if (ret != msg->size) 745 drm_dp_i2c_msg_write_status_update(msg); 746 return ret; 747 748 case DP_AUX_I2C_REPLY_NACK: 749 DRM_DEBUG_KMS("I2C nack (result=%d, size=%zu)\n", 750 ret, msg->size); 751 aux->i2c_nack_count++; 752 return -EREMOTEIO; 753 754 case DP_AUX_I2C_REPLY_DEFER: 755 DRM_DEBUG_KMS("I2C defer\n"); 756 /* DP Compliance Test 4.2.2.5 Requirement: 757 * Must have at least 7 retries for I2C defers on the 758 * transaction to pass this test 759 */ 760 aux->i2c_defer_count++; 761 if (defer_i2c < 7) 762 defer_i2c++; 763 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 764 drm_dp_i2c_msg_write_status_update(msg); 765 766 continue; 767 768 default: 769 DRM_ERROR("invalid I2C reply %#04x\n", msg->reply); 770 return -EREMOTEIO; 771 } 772 } 773 774 DRM_DEBUG_KMS("too many retries, giving up\n"); 775 return -EREMOTEIO; 776 } 777 778 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg, 779 const struct i2c_msg *i2c_msg) 780 { 781 msg->request = (i2c_msg->flags & I2C_M_RD) ? 782 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE; 783 if (!(i2c_msg->flags & I2C_M_STOP)) 784 msg->request |= DP_AUX_I2C_MOT; 785 } 786 787 /* 788 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred. 789 * 790 * Returns an error code on failure, or a recommended transfer size on success. 791 */ 792 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg) 793 { 794 int err, ret = orig_msg->size; 795 struct drm_dp_aux_msg msg = *orig_msg; 796 797 while (msg.size > 0) { 798 err = drm_dp_i2c_do_msg(aux, &msg); 799 if (err <= 0) 800 return err == 0 ? -EPROTO : err; 801 802 if (err < msg.size && err < ret) { 803 DRM_DEBUG_KMS("Partial I2C reply: requested %zu bytes got %d bytes\n", 804 msg.size, err); 805 ret = err; 806 } 807 808 msg.size -= err; 809 msg.buffer += err; 810 } 811 812 return ret; 813 } 814 815 /* 816 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX 817 * packets to be as large as possible. If not, the I2C transactions never 818 * succeed. Hence the default is maximum. 819 */ 820 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES; 821 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644); 822 MODULE_PARM_DESC(dp_aux_i2c_transfer_size, 823 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)"); 824 825 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, 826 int num) 827 { 828 struct drm_dp_aux *aux = adapter->algo_data; 829 unsigned int i, j; 830 unsigned transfer_size; 831 struct drm_dp_aux_msg msg; 832 int err = 0; 833 834 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES); 835 836 memset(&msg, 0, sizeof(msg)); 837 838 for (i = 0; i < num; i++) { 839 msg.address = msgs[i].addr; 840 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 841 /* Send a bare address packet to start the transaction. 842 * Zero sized messages specify an address only (bare 843 * address) transaction. 844 */ 845 msg.buffer = NULL; 846 msg.size = 0; 847 err = drm_dp_i2c_do_msg(aux, &msg); 848 849 /* 850 * Reset msg.request in case in case it got 851 * changed into a WRITE_STATUS_UPDATE. 852 */ 853 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 854 855 if (err < 0) 856 break; 857 /* We want each transaction to be as large as possible, but 858 * we'll go to smaller sizes if the hardware gives us a 859 * short reply. 860 */ 861 transfer_size = dp_aux_i2c_transfer_size; 862 for (j = 0; j < msgs[i].len; j += msg.size) { 863 msg.buffer = msgs[i].buf + j; 864 msg.size = min(transfer_size, msgs[i].len - j); 865 866 err = drm_dp_i2c_drain_msg(aux, &msg); 867 868 /* 869 * Reset msg.request in case in case it got 870 * changed into a WRITE_STATUS_UPDATE. 871 */ 872 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 873 874 if (err < 0) 875 break; 876 transfer_size = err; 877 } 878 if (err < 0) 879 break; 880 } 881 if (err >= 0) 882 err = num; 883 /* Send a bare address packet to close out the transaction. 884 * Zero sized messages specify an address only (bare 885 * address) transaction. 886 */ 887 msg.request &= ~DP_AUX_I2C_MOT; 888 msg.buffer = NULL; 889 msg.size = 0; 890 (void)drm_dp_i2c_do_msg(aux, &msg); 891 892 return err; 893 } 894 895 static const struct i2c_algorithm drm_dp_i2c_algo = { 896 .functionality = drm_dp_i2c_functionality, 897 .master_xfer = drm_dp_i2c_xfer, 898 }; 899 900 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c) 901 { 902 return container_of(i2c, struct drm_dp_aux, ddc); 903 } 904 905 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags) 906 { 907 mutex_lock(&i2c_to_aux(i2c)->hw_mutex); 908 } 909 910 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags) 911 { 912 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex); 913 } 914 915 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags) 916 { 917 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex); 918 } 919 920 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = { 921 .lock_bus = lock_bus, 922 .trylock_bus = trylock_bus, 923 .unlock_bus = unlock_bus, 924 }; 925 926 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc) 927 { 928 u8 buf, count; 929 int ret; 930 931 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 932 if (ret < 0) 933 return ret; 934 935 WARN_ON(!(buf & DP_TEST_SINK_START)); 936 937 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf); 938 if (ret < 0) 939 return ret; 940 941 count = buf & DP_TEST_COUNT_MASK; 942 if (count == aux->crc_count) 943 return -EAGAIN; /* No CRC yet */ 944 945 aux->crc_count = count; 946 947 /* 948 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes 949 * per component (RGB or CrYCb). 950 */ 951 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6); 952 if (ret < 0) 953 return ret; 954 955 return 0; 956 } 957 958 static void drm_dp_aux_crc_work(struct work_struct *work) 959 { 960 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux, 961 crc_work); 962 struct drm_crtc *crtc; 963 u8 crc_bytes[6]; 964 uint32_t crcs[3]; 965 int ret; 966 967 if (WARN_ON(!aux->crtc)) 968 return; 969 970 crtc = aux->crtc; 971 while (crtc->crc.opened) { 972 drm_crtc_wait_one_vblank(crtc); 973 if (!crtc->crc.opened) 974 break; 975 976 ret = drm_dp_aux_get_crc(aux, crc_bytes); 977 if (ret == -EAGAIN) { 978 usleep_range(1000, 2000); 979 ret = drm_dp_aux_get_crc(aux, crc_bytes); 980 } 981 982 if (ret == -EAGAIN) { 983 DRM_DEBUG_KMS("Get CRC failed after retrying: %d\n", 984 ret); 985 continue; 986 } else if (ret) { 987 DRM_DEBUG_KMS("Failed to get a CRC: %d\n", ret); 988 continue; 989 } 990 991 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8; 992 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8; 993 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8; 994 drm_crtc_add_crc_entry(crtc, false, 0, crcs); 995 } 996 } 997 998 /** 999 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel 1000 * @aux: DisplayPort AUX channel 1001 * 1002 * Used for remote aux channel in general. Merely initialize the crc work 1003 * struct. 1004 */ 1005 void drm_dp_remote_aux_init(struct drm_dp_aux *aux) 1006 { 1007 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 1008 } 1009 EXPORT_SYMBOL(drm_dp_remote_aux_init); 1010 1011 /** 1012 * drm_dp_aux_init() - minimally initialise an aux channel 1013 * @aux: DisplayPort AUX channel 1014 * 1015 * If you need to use the drm_dp_aux's i2c adapter prior to registering it 1016 * with the outside world, call drm_dp_aux_init() first. You must still 1017 * call drm_dp_aux_register() once the connector has been registered to 1018 * allow userspace access to the auxiliary DP channel. 1019 */ 1020 void drm_dp_aux_init(struct drm_dp_aux *aux) 1021 { 1022 mutex_init(&aux->hw_mutex); 1023 mutex_init(&aux->cec.lock); 1024 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 1025 1026 aux->ddc.algo = &drm_dp_i2c_algo; 1027 aux->ddc.algo_data = aux; 1028 aux->ddc.retries = 3; 1029 1030 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops; 1031 } 1032 EXPORT_SYMBOL(drm_dp_aux_init); 1033 1034 /** 1035 * drm_dp_aux_fini() - undo what drm_dp_aux_init() does. 1036 * @aux: DisplayPort AUX channel 1037 */ 1038 void drm_dp_aux_fini(struct drm_dp_aux *aux) 1039 { 1040 mutex_destroy(&aux->cec.lock); 1041 mutex_destroy(&aux->hw_mutex); 1042 } 1043 EXPORT_SYMBOL(drm_dp_aux_fini); 1044 1045 /** 1046 * drm_dp_aux_register() - initialise and register aux channel 1047 * @aux: DisplayPort AUX channel 1048 * 1049 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. 1050 * This should only be called when the underlying &struct drm_connector is 1051 * initialiazed already. Therefore the best place to call this is from 1052 * &drm_connector_funcs.late_register. Not that drivers which don't follow this 1053 * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled. 1054 * 1055 * Drivers which need to use the aux channel before that point (e.g. at driver 1056 * load time, before drm_dev_register() has been called) need to call 1057 * drm_dp_aux_init(). 1058 * 1059 * Returns 0 on success or a negative error code on failure. 1060 */ 1061 int drm_dp_aux_register(struct drm_dp_aux *aux) 1062 { 1063 int ret; 1064 1065 if (!aux->ddc.algo) 1066 drm_dp_aux_init(aux); 1067 1068 aux->ddc.class = I2C_CLASS_DDC; 1069 aux->ddc.owner = THIS_MODULE; 1070 aux->ddc.dev.parent = aux->dev; 1071 1072 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), 1073 sizeof(aux->ddc.name)); 1074 1075 ret = drm_dp_aux_register_devnode(aux); 1076 if (ret) 1077 return ret; 1078 1079 ret = i2c_add_adapter(&aux->ddc); 1080 if (ret) { 1081 drm_dp_aux_unregister_devnode(aux); 1082 return ret; 1083 } 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL(drm_dp_aux_register); 1088 1089 /** 1090 * drm_dp_aux_unregister() - unregister an AUX adapter 1091 * @aux: DisplayPort AUX channel 1092 */ 1093 void drm_dp_aux_unregister(struct drm_dp_aux *aux) 1094 { 1095 drm_dp_aux_unregister_devnode(aux); 1096 i2c_del_adapter(&aux->ddc); 1097 drm_dp_aux_fini(aux); 1098 } 1099 EXPORT_SYMBOL(drm_dp_aux_unregister); 1100 1101 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x) 1102 1103 /** 1104 * drm_dp_psr_setup_time() - PSR setup in time usec 1105 * @psr_cap: PSR capabilities from DPCD 1106 * 1107 * Returns: 1108 * PSR setup time for the panel in microseconds, negative 1109 * error code on failure. 1110 */ 1111 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE]) 1112 { 1113 static const u16 psr_setup_time_us[] = { 1114 PSR_SETUP_TIME(330), 1115 PSR_SETUP_TIME(275), 1116 PSR_SETUP_TIME(220), 1117 PSR_SETUP_TIME(165), 1118 PSR_SETUP_TIME(110), 1119 PSR_SETUP_TIME(55), 1120 PSR_SETUP_TIME(0), 1121 }; 1122 int i; 1123 1124 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT; 1125 if (i >= ARRAY_SIZE(psr_setup_time_us)) 1126 return -EINVAL; 1127 1128 return psr_setup_time_us[i]; 1129 } 1130 EXPORT_SYMBOL(drm_dp_psr_setup_time); 1131 1132 #undef PSR_SETUP_TIME 1133 1134 /** 1135 * drm_dp_start_crc() - start capture of frame CRCs 1136 * @aux: DisplayPort AUX channel 1137 * @crtc: CRTC displaying the frames whose CRCs are to be captured 1138 * 1139 * Returns 0 on success or a negative error code on failure. 1140 */ 1141 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc) 1142 { 1143 u8 buf; 1144 int ret; 1145 1146 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 1147 if (ret < 0) 1148 return ret; 1149 1150 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START); 1151 if (ret < 0) 1152 return ret; 1153 1154 aux->crc_count = 0; 1155 aux->crtc = crtc; 1156 schedule_work(&aux->crc_work); 1157 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(drm_dp_start_crc); 1161 1162 /** 1163 * drm_dp_stop_crc() - stop capture of frame CRCs 1164 * @aux: DisplayPort AUX channel 1165 * 1166 * Returns 0 on success or a negative error code on failure. 1167 */ 1168 int drm_dp_stop_crc(struct drm_dp_aux *aux) 1169 { 1170 u8 buf; 1171 int ret; 1172 1173 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 1174 if (ret < 0) 1175 return ret; 1176 1177 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START); 1178 if (ret < 0) 1179 return ret; 1180 1181 flush_work(&aux->crc_work); 1182 aux->crtc = NULL; 1183 1184 return 0; 1185 } 1186 EXPORT_SYMBOL(drm_dp_stop_crc); 1187 1188 struct dpcd_quirk { 1189 u8 oui[3]; 1190 u8 device_id[6]; 1191 bool is_branch; 1192 u32 quirks; 1193 }; 1194 1195 #define OUI(first, second, third) { (first), (second), (third) } 1196 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \ 1197 { (first), (second), (third), (fourth), (fifth), (sixth) } 1198 1199 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0) 1200 1201 static const struct dpcd_quirk dpcd_quirk_list[] = { 1202 /* Analogix 7737 needs reduced M and N at HBR2 link rates */ 1203 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 1204 /* LG LP140WF6-SPM1 eDP panel */ 1205 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 1206 /* Apple panels need some additional handling to support PSR */ 1207 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) }, 1208 /* CH7511 seems to leave SINK_COUNT zeroed */ 1209 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) }, 1210 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */ 1211 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) }, 1212 }; 1213 1214 #undef OUI 1215 1216 /* 1217 * Get a bit mask of DPCD quirks for the sink/branch device identified by 1218 * ident. The quirk data is shared but it's up to the drivers to act on the 1219 * data. 1220 * 1221 * For now, only the OUI (first three bytes) is used, but this may be extended 1222 * to device identification string and hardware/firmware revisions later. 1223 */ 1224 static u32 1225 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch) 1226 { 1227 const struct dpcd_quirk *quirk; 1228 u32 quirks = 0; 1229 int i; 1230 u8 any_device[] = DEVICE_ID_ANY; 1231 1232 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) { 1233 quirk = &dpcd_quirk_list[i]; 1234 1235 if (quirk->is_branch != is_branch) 1236 continue; 1237 1238 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0) 1239 continue; 1240 1241 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 && 1242 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0) 1243 continue; 1244 1245 quirks |= quirk->quirks; 1246 } 1247 1248 return quirks; 1249 } 1250 1251 #undef DEVICE_ID_ANY 1252 #undef DEVICE_ID 1253 1254 /** 1255 * drm_dp_read_desc - read sink/branch descriptor from DPCD 1256 * @aux: DisplayPort AUX channel 1257 * @desc: Device decriptor to fill from DPCD 1258 * @is_branch: true for branch devices, false for sink devices 1259 * 1260 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the 1261 * identification. 1262 * 1263 * Returns 0 on success or a negative error code on failure. 1264 */ 1265 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc, 1266 bool is_branch) 1267 { 1268 struct drm_dp_dpcd_ident *ident = &desc->ident; 1269 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI; 1270 int ret, dev_id_len; 1271 1272 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident)); 1273 if (ret < 0) 1274 return ret; 1275 1276 desc->quirks = drm_dp_get_quirks(ident, is_branch); 1277 1278 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id)); 1279 1280 DRM_DEBUG_KMS("DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n", 1281 is_branch ? "branch" : "sink", 1282 (int)sizeof(ident->oui), ident->oui, 1283 dev_id_len, ident->device_id, 1284 ident->hw_rev >> 4, ident->hw_rev & 0xf, 1285 ident->sw_major_rev, ident->sw_minor_rev, 1286 desc->quirks); 1287 1288 return 0; 1289 } 1290 EXPORT_SYMBOL(drm_dp_read_desc); 1291 1292 /** 1293 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count 1294 * supported by the DSC sink. 1295 * @dsc_dpcd: DSC capabilities from DPCD 1296 * @is_edp: true if its eDP, false for DP 1297 * 1298 * Read the slice capabilities DPCD register from DSC sink to get 1299 * the maximum slice count supported. This is used to populate 1300 * the DSC parameters in the &struct drm_dsc_config by the driver. 1301 * Driver creates an infoframe using these parameters to populate 1302 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 1303 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 1304 * 1305 * Returns: 1306 * Maximum slice count supported by DSC sink or 0 its invalid 1307 */ 1308 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 1309 bool is_edp) 1310 { 1311 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT]; 1312 1313 if (is_edp) { 1314 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */ 1315 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 1316 return 4; 1317 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 1318 return 2; 1319 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 1320 return 1; 1321 } else { 1322 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */ 1323 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT]; 1324 1325 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK) 1326 return 24; 1327 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK) 1328 return 20; 1329 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK) 1330 return 16; 1331 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK) 1332 return 12; 1333 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK) 1334 return 10; 1335 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK) 1336 return 8; 1337 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK) 1338 return 6; 1339 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 1340 return 4; 1341 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 1342 return 2; 1343 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 1344 return 1; 1345 } 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count); 1350 1351 /** 1352 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits 1353 * @dsc_dpcd: DSC capabilities from DPCD 1354 * 1355 * Read the DSC DPCD register to parse the line buffer depth in bits which is 1356 * number of bits of precision within the decoder line buffer supported by 1357 * the DSC sink. This is used to populate the DSC parameters in the 1358 * &struct drm_dsc_config by the driver. 1359 * Driver creates an infoframe using these parameters to populate 1360 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 1361 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 1362 * 1363 * Returns: 1364 * Line buffer depth supported by DSC panel or 0 its invalid 1365 */ 1366 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 1367 { 1368 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT]; 1369 1370 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) { 1371 case DP_DSC_LINE_BUF_BIT_DEPTH_9: 1372 return 9; 1373 case DP_DSC_LINE_BUF_BIT_DEPTH_10: 1374 return 10; 1375 case DP_DSC_LINE_BUF_BIT_DEPTH_11: 1376 return 11; 1377 case DP_DSC_LINE_BUF_BIT_DEPTH_12: 1378 return 12; 1379 case DP_DSC_LINE_BUF_BIT_DEPTH_13: 1380 return 13; 1381 case DP_DSC_LINE_BUF_BIT_DEPTH_14: 1382 return 14; 1383 case DP_DSC_LINE_BUF_BIT_DEPTH_15: 1384 return 15; 1385 case DP_DSC_LINE_BUF_BIT_DEPTH_16: 1386 return 16; 1387 case DP_DSC_LINE_BUF_BIT_DEPTH_8: 1388 return 8; 1389 } 1390 1391 return 0; 1392 } 1393 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth); 1394 1395 /** 1396 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component 1397 * values supported by the DSC sink. 1398 * @dsc_dpcd: DSC capabilities from DPCD 1399 * @dsc_bpc: An array to be filled by this helper with supported 1400 * input bpcs. 1401 * 1402 * Read the DSC DPCD from the sink device to parse the supported bits per 1403 * component values. This is used to populate the DSC parameters 1404 * in the &struct drm_dsc_config by the driver. 1405 * Driver creates an infoframe using these parameters to populate 1406 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 1407 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 1408 * 1409 * Returns: 1410 * Number of input BPC values parsed from the DPCD 1411 */ 1412 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 1413 u8 dsc_bpc[3]) 1414 { 1415 int num_bpc = 0; 1416 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT]; 1417 1418 if (color_depth & DP_DSC_12_BPC) 1419 dsc_bpc[num_bpc++] = 12; 1420 if (color_depth & DP_DSC_10_BPC) 1421 dsc_bpc[num_bpc++] = 10; 1422 if (color_depth & DP_DSC_8_BPC) 1423 dsc_bpc[num_bpc++] = 8; 1424 1425 return num_bpc; 1426 } 1427 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs); 1428