Home | History | Annotate | Line # | Download | only in drm
      1 /*	$NetBSD: drm_mm.c,v 1.20 2022/09/01 11:48:59 riastradh Exp $	*/
      2 
      3 /**************************************************************************
      4  *
      5  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
      6  * Copyright 2016 Intel Corporation
      7  * All Rights Reserved.
      8  *
      9  * Permission is hereby granted, free of charge, to any person obtaining a
     10  * copy of this software and associated documentation files (the
     11  * "Software"), to deal in the Software without restriction, including
     12  * without limitation the rights to use, copy, modify, merge, publish,
     13  * distribute, sub license, and/or sell copies of the Software, and to
     14  * permit persons to whom the Software is furnished to do so, subject to
     15  * the following conditions:
     16  *
     17  * The above copyright notice and this permission notice (including the
     18  * next paragraph) shall be included in all copies or substantial portions
     19  * of the Software.
     20  *
     21  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     22  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     23  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     24  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     25  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     26  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     27  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     28  *
     29  *
     30  **************************************************************************/
     31 
     32 /*
     33  * Generic simple memory manager implementation. Intended to be used as a base
     34  * class implementation for more advanced memory managers.
     35  *
     36  * Note that the algorithm used is quite simple and there might be substantial
     37  * performance gains if a smarter free list is implemented. Currently it is
     38  * just an unordered stack of free regions. This could easily be improved if
     39  * an RB-tree is used instead. At least if we expect heavy fragmentation.
     40  *
     41  * Aligned allocations can also see improvement.
     42  *
     43  * Authors:
     44  * Thomas Hellstrm <thomas-at-tungstengraphics-dot-com>
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: drm_mm.c,v 1.20 2022/09/01 11:48:59 riastradh Exp $");
     49 
     50 #include <linux/export.h>
     51 #include <linux/interval_tree_generic.h>
     52 #include <linux/seq_file.h>
     53 #include <linux/slab.h>
     54 #include <linux/stacktrace.h>
     55 
     56 #include <drm/drm_mm.h>
     57 
     58 /**
     59  * DOC: Overview
     60  *
     61  * drm_mm provides a simple range allocator. The drivers are free to use the
     62  * resource allocator from the linux core if it suits them, the upside of drm_mm
     63  * is that it's in the DRM core. Which means that it's easier to extend for
     64  * some of the crazier special purpose needs of gpus.
     65  *
     66  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
     67  * Drivers are free to embed either of them into their own suitable
     68  * datastructures. drm_mm itself will not do any memory allocations of its own,
     69  * so if drivers choose not to embed nodes they need to still allocate them
     70  * themselves.
     71  *
     72  * The range allocator also supports reservation of preallocated blocks. This is
     73  * useful for taking over initial mode setting configurations from the firmware,
     74  * where an object needs to be created which exactly matches the firmware's
     75  * scanout target. As long as the range is still free it can be inserted anytime
     76  * after the allocator is initialized, which helps with avoiding looped
     77  * dependencies in the driver load sequence.
     78  *
     79  * drm_mm maintains a stack of most recently freed holes, which of all
     80  * simplistic datastructures seems to be a fairly decent approach to clustering
     81  * allocations and avoiding too much fragmentation. This means free space
     82  * searches are O(num_holes). Given that all the fancy features drm_mm supports
     83  * something better would be fairly complex and since gfx thrashing is a fairly
     84  * steep cliff not a real concern. Removing a node again is O(1).
     85  *
     86  * drm_mm supports a few features: Alignment and range restrictions can be
     87  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
     88  * opaque unsigned long) which in conjunction with a driver callback can be used
     89  * to implement sophisticated placement restrictions. The i915 DRM driver uses
     90  * this to implement guard pages between incompatible caching domains in the
     91  * graphics TT.
     92  *
     93  * Two behaviors are supported for searching and allocating: bottom-up and
     94  * top-down. The default is bottom-up. Top-down allocation can be used if the
     95  * memory area has different restrictions, or just to reduce fragmentation.
     96  *
     97  * Finally iteration helpers to walk all nodes and all holes are provided as are
     98  * some basic allocator dumpers for debugging.
     99  *
    100  * Note that this range allocator is not thread-safe, drivers need to protect
    101  * modifications with their own locking. The idea behind this is that for a full
    102  * memory manager additional data needs to be protected anyway, hence internal
    103  * locking would be fully redundant.
    104  */
    105 
    106 #ifdef CONFIG_DRM_DEBUG_MM
    107 #include <linux/stackdepot.h>
    108 
    109 #define STACKDEPTH 32
    110 #define BUFSZ 4096
    111 
    112 static noinline void save_stack(struct drm_mm_node *node)
    113 {
    114 	unsigned long entries[STACKDEPTH];
    115 	unsigned int n;
    116 
    117 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
    118 
    119 	/* May be called under spinlock, so avoid sleeping */
    120 	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
    121 }
    122 
    123 static void show_leaks(struct drm_mm *mm)
    124 {
    125 	struct drm_mm_node *node;
    126 	unsigned long *entries;
    127 	unsigned int nr_entries;
    128 	char *buf;
    129 
    130 	buf = kmalloc(BUFSZ, GFP_KERNEL);
    131 	if (!buf)
    132 		return;
    133 
    134 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
    135 		if (!node->stack) {
    136 			DRM_ERROR("node [%08"PRIx64" + %08"PRIx64"]: unknown owner\n",
    137 				  node->start, node->size);
    138 			continue;
    139 		}
    140 
    141 		nr_entries = stack_depot_fetch(node->stack, &entries);
    142 		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
    143 		DRM_ERROR("node [%08"PRIx64" + %08"PRIx64"]: inserted at\n%s",
    144 			  node->start, node->size, buf);
    145 	}
    146 
    147 	kfree(buf);
    148 }
    149 
    150 #undef STACKDEPTH
    151 #undef BUFSZ
    152 #else
    153 static void save_stack(struct drm_mm_node *node) { }
    154 static void show_leaks(struct drm_mm *mm) { }
    155 #endif
    156 
    157 #define START(node) ((node)->start)
    158 #define LAST(node)  ((node)->start + (node)->size - 1)
    159 
    160 #ifndef __NetBSD__
    161 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
    162 		     u64, __subtree_last,
    163 		     START, LAST, static inline, drm_mm_interval_tree)
    164 #endif
    165 
    166 struct drm_mm_node *
    167 __drm_mm_interval_first(const struct drm_mm *mm_const, u64 start, u64 last)
    168 {
    169 	struct drm_mm *mm = __UNCONST(mm_const);
    170 #ifdef __NetBSD__
    171 	struct drm_mm_node *node;
    172 	list_for_each_entry(node, &mm->head_node.node_list, node_list) {
    173 		if (start <= LAST(node) && START(node) <= last)
    174 			return node;
    175 	}
    176 	return &mm->head_node;
    177 #else
    178 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
    179 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
    180 #endif
    181 }
    182 EXPORT_SYMBOL(__drm_mm_interval_first);
    183 
    184 #ifndef __NetBSD__
    185 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
    186 					  struct drm_mm_node *node)
    187 {
    188 	struct drm_mm *mm = hole_node->mm;
    189 	struct rb_node **link, *rb;
    190 	struct drm_mm_node *parent;
    191 	bool leftmost;
    192 
    193 	node->__subtree_last = LAST(node);
    194 
    195 	if (drm_mm_node_allocated(hole_node)) {
    196 		rb = &hole_node->rb;
    197 		while (rb) {
    198 			parent = rb_entry(rb, struct drm_mm_node, rb);
    199 			if (parent->__subtree_last >= node->__subtree_last)
    200 				break;
    201 
    202 			parent->__subtree_last = node->__subtree_last;
    203 			rb = rb_parent(rb);
    204 		}
    205 
    206 		rb = &hole_node->rb;
    207 		link = &hole_node->rb.rb_right;
    208 		leftmost = false;
    209 	} else {
    210 		rb = NULL;
    211 		link = &mm->interval_tree.rb_root.rb_node;
    212 		leftmost = true;
    213 	}
    214 
    215 	while (*link) {
    216 		rb = *link;
    217 		parent = rb_entry(rb, struct drm_mm_node, rb);
    218 		if (parent->__subtree_last < node->__subtree_last)
    219 			parent->__subtree_last = node->__subtree_last;
    220 		if (node->start < parent->start) {
    221 			link = &parent->rb.rb_left;
    222 		} else {
    223 			link = &parent->rb.rb_right;
    224 			leftmost = false;
    225 		}
    226 	}
    227 
    228 	rb_link_node(&node->rb, rb, link);
    229 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
    230 				   &drm_mm_interval_tree_augment);
    231 }
    232 #endif
    233 
    234 #ifdef __NetBSD__
    235 
    236 static int
    237 compare_hole_addrs(void *cookie, const void *va, const void *vb)
    238 {
    239 	const struct drm_mm_node *a = va, *b = vb;
    240 	const u64 aa = __drm_mm_hole_node_start(a);
    241 	const u64 ba = __drm_mm_hole_node_start(b);
    242 
    243 	KASSERTMSG((aa == ba ||
    244 		aa + a->hole_size <= ba ||
    245 		aa >= ba + b->hole_size),
    246 	    "overlapping holes: [0x%"PRIx64", 0x%"PRIx64"),"
    247 	    " [0x%"PRIx64", 0x%"PRIx64")",
    248 	    aa, aa + a->hole_size,
    249 	    ba, ba + b->hole_size);
    250 	if (aa < ba)
    251 		return -1;
    252 	if (aa > ba)
    253 		return +1;
    254 	return 0;
    255 }
    256 
    257 static int
    258 compare_hole_addr_key(void *cookie, const void *vn, const void *vk)
    259 {
    260 	const struct drm_mm_node *n = vn;
    261 	const u64 a = __drm_mm_hole_node_start(n);
    262 	const u64 *k = vk;
    263 
    264 	if (a < *k)
    265 		return -1;
    266 	if (a + n->hole_size >= *k) /* allows range lookups */
    267 		return +1;
    268 	return 0;
    269 }
    270 
    271 static const rb_tree_ops_t holes_addr_rb_ops = {
    272 	.rbto_compare_nodes = compare_hole_addrs,
    273 	.rbto_compare_key = compare_hole_addr_key,
    274 	.rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_addr),
    275 };
    276 
    277 #else
    278 
    279 #define RB_INSERT(root, member, expr) do { \
    280 	struct rb_node **link = &root.rb_node, *rb = NULL; \
    281 	u64 x = expr(node); \
    282 	while (*link) { \
    283 		rb = *link; \
    284 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
    285 			link = &rb->rb_left; \
    286 		else \
    287 			link = &rb->rb_right; \
    288 	} \
    289 	rb_link_node(&node->member, rb, link); \
    290 	rb_insert_color(&node->member, &root); \
    291 } while (0)
    292 
    293 #endif
    294 
    295 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
    296 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
    297 
    298 static u64 rb_to_hole_size(struct rb_node *rb)
    299 {
    300 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
    301 }
    302 
    303 static int
    304 compare_hole_sizes(void *cookie, const void *va, const void *vb)
    305 {
    306 	const struct drm_mm_node *a = va, *b = vb;
    307 
    308 	if (a->hole_size > b->hole_size)
    309 		return -1;
    310 	if (a->hole_size < b->hole_size)
    311 		return +1;
    312 	return (a < b ? -1 : a > b ? +1 : 0);
    313 }
    314 
    315 static int
    316 compare_hole_size_key(void *cookie, const void *vn, const void *vk)
    317 {
    318 	const struct drm_mm_node *n = vn;
    319 	const u64 *k = vk;
    320 
    321 	if (n->hole_size > *k)
    322 		return -1;
    323 	if (n->hole_size < *k)
    324 		return +1;
    325 	return 0;
    326 }
    327 
    328 static const rb_tree_ops_t holes_size_rb_ops = {
    329 	.rbto_compare_nodes = compare_hole_sizes,
    330 	.rbto_compare_key = compare_hole_size_key,
    331 	.rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_size),
    332 };
    333 
    334 static void insert_hole_size(struct rb_root_cached *root,
    335 			     struct drm_mm_node *node)
    336 {
    337 #ifdef __NetBSD__
    338 	struct drm_mm_node *collision __diagused;
    339 	collision = rb_tree_insert_node(&root->rb_root.rbr_tree, node);
    340 	KASSERT(collision == node);
    341 #else
    342 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
    343 	u64 x = node->hole_size;
    344 	bool first = true;
    345 
    346 	while (*link) {
    347 		rb = *link;
    348 		if (x > rb_to_hole_size(rb)) {
    349 			link = &rb->rb_left;
    350 		} else {
    351 			link = &rb->rb_right;
    352 			first = false;
    353 		}
    354 	}
    355 
    356 	rb_link_node(&node->rb_hole_size, rb, link);
    357 	rb_insert_color_cached(&node->rb_hole_size, root, first);
    358 #endif
    359 }
    360 
    361 static void add_hole(struct drm_mm_node *node)
    362 {
    363 	struct drm_mm *mm = node->mm;
    364 
    365 	node->hole_size =
    366 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
    367 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
    368 
    369 	insert_hole_size(&mm->holes_size, node);
    370 #ifdef __NetBSD__
    371 	struct drm_mm_node *collision __diagused;
    372 	collision = rb_tree_insert_node(&mm->holes_addr.rbr_tree, node);
    373 	KASSERT(collision == node);
    374 #else
    375 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
    376 #endif
    377 
    378 	list_add(&node->hole_stack, &mm->hole_stack);
    379 }
    380 
    381 static void rm_hole(struct drm_mm_node *node)
    382 {
    383 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
    384 
    385 	list_del(&node->hole_stack);
    386 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
    387 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
    388 	node->hole_size = 0;
    389 
    390 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
    391 }
    392 
    393 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
    394 {
    395 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
    396 }
    397 
    398 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
    399 {
    400 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
    401 }
    402 
    403 static inline u64 rb_hole_size(struct rb_node *rb)
    404 {
    405 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
    406 }
    407 
    408 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
    409 {
    410 #ifdef __NetBSD__
    411 	struct drm_mm_node *best;
    412 
    413 	best = rb_tree_find_node_leq(&mm->holes_size.rb_root.rbr_tree, &size);
    414 	KASSERT(best == NULL || size <= best->hole_size);
    415 
    416 	return best;
    417 #else
    418 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
    419 	struct drm_mm_node *best = NULL;
    420 
    421 	do {
    422 		struct drm_mm_node *node =
    423 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
    424 
    425 		if (size <= node->hole_size) {
    426 			best = node;
    427 			rb = rb->rb_right;
    428 		} else {
    429 			rb = rb->rb_left;
    430 		}
    431 	} while (rb);
    432 
    433 	return best;
    434 #endif
    435 }
    436 
    437 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
    438 {
    439 #ifdef __NetBSD__
    440 	struct rb_node *rb = mm->holes_addr.rbr_tree.rbt_root;
    441 #else
    442 	struct rb_node *rb = mm->holes_addr.rb_node;
    443 #endif
    444 	struct drm_mm_node *node = NULL;
    445 
    446 	while (rb) {
    447 		u64 hole_start;
    448 
    449 		node = rb_hole_addr_to_node(rb);
    450 		hole_start = __drm_mm_hole_node_start(node);
    451 
    452 		if (addr < hole_start)
    453 			rb = node->rb_hole_addr.rb_left;
    454 		else if (addr > hole_start + node->hole_size)
    455 			rb = node->rb_hole_addr.rb_right;
    456 		else
    457 			break;
    458 	}
    459 
    460 	return node;
    461 }
    462 
    463 static struct drm_mm_node *
    464 first_hole(struct drm_mm *mm,
    465 	   u64 start, u64 end, u64 size,
    466 	   enum drm_mm_insert_mode mode)
    467 {
    468 	switch (mode) {
    469 	default:
    470 	case DRM_MM_INSERT_BEST:
    471 		return best_hole(mm, size);
    472 
    473 	case DRM_MM_INSERT_LOW:
    474 		return find_hole(mm, start);
    475 
    476 	case DRM_MM_INSERT_HIGH:
    477 		return find_hole(mm, end);
    478 
    479 	case DRM_MM_INSERT_EVICT:
    480 		return list_first_entry_or_null(&mm->hole_stack,
    481 						struct drm_mm_node,
    482 						hole_stack);
    483 	}
    484 }
    485 
    486 static struct drm_mm_node *
    487 next_hole(struct drm_mm *mm,
    488 	  struct drm_mm_node *node,
    489 	  enum drm_mm_insert_mode mode)
    490 {
    491 	switch (mode) {
    492 	default:
    493 	case DRM_MM_INSERT_BEST:
    494 #ifdef __NetBSD__
    495 		return RB_TREE_PREV(&mm->holes_size.rb_root.rbr_tree, node);
    496 #else
    497 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
    498 #endif
    499 
    500 	case DRM_MM_INSERT_LOW:
    501 #ifdef __NetBSD__
    502 		return RB_TREE_NEXT(&mm->holes_addr.rbr_tree, node);
    503 #else
    504 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
    505 #endif
    506 
    507 	case DRM_MM_INSERT_HIGH:
    508 #ifdef __NetBSD__
    509 		return RB_TREE_PREV(&mm->holes_addr.rbr_tree, node);
    510 #else
    511 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
    512 #endif
    513 
    514 	case DRM_MM_INSERT_EVICT:
    515 		node = list_next_entry(node, hole_stack);
    516 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
    517 	}
    518 }
    519 
    520 /**
    521  * drm_mm_reserve_node - insert an pre-initialized node
    522  * @mm: drm_mm allocator to insert @node into
    523  * @node: drm_mm_node to insert
    524  *
    525  * This functions inserts an already set-up &drm_mm_node into the allocator,
    526  * meaning that start, size and color must be set by the caller. All other
    527  * fields must be cleared to 0. This is useful to initialize the allocator with
    528  * preallocated objects which must be set-up before the range allocator can be
    529  * set-up, e.g. when taking over a firmware framebuffer.
    530  *
    531  * Returns:
    532  * 0 on success, -ENOSPC if there's no hole where @node is.
    533  */
    534 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
    535 {
    536 	u64 end = node->start + node->size;
    537 	struct drm_mm_node *hole;
    538 	u64 hole_start, hole_end;
    539 	u64 adj_start, adj_end;
    540 
    541 	end = node->start + node->size;
    542 	if (unlikely(end <= node->start))
    543 		return -ENOSPC;
    544 
    545 	/* Find the relevant hole to add our node to */
    546 	hole = find_hole(mm, node->start);
    547 	if (!hole)
    548 		return -ENOSPC;
    549 
    550 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
    551 	adj_end = hole_end = hole_start + hole->hole_size;
    552 
    553 	if (mm->color_adjust)
    554 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
    555 
    556 	if (adj_start > node->start || adj_end < end)
    557 		return -ENOSPC;
    558 
    559 	node->mm = mm;
    560 
    561 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    562 	list_add(&node->node_list, &hole->node_list);
    563 #ifndef __NetBSD__
    564 	drm_mm_interval_tree_add_node(hole, node);
    565 #endif
    566 	node->hole_size = 0;
    567 
    568 	rm_hole(hole);
    569 	if (node->start > hole_start)
    570 		add_hole(hole);
    571 	if (end < hole_end)
    572 		add_hole(node);
    573 
    574 	save_stack(node);
    575 	return 0;
    576 }
    577 EXPORT_SYMBOL(drm_mm_reserve_node);
    578 
    579 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
    580 {
    581 	return rb ? rb_to_hole_size(rb) : 0;
    582 }
    583 
    584 /**
    585  * drm_mm_insert_node_in_range - ranged search for space and insert @node
    586  * @mm: drm_mm to allocate from
    587  * @node: preallocate node to insert
    588  * @size: size of the allocation
    589  * @alignment: alignment of the allocation
    590  * @color: opaque tag value to use for this node
    591  * @range_start: start of the allowed range for this node
    592  * @range_end: end of the allowed range for this node
    593  * @mode: fine-tune the allocation search and placement
    594  *
    595  * The preallocated @node must be cleared to 0.
    596  *
    597  * Returns:
    598  * 0 on success, -ENOSPC if there's no suitable hole.
    599  */
    600 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
    601 				struct drm_mm_node * const node,
    602 				u64 size, u64 alignment,
    603 				unsigned long color,
    604 				u64 range_start, u64 range_end,
    605 				enum drm_mm_insert_mode mode)
    606 {
    607 	struct drm_mm_node *hole;
    608 	u64 remainder_mask;
    609 	bool once;
    610 
    611 	DRM_MM_BUG_ON(range_start > range_end);
    612 
    613 	if (unlikely(size == 0 || range_end - range_start < size))
    614 		return -ENOSPC;
    615 
    616 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
    617 		return -ENOSPC;
    618 
    619 	if (alignment <= 1)
    620 		alignment = 0;
    621 
    622 	once = mode & DRM_MM_INSERT_ONCE;
    623 	mode &= ~DRM_MM_INSERT_ONCE;
    624 
    625 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
    626 	for (hole = first_hole(mm, range_start, range_end, size, mode);
    627 	     hole;
    628 	     hole = once ? NULL : next_hole(mm, hole, mode)) {
    629 		u64 hole_start = __drm_mm_hole_node_start(hole);
    630 		u64 hole_end = hole_start + hole->hole_size;
    631 		u64 adj_start, adj_end;
    632 		u64 col_start, col_end;
    633 
    634 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
    635 			break;
    636 
    637 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
    638 			break;
    639 
    640 		col_start = hole_start;
    641 		col_end = hole_end;
    642 		if (mm->color_adjust)
    643 			mm->color_adjust(hole, color, &col_start, &col_end);
    644 
    645 		adj_start = max(col_start, range_start);
    646 		adj_end = min(col_end, range_end);
    647 
    648 		if (adj_end <= adj_start || adj_end - adj_start < size)
    649 			continue;
    650 
    651 		if (mode == DRM_MM_INSERT_HIGH)
    652 			adj_start = adj_end - size;
    653 
    654 		if (alignment) {
    655 			u64 rem;
    656 
    657 			if (likely(remainder_mask))
    658 				rem = adj_start & remainder_mask;
    659 			else
    660 				div64_u64_rem(adj_start, alignment, &rem);
    661 			if (rem) {
    662 				adj_start -= rem;
    663 				if (mode != DRM_MM_INSERT_HIGH)
    664 					adj_start += alignment;
    665 
    666 				if (adj_start < max(col_start, range_start) ||
    667 				    min(col_end, range_end) - adj_start < size)
    668 					continue;
    669 
    670 				if (adj_end <= adj_start ||
    671 				    adj_end - adj_start < size)
    672 					continue;
    673 			}
    674 		}
    675 
    676 		node->mm = mm;
    677 		node->size = size;
    678 		node->start = adj_start;
    679 		node->color = color;
    680 		node->hole_size = 0;
    681 
    682 		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    683 		list_add(&node->node_list, &hole->node_list);
    684 #ifndef __NetBSD__
    685 		drm_mm_interval_tree_add_node(hole, node);
    686 #endif
    687 
    688 		rm_hole(hole);
    689 		if (adj_start > hole_start)
    690 			add_hole(hole);
    691 		if (adj_start + size < hole_end)
    692 			add_hole(node);
    693 
    694 		save_stack(node);
    695 		return 0;
    696 	}
    697 
    698 	return -ENOSPC;
    699 }
    700 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
    701 
    702 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
    703 {
    704 	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    705 }
    706 
    707 /**
    708  * drm_mm_remove_node - Remove a memory node from the allocator.
    709  * @node: drm_mm_node to remove
    710  *
    711  * This just removes a node from its drm_mm allocator. The node does not need to
    712  * be cleared again before it can be re-inserted into this or any other drm_mm
    713  * allocator. It is a bug to call this function on a unallocated node.
    714  */
    715 void drm_mm_remove_node(struct drm_mm_node *node)
    716 {
    717 	struct drm_mm *mm = node->mm;
    718 	struct drm_mm_node *prev_node;
    719 
    720 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
    721 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
    722 
    723 	prev_node = list_prev_entry(node, node_list);
    724 
    725 	if (drm_mm_hole_follows(node))
    726 		rm_hole(node);
    727 
    728 #ifdef __NetBSD__
    729 	__USE(mm);
    730 #else
    731 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
    732 #endif
    733 	list_del(&node->node_list);
    734 
    735 	if (drm_mm_hole_follows(prev_node))
    736 		rm_hole(prev_node);
    737 	add_hole(prev_node);
    738 
    739 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    740 }
    741 EXPORT_SYMBOL(drm_mm_remove_node);
    742 
    743 /**
    744  * drm_mm_replace_node - move an allocation from @old to @new
    745  * @old: drm_mm_node to remove from the allocator
    746  * @new: drm_mm_node which should inherit @old's allocation
    747  *
    748  * This is useful for when drivers embed the drm_mm_node structure and hence
    749  * can't move allocations by reassigning pointers. It's a combination of remove
    750  * and insert with the guarantee that the allocation start will match.
    751  */
    752 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
    753 {
    754 	struct drm_mm *mm = old->mm;
    755 
    756 	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
    757 
    758 	*new = *old;
    759 
    760 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
    761 	list_replace(&old->node_list, &new->node_list);
    762 #ifndef __NetBSD__
    763 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
    764 #endif
    765 
    766 	if (drm_mm_hole_follows(old)) {
    767 		list_replace(&old->hole_stack, &new->hole_stack);
    768 		rb_replace_node_cached(&old->rb_hole_size,
    769 				       &new->rb_hole_size,
    770 				       &mm->holes_size);
    771 		rb_replace_node(&old->rb_hole_addr,
    772 				&new->rb_hole_addr,
    773 				&mm->holes_addr);
    774 	}
    775 
    776 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
    777 }
    778 EXPORT_SYMBOL(drm_mm_replace_node);
    779 
    780 /**
    781  * DOC: lru scan roster
    782  *
    783  * Very often GPUs need to have continuous allocations for a given object. When
    784  * evicting objects to make space for a new one it is therefore not most
    785  * efficient when we simply start to select all objects from the tail of an LRU
    786  * until there's a suitable hole: Especially for big objects or nodes that
    787  * otherwise have special allocation constraints there's a good chance we evict
    788  * lots of (smaller) objects unnecessarily.
    789  *
    790  * The DRM range allocator supports this use-case through the scanning
    791  * interfaces. First a scan operation needs to be initialized with
    792  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
    793  * objects to the roster, probably by walking an LRU list, but this can be
    794  * freely implemented. Eviction candiates are added using
    795  * drm_mm_scan_add_block() until a suitable hole is found or there are no
    796  * further evictable objects. Eviction roster metadata is tracked in &struct
    797  * drm_mm_scan.
    798  *
    799  * The driver must walk through all objects again in exactly the reverse
    800  * order to restore the allocator state. Note that while the allocator is used
    801  * in the scan mode no other operation is allowed.
    802  *
    803  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
    804  * reported true) in the scan, and any overlapping nodes after color adjustment
    805  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
    806  * since freeing a node is also O(1) the overall complexity is
    807  * O(scanned_objects). So like the free stack which needs to be walked before a
    808  * scan operation even begins this is linear in the number of objects. It
    809  * doesn't seem to hurt too badly.
    810  */
    811 
    812 /**
    813  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
    814  * @scan: scan state
    815  * @mm: drm_mm to scan
    816  * @size: size of the allocation
    817  * @alignment: alignment of the allocation
    818  * @color: opaque tag value to use for the allocation
    819  * @start: start of the allowed range for the allocation
    820  * @end: end of the allowed range for the allocation
    821  * @mode: fine-tune the allocation search and placement
    822  *
    823  * This simply sets up the scanning routines with the parameters for the desired
    824  * hole.
    825  *
    826  * Warning:
    827  * As long as the scan list is non-empty, no other operations than
    828  * adding/removing nodes to/from the scan list are allowed.
    829  */
    830 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
    831 				 struct drm_mm *mm,
    832 				 u64 size,
    833 				 u64 alignment,
    834 				 unsigned long color,
    835 				 u64 start,
    836 				 u64 end,
    837 				 enum drm_mm_insert_mode mode)
    838 {
    839 	DRM_MM_BUG_ON(start >= end);
    840 	DRM_MM_BUG_ON(!size || size > end - start);
    841 	DRM_MM_BUG_ON(mm->scan_active);
    842 
    843 	scan->mm = mm;
    844 
    845 	if (alignment <= 1)
    846 		alignment = 0;
    847 
    848 	scan->color = color;
    849 	scan->alignment = alignment;
    850 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
    851 	scan->size = size;
    852 	scan->mode = mode;
    853 
    854 	DRM_MM_BUG_ON(end <= start);
    855 	scan->range_start = start;
    856 	scan->range_end = end;
    857 
    858 	scan->hit_start = U64_MAX;
    859 	scan->hit_end = 0;
    860 }
    861 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
    862 
    863 /**
    864  * drm_mm_scan_add_block - add a node to the scan list
    865  * @scan: the active drm_mm scanner
    866  * @node: drm_mm_node to add
    867  *
    868  * Add a node to the scan list that might be freed to make space for the desired
    869  * hole.
    870  *
    871  * Returns:
    872  * True if a hole has been found, false otherwise.
    873  */
    874 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
    875 			   struct drm_mm_node *node)
    876 {
    877 	struct drm_mm *mm = scan->mm;
    878 	struct drm_mm_node *hole;
    879 	u64 hole_start, hole_end;
    880 	u64 col_start, col_end;
    881 	u64 adj_start, adj_end;
    882 
    883 	DRM_MM_BUG_ON(node->mm != mm);
    884 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
    885 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
    886 	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    887 	mm->scan_active++;
    888 
    889 	/* Remove this block from the node_list so that we enlarge the hole
    890 	 * (distance between the end of our previous node and the start of
    891 	 * or next), without poisoning the link so that we can restore it
    892 	 * later in drm_mm_scan_remove_block().
    893 	 */
    894 	hole = list_prev_entry(node, node_list);
    895 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
    896 	__list_del_entry(&node->node_list);
    897 
    898 	hole_start = __drm_mm_hole_node_start(hole);
    899 	hole_end = __drm_mm_hole_node_end(hole);
    900 
    901 	col_start = hole_start;
    902 	col_end = hole_end;
    903 	if (mm->color_adjust)
    904 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
    905 
    906 	adj_start = max(col_start, scan->range_start);
    907 	adj_end = min(col_end, scan->range_end);
    908 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
    909 		return false;
    910 
    911 	if (scan->mode == DRM_MM_INSERT_HIGH)
    912 		adj_start = adj_end - scan->size;
    913 
    914 	if (scan->alignment) {
    915 		u64 rem;
    916 
    917 		if (likely(scan->remainder_mask))
    918 			rem = adj_start & scan->remainder_mask;
    919 		else
    920 			div64_u64_rem(adj_start, scan->alignment, &rem);
    921 		if (rem) {
    922 			adj_start -= rem;
    923 			if (scan->mode != DRM_MM_INSERT_HIGH)
    924 				adj_start += scan->alignment;
    925 			if (adj_start < max(col_start, scan->range_start) ||
    926 			    min(col_end, scan->range_end) - adj_start < scan->size)
    927 				return false;
    928 
    929 			if (adj_end <= adj_start ||
    930 			    adj_end - adj_start < scan->size)
    931 				return false;
    932 		}
    933 	}
    934 
    935 	scan->hit_start = adj_start;
    936 	scan->hit_end = adj_start + scan->size;
    937 
    938 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
    939 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
    940 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
    941 
    942 	return true;
    943 }
    944 EXPORT_SYMBOL(drm_mm_scan_add_block);
    945 
    946 /**
    947  * drm_mm_scan_remove_block - remove a node from the scan list
    948  * @scan: the active drm_mm scanner
    949  * @node: drm_mm_node to remove
    950  *
    951  * Nodes **must** be removed in exactly the reverse order from the scan list as
    952  * they have been added (e.g. using list_add() as they are added and then
    953  * list_for_each() over that eviction list to remove), otherwise the internal
    954  * state of the memory manager will be corrupted.
    955  *
    956  * When the scan list is empty, the selected memory nodes can be freed. An
    957  * immediately following drm_mm_insert_node_in_range_generic() or one of the
    958  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
    959  * the just freed block (because it's at the top of the free_stack list).
    960  *
    961  * Returns:
    962  * True if this block should be evicted, false otherwise. Will always
    963  * return false when no hole has been found.
    964  */
    965 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
    966 			      struct drm_mm_node *node)
    967 {
    968 	struct drm_mm_node *prev_node;
    969 
    970 	DRM_MM_BUG_ON(node->mm != scan->mm);
    971 	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
    972 	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    973 
    974 	DRM_MM_BUG_ON(!node->mm->scan_active);
    975 	node->mm->scan_active--;
    976 
    977 	/* During drm_mm_scan_add_block() we decoupled this node leaving
    978 	 * its pointers intact. Now that the caller is walking back along
    979 	 * the eviction list we can restore this block into its rightful
    980 	 * place on the full node_list. To confirm that the caller is walking
    981 	 * backwards correctly we check that prev_node->next == node->next,
    982 	 * i.e. both believe the same node should be on the other side of the
    983 	 * hole.
    984 	 */
    985 	prev_node = list_prev_entry(node, node_list);
    986 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
    987 		      list_next_entry(node, node_list));
    988 	list_add(&node->node_list, &prev_node->node_list);
    989 
    990 	return (node->start + node->size > scan->hit_start &&
    991 		node->start < scan->hit_end);
    992 }
    993 EXPORT_SYMBOL(drm_mm_scan_remove_block);
    994 
    995 /**
    996  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
    997  * @scan: drm_mm scan with target hole
    998  *
    999  * After completing an eviction scan and removing the selected nodes, we may
   1000  * need to remove a few more nodes from either side of the target hole if
   1001  * mm.color_adjust is being used.
   1002  *
   1003  * Returns:
   1004  * A node to evict, or NULL if there are no overlapping nodes.
   1005  */
   1006 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
   1007 {
   1008 	struct drm_mm *mm = scan->mm;
   1009 	struct drm_mm_node *hole;
   1010 	u64 hole_start, hole_end;
   1011 
   1012 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
   1013 
   1014 	if (!mm->color_adjust)
   1015 		return NULL;
   1016 
   1017 	/*
   1018 	 * The hole found during scanning should ideally be the first element
   1019 	 * in the hole_stack list, but due to side-effects in the driver it
   1020 	 * may not be.
   1021 	 */
   1022 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
   1023 		hole_start = __drm_mm_hole_node_start(hole);
   1024 		hole_end = hole_start + hole->hole_size;
   1025 
   1026 		if (hole_start <= scan->hit_start &&
   1027 		    hole_end >= scan->hit_end)
   1028 			break;
   1029 	}
   1030 
   1031 	/* We should only be called after we found the hole previously */
   1032 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
   1033 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
   1034 		return NULL;
   1035 
   1036 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
   1037 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
   1038 
   1039 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
   1040 	if (hole_start > scan->hit_start)
   1041 		return hole;
   1042 	if (hole_end < scan->hit_end)
   1043 		return list_next_entry(hole, node_list);
   1044 
   1045 	return NULL;
   1046 }
   1047 EXPORT_SYMBOL(drm_mm_scan_color_evict);
   1048 
   1049 /**
   1050  * drm_mm_init - initialize a drm-mm allocator
   1051  * @mm: the drm_mm structure to initialize
   1052  * @start: start of the range managed by @mm
   1053  * @size: end of the range managed by @mm
   1054  *
   1055  * Note that @mm must be cleared to 0 before calling this function.
   1056  */
   1057 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
   1058 {
   1059 	DRM_MM_BUG_ON(start + size <= start);
   1060 
   1061 	mm->color_adjust = NULL;
   1062 
   1063 	INIT_LIST_HEAD(&mm->hole_stack);
   1064 #ifdef __NetBSD__
   1065 	/* XXX interval tree */
   1066 	rb_tree_init(&mm->holes_size.rb_root.rbr_tree, &holes_size_rb_ops);
   1067 	rb_tree_init(&mm->holes_addr.rbr_tree, &holes_addr_rb_ops);
   1068 #else
   1069 	mm->interval_tree = RB_ROOT_CACHED;
   1070 	mm->holes_size = RB_ROOT_CACHED;
   1071 	mm->holes_addr = RB_ROOT;
   1072 #endif
   1073 
   1074 	/* Clever trick to avoid a special case in the free hole tracking. */
   1075 	INIT_LIST_HEAD(&mm->head_node.node_list);
   1076 	mm->head_node.flags = 0;
   1077 	mm->head_node.mm = mm;
   1078 	mm->head_node.start = start + size;
   1079 	mm->head_node.size = -size;
   1080 	add_hole(&mm->head_node);
   1081 
   1082 	mm->scan_active = 0;
   1083 }
   1084 EXPORT_SYMBOL(drm_mm_init);
   1085 
   1086 /**
   1087  * drm_mm_takedown - clean up a drm_mm allocator
   1088  * @mm: drm_mm allocator to clean up
   1089  *
   1090  * Note that it is a bug to call this function on an allocator which is not
   1091  * clean.
   1092  */
   1093 void drm_mm_takedown(struct drm_mm *mm)
   1094 {
   1095 	if (WARN(!drm_mm_clean(mm),
   1096 		 "Memory manager not clean during takedown.\n"))
   1097 		show_leaks(mm);
   1098 }
   1099 EXPORT_SYMBOL(drm_mm_takedown);
   1100 
   1101 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
   1102 {
   1103 	u64 start, size;
   1104 
   1105 	size = entry->hole_size;
   1106 	if (size) {
   1107 		start = drm_mm_hole_node_start(entry);
   1108 		drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": free\n",
   1109 			   start, start + size, size);
   1110 	}
   1111 
   1112 	return size;
   1113 }
   1114 /**
   1115  * drm_mm_print - print allocator state
   1116  * @mm: drm_mm allocator to print
   1117  * @p: DRM printer to use
   1118  */
   1119 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
   1120 {
   1121 	const struct drm_mm_node *entry;
   1122 	u64 total_used = 0, total_free = 0, total = 0;
   1123 
   1124 	total_free += drm_mm_dump_hole(p, &mm->head_node);
   1125 
   1126 	drm_mm_for_each_node(entry, mm) {
   1127 		drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": used\n", entry->start,
   1128 			   entry->start + entry->size, entry->size);
   1129 		total_used += entry->size;
   1130 		total_free += drm_mm_dump_hole(p, entry);
   1131 	}
   1132 	total = total_free + total_used;
   1133 
   1134 	drm_printf(p, "total: %"PRIu64", used %"PRIu64" free %"PRIu64"\n", total,
   1135 		   total_used, total_free);
   1136 }
   1137 EXPORT_SYMBOL(drm_mm_print);
   1138