Home | History | Annotate | Line # | Download | only in boot
      1 /*	$NetBSD: fd.c,v 1.12 2022/08/07 11:06:18 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (C) 1997-1998 Kazuki Sakamoto (sakamoto (at) NetBSD.org)
      5  * All rights reserved.
      6  *
      7  * Floppy Disk Drive standalone device driver
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed by Kazuki Sakamoto.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/param.h>
     36 #include <lib/libsa/stand.h>
     37 #include "boot.h"
     38 
     39 /*---------------------------------------------------------------------------*
     40  *			Floppy Disk Controller Define			     *
     41  *---------------------------------------------------------------------------*/
     42 /* Floppy Disk Controller Registers */
     43 int FDC_PORT[] = {				/* fdc base I/O port */
     44 		0x3f0, /* primary */
     45 		};
     46 #define	FDC_DOR(x)	(FDC_PORT[x] + 0x2)	/* motor drive control bits */
     47 #define	FDC_STATUS(x)	(FDC_PORT[x] + 0x4)	/* fdc main status register */
     48 #define	FDC_DATA(x)	(FDC_PORT[x] + 0x5)	/* fdc data register */
     49 #define	FDC_RATE(x)	(FDC_PORT[x] + 0x7)	/* transfer rate register */
     50 
     51 #define	FDC_IRQ		6
     52 #define	FD_DMA_CHAN	2
     53 
     54 /* fdc main status register */
     55 #define	RQM	  0x80	/* the host can transfer data if set */
     56 #define	DIO	  0x40	/* direction of data transfer. write required if set */
     57 #define	NON_DMA   0x20  /* fdc have date for transfer in non dma mode */
     58 #define	CMD_BUSY  0x10	/* command busy if set */
     59 
     60 /* fdc result status */
     61 #define	ST0_IC_MASK	0xc0	/* interrupt code  00:normal terminate */
     62 #define	ST1_EN		0x80	/* end of cylinder */
     63 
     64 /* fdc digtal output register */
     65 #define	DOR_DMAEN	0x08	/* DRQ, nDACK, TC and FINTR output enable */
     66 #define	DOR_RESET	0x04	/* fdc software reset */
     67 
     68 /* fdc command */
     69 #define	CMD_RECALIBRATE	0x07	/* recalibrate */
     70 #define	CMD_SENSE_INT	0x08	/* sense interrupt status */
     71 #define	CMD_DRV_SENSE	0x04	/* sense drive status */
     72 #define	CMD_SEEK	0x0f	/* seek */
     73 #define	CMD_FORMAT	0x4d	/* format */
     74 #define	CMD_READ	0x46	/* read e6 */
     75 #define	CMD_WRITE	0xc5	/* write */
     76 #define	CMD_VERIFY	0xf6	/* verify */
     77 #define	CMD_READID	0x4a	/* readID */
     78 #define	CMD_SPECIFY	0x03	/* specify */
     79 #define	CMD_CONFIG	0x13	/* config */
     80 #define	CMD_VERSION	0x10	/* version */
     81 
     82 /* command specify value */
     83 #define	SPECIFY1	((0x0d<<4)|0x0f)
     84 #define	SPECIFY2	((0x01<<1)|0)	/* DMA MODE */
     85 
     86 /* fdc result */
     87 #define	STATUS_MAX	16	/* result status max number */
     88 #define	RESULT_VERSION	0x90	/* enhanced controller */
     89 #define	RESULT_SEEK	0x20	/* seek & recalibrate complete flag on status0 */
     90 
     91 /*---------------------------------------------------------------------------*
     92  *			     Floppy Disk Type Define	 		     *
     93  *---------------------------------------------------------------------------*/
     94 struct	fdd_type {
     95 	int	seccount;	/* sector per track */
     96 	int	secsize;	/* byte per sector (uPD765 parameter) */
     97 	int	datalen;	/* data length */
     98 	int	gap;		/* gap */
     99 	int	gaplen;		/* gap length */
    100 	int	cylinder;	/* track per media */
    101 	int	maxseccount;	/* media max sector count */
    102 	int	step;		/* seek step */
    103 	int	rate;		/* drive rate (250 or 500kbps) */
    104 	int	heads;		/* heads */
    105 	int	f_gap;		/* format gap */
    106 	int	mselect;	/* drive mode select */
    107 	char	*type_name;	/* media type name */
    108 };
    109 typedef struct	fdd_type FDDTYPE;
    110 
    111 #define	FDTYPE_MAX	5
    112 FDDTYPE fdd_types[FDTYPE_MAX] = {
    113 	{ 18,2,0xff,0x1b,0x54,80,2880,1,0,2,0x6c,0,"2HQ" }, /* 2HD (PC/AT) */
    114 	{  8,3,0xff,0x35,0x74,77,1232,1,0,2,0x54,1,"2HD" }, /* 2HD (98) */
    115 	{ 15,2,0xff,0x1b,0x54,80,2400,1,0,2,0x54,1,"2HC" }, /* 2HC */
    116 	{  9,2,0xff,0x23,0x50,80,1440,1,2,2,0x50,1,"2DD9" },/* 2DD 9 sector */
    117 	{  8,2,0xff,0x3a,0x50,80,1280,1,2,2,0x50,1,"2DD8" },/* 2DD 8 sector */
    118 };
    119 
    120 int	fdsectors[] = {128, 256, 512, 1024, 2048, 4096};
    121 #define	SECTOR_MAX	4096
    122 #define	FDBLK	(fdsectors[un->un_type->secsize])
    123 
    124 #define	START_CYL	0
    125 #define	START_SECTOR	1
    126 
    127 #define	DELAY(x)	delay(100000 * x)		/* about 100ms */
    128 #define	INT_TIMEOUT	3000000
    129 
    130 /*---------------------------------------------------------------------------*
    131  *			FDC Device Driver Define			     *
    132  *---------------------------------------------------------------------------*/
    133 #define	CTLR_MAX	1
    134 #define	UNIT_MAX	2
    135 
    136 struct	fd_unit {
    137 	int	ctlr;
    138 	int	unit;
    139 	u_int	un_flags;		/* unit status flag */
    140 	int	stat[STATUS_MAX];	/* result code */
    141 	FDDTYPE	*un_type;		/* floppy type (pointer) */
    142 };
    143 typedef	struct fd_unit FD_UNIT;
    144 FD_UNIT	fd_unit[CTLR_MAX][UNIT_MAX];
    145 
    146 /*
    147  *	un_flags flags
    148  */
    149 #define	INT_ALIVE	0x00000001	/* Device is Alive and Available */
    150 #define	INT_READY	0x00000002	/* Device is Ready */
    151 #define	INT_BUSY	0x00000004	/* Device is busy */
    152 
    153 /*---------------------------------------------------------------------------*
    154  *				Misc define				     *
    155  *---------------------------------------------------------------------------*/
    156 #define	TIMEOUT		10000000
    157 #define	ND_TIMEOUT	10000000
    158 
    159 #define	SUCCESS		0
    160 #define	FAIL		-1
    161 
    162 /*
    163  *	function declaration
    164  */
    165 int fdinit(FD_UNIT *);
    166 int fdopen(struct open_file *, int, int);
    167 int fdclose(struct open_file *);
    168 int fdioctl(struct open_file *, u_long, void *);
    169 int fdstrategy(void *, int, daddr_t, size_t, void *, size_t *);
    170 int fdc_out(int, int);
    171 int fdc_in(int, u_char *);
    172 int fdc_intr_wait(void);
    173 int fd_check(FD_UNIT *);
    174 void motor_on(int, int);
    175 void motor_off(int, int);
    176 void fdReset(int);
    177 void fdRecalibrate(int, int);
    178 void fdSpecify(int);
    179 void fdDriveStatus(int, int, int, int *);
    180 int fdSeek(int, int, int);
    181 int fdSenseInt(int, int *);
    182 int fdReadWrite(FD_UNIT *, int, int, int, int, u_char *);
    183 void irq_init(void);
    184 int irq_polling(int, int);
    185 void dma_setup(u_char *, int, int, int);
    186 int dma_finished(int);
    187 
    188 /*===========================================================================*
    189  *				   fdinit				     *
    190  *===========================================================================*/
    191 int
    192 fdinit(FD_UNIT *un)
    193 {
    194 	int ctlr = un->ctlr;
    195 	u_char result;
    196 
    197 #if 0
    198 	irq_init();
    199 #endif
    200 	fdReset(ctlr);
    201 
    202 	if (fdc_out(ctlr, CMD_VERSION) != SUCCESS) {  /* version check */
    203 		printf ("fdc%d:fatal error: CMD_VERSION cmd fail\n", ctlr);
    204 		return (FAIL);
    205 	}
    206 	if (fdc_in(ctlr, &result) != SUCCESS) {
    207 		printf ("fdc%d:fatal error: CMD_VERSION exec fail\n", ctlr);
    208 		return (FAIL);
    209 	}
    210 	if (result != (u_char)RESULT_VERSION) {
    211 		printf ("fdc%d:fatal error: unknown version fdc\n", ctlr);
    212 		return (FAIL);
    213 	}
    214 
    215 	un->un_flags = INT_ALIVE;
    216 	return (SUCCESS);
    217 }
    218 
    219 /*===========================================================================*
    220  *				   fdopen				     *
    221  *===========================================================================*/
    222 int
    223 fdopen(struct open_file *f, int ctlr, int unit)
    224 {
    225 	FD_UNIT	*un;
    226 	int *stat;
    227 
    228 	if (ctlr >= CTLR_MAX)
    229 		return (ENXIO);
    230 	if (unit >= UNIT_MAX)
    231 		return (ENXIO);
    232 	un = &fd_unit[ctlr][unit];
    233 	stat = un->stat;
    234 
    235 	if (!(un->un_flags & INT_ALIVE)) {
    236 		if (fdinit(un) != SUCCESS)
    237 			return (ENXIO);
    238 	}
    239 
    240 	motor_on(ctlr, unit);
    241 
    242 	fdRecalibrate(ctlr, unit);
    243 	fdSenseInt(ctlr, stat);
    244 	if (stat[1] != START_CYL) {
    245 		printf("fdc%d: unit:%d recalibrate failed. status:0x%x cyl:%d\n",
    246 			ctlr, unit, stat[0], stat[1]);
    247 		motor_off(ctlr, unit);
    248 		return (EIO);
    249 	}
    250 
    251 	if (fd_check(un) != SUCCESS)	/* research disk type */
    252 		return (EIO);
    253 
    254 	f->f_devdata = (void *)un;
    255 	return (SUCCESS);
    256 }
    257 
    258 /*===========================================================================*
    259  *				   fdclose				     *
    260  *===========================================================================*/
    261 int
    262 fdclose(struct open_file *f)
    263 {
    264 	FD_UNIT *un = f->f_devdata;
    265 
    266 	fdRecalibrate(un->ctlr, un->unit);
    267 	fdSenseInt(un->ctlr, un->stat);
    268 	motor_off(un->ctlr, un->unit);
    269 	un->un_flags = 0;
    270 	return (SUCCESS);
    271 }
    272 
    273 /*===========================================================================*
    274  *				   fdioctl				     *
    275  *===========================================================================*/
    276 int
    277 fdioctl(struct open_file *f, u_long cmd, void *arg)
    278 {
    279 
    280 	switch (cmd) {
    281 	default:
    282 		return (EIO);
    283 	}
    284 
    285 	return (SUCCESS);
    286 }
    287 
    288 /*===========================================================================*
    289  *				   fdstrategy				     *
    290  *===========================================================================*/
    291 int
    292 fdstrategy(void *devdata, int func, daddr_t blk, size_t size, void *buf,
    293 	   size_t *rsize)
    294 {
    295 	int sectrac, cyl, head, sec;
    296 	FD_UNIT *un = devdata;
    297 	int ctlr = un->ctlr;
    298 	int unit = un->unit;
    299 	int *stat = un->stat;
    300 	long blknum;
    301 	int fd_skip = 0;
    302 	u_char *cbuf = (u_char *)buf;
    303 
    304 	if (un->un_flags & INT_BUSY) {
    305 		return (ENXIO);
    306 	}
    307 	fdDriveStatus(ctlr, unit, 0, stat);
    308 
    309 	sectrac = un->un_type->seccount;	/* sector per track */
    310 	*rsize = 0;
    311 
    312 	while (fd_skip < size) {
    313 		blknum = (u_long)blk * DEV_BSIZE/FDBLK + fd_skip/FDBLK;
    314 		cyl = blknum / (sectrac * 2);
    315 		fdSeek(ctlr, unit, cyl);
    316 		fdSenseInt(ctlr, stat);
    317 		if (!(stat[0] & RESULT_SEEK)) {
    318 			printf("fdc%d: unit:%d seek failed."
    319 				"status:0x%x cyl:%d pcyl:%d\n",
    320 				ctlr, unit, stat[0], cyl, stat[1]);
    321 			goto bad;
    322 		}
    323 
    324 		sec = blknum % (sectrac * 2);
    325 		head = sec / sectrac;
    326 		sec = sec % sectrac + 1;
    327 
    328 		if (fdReadWrite(un, func, cyl, head, sec, cbuf) == FAIL) {
    329 			printf("fdc%d: unit%d fdReadWrite error [%s]\n",
    330 			    ctlr, unit, (func==F_READ?"READ":"WRITE"));
    331 			goto bad;
    332 		}
    333 
    334 		*rsize += FDBLK;
    335 		cbuf += FDBLK;
    336 		fd_skip += FDBLK;
    337 	}
    338 	return (SUCCESS);
    339 
    340 bad:
    341 	return (FAIL);
    342 }
    343 
    344 /*===========================================================================*
    345  *				   fd_check				     *
    346  *===========================================================================*/
    347 /*
    348  *	this function is Check floppy disk Type
    349  */
    350 int
    351 fd_check(FD_UNIT *un)
    352 {
    353 	int ctlr = un->ctlr;
    354 	int unit = un->unit;
    355 	int *stat = un->stat;
    356 	int type;
    357 	static u_char sec_buff[SECTOR_MAX];
    358 
    359 	un->un_type = (FDDTYPE *)FAIL;
    360 	for (type = 0; type < FDTYPE_MAX; type++) {
    361 		un->un_type = &fdd_types[type];
    362 
    363 		/* try read start sector */
    364 		outb(FDC_RATE(ctlr), un->un_type->rate);   /* rate set */
    365 		fdSpecify(ctlr);
    366 		fdSeek(ctlr, unit, START_CYL);
    367 		fdSenseInt(ctlr, stat);
    368 		if (!(stat[0] & RESULT_SEEK) || stat[1] != START_CYL) {
    369 			printf("fdc%d: unit:%d seek failed. status:0x%x\n",
    370 				ctlr, unit, stat[0]);
    371 			goto bad;
    372 		}
    373 		if (fdReadWrite(un, F_READ,
    374 		    START_CYL, 0, START_SECTOR, sec_buff) == FAIL) {
    375 			continue;	/* bad disk type */
    376 		}
    377 		break;
    378 	}
    379 	if (un->un_type == (FDDTYPE *)FAIL) {
    380 		printf("fdc%d: unit:%d check disk type failed.\n",
    381 		ctlr, unit);
    382 		goto bad;
    383 	}
    384 	return (SUCCESS);
    385 bad:
    386 	return (FAIL);
    387 }
    388 
    389 /*
    390  * for FDC routines.
    391  */
    392 /*===========================================================================*
    393  *				fdc_out					     *
    394  *===========================================================================*/
    395 int
    396 fdc_out(int ctlr, int cmd)
    397 {
    398 	volatile int status;
    399 	int time_out;
    400 
    401 	time_out = TIMEOUT;
    402 	while (((status = inb(FDC_STATUS(ctlr))) & (RQM | DIO))
    403 		!= (RQM | 0) && time_out-- > 0);
    404 	if (time_out <= 0) {
    405 		printf("fdc_out: timeout  status = 0x%x\n", status);
    406 		return (FAIL);
    407 	}
    408 
    409 	outb(FDC_DATA(ctlr), cmd);
    410 
    411 	return (SUCCESS);
    412 }
    413 
    414 /*===========================================================================*
    415  *				fdc_in					     *
    416  *===========================================================================*/
    417 int
    418 fdc_in(int ctlr, u_char *data)
    419 {
    420 	volatile int status;
    421 	int time_out;
    422 
    423 	time_out = TIMEOUT;
    424 	while ((status = inb(FDC_STATUS(ctlr)) & (RQM | DIO))
    425 	    != (RQM | DIO) && time_out-- > 0) {
    426 		if (status == RQM) {
    427 			printf("fdc_in:error:ready for output\n");
    428 			return (FAIL);
    429 		}
    430 	}
    431 
    432 	if (time_out <= 0) {
    433 		printf("fdc_in:input ready timeout\n");
    434 		return (FAIL);
    435 	}
    436 
    437 	if (data) *data = (u_char)inb(FDC_DATA(ctlr));
    438 
    439 	return (SUCCESS);
    440 }
    441 
    442 /*===========================================================================*
    443  *                              fdc_intr_wait                                *
    444  *===========================================================================*/
    445 int
    446 fdc_intr_wait(void)
    447 {
    448 
    449 	return (irq_polling(FDC_IRQ, INT_TIMEOUT));	/* wait interrupt */
    450 }
    451 
    452 /*===========================================================================*
    453  *		   	     fdc command function	 	    	     *
    454  *===========================================================================*/
    455 void
    456 motor_on(int ctlr, int unit)
    457 {
    458 
    459 	outb(FDC_DOR(ctlr), DOR_RESET | DOR_DMAEN | unit
    460 		| (1 << (unit + 4)));	/* reset & unit motor on */
    461 	DELAY(1);		/* wait 100msec */
    462 }
    463 
    464 void
    465 motor_off(int ctlr, int unit)
    466 {
    467 
    468 	outb(FDC_DOR(ctlr), DOR_RESET);		/* reset & motor off */
    469 	if (fdc_intr_wait() == FAIL)		/* wait interrupt */
    470 		printf("fdc: motor off failed.\n");
    471 }
    472 
    473 void
    474 fdReset(int ctlr)
    475 {
    476 
    477 	outb(FDC_DOR(ctlr), 0); /* fdc reset */
    478 	DELAY(3);
    479 	outb(FDC_DOR(ctlr), DOR_RESET);
    480 	DELAY(8);
    481 }
    482 
    483 void
    484 fdRecalibrate(int ctlr, int unit)
    485 {
    486 
    487 	fdc_out(ctlr, CMD_RECALIBRATE);
    488 	fdc_out(ctlr, unit);
    489 
    490 	if (fdc_intr_wait() == FAIL)   /* wait interrupt */
    491 		printf("fdc: recalibrate Timeout\n");
    492 }
    493 
    494 void
    495 fdSpecify(int ctlr)
    496 {
    497 
    498 	fdc_out(ctlr, CMD_SPECIFY);
    499 	fdc_out(ctlr, SPECIFY1);
    500 	fdc_out(ctlr, SPECIFY2);
    501 }
    502 
    503 void
    504 fdDriveStatus(int ctlr, register int unit, register int head,
    505 	      register int *stat)
    506 {
    507 	u_char result;
    508 
    509 	fdc_out(ctlr, CMD_DRV_SENSE);
    510 	fdc_out(ctlr, (head << 2) | unit);
    511 	fdc_in(ctlr, &result);
    512 	*stat = (int)(result & 0xff);
    513 }
    514 
    515 int
    516 fdSeek(int ctlr, int unit, int cyl)
    517 {
    518 	int ret_val = 0;
    519 
    520 	fdc_out(ctlr, CMD_SEEK);
    521 	fdc_out(ctlr, unit);
    522 	fdc_out(ctlr, cyl);
    523 
    524         if (fdc_intr_wait() == FAIL) {		/* wait interrupt */
    525 		printf("fdc: fdSeek Timeout\n");
    526 		ret_val = FAIL;
    527 	}
    528 
    529 	return(ret_val);
    530 }
    531 
    532 int
    533 fdSenseInt(int ctlr, int *stat)
    534 {
    535 	u_char result;
    536 
    537 	fdc_out(ctlr, CMD_SENSE_INT);
    538 
    539 	fdc_in(ctlr, &result);
    540 	*stat++ = (int)(result & 0xff);
    541 	fdc_in(ctlr, &result);
    542 	*stat++ = (int)(result & 0xff);
    543 
    544 	return (0);
    545 }
    546 
    547 int
    548 fdReadWrite(FD_UNIT *un, int func, int cyl, int head, int sec, u_char *adrs)
    549 {
    550 	int i;
    551 	int ctlr = un->ctlr;
    552 	int unit = un->unit;
    553 	int *stat = un->stat;
    554 	u_char result;
    555 
    556 #if 0
    557 printf("%s:", (func == F_READ ? "READ" : "WRITE"));
    558 printf("cyl = %d", cyl);
    559 printf("head = %d", head);
    560 printf("sec = %d", sec);
    561 printf("secsize = %d", un->un_type->secsize);
    562 printf("seccount = %d", un->un_type->seccount);
    563 printf("gap = %d", un->un_type->gap);
    564 printf("datalen = %d\n", un->un_type->datalen);
    565 #endif
    566 
    567 	dma_setup(adrs, FDBLK, func, FD_DMA_CHAN);
    568 	fdc_out(ctlr, (func == F_READ ? CMD_READ : CMD_WRITE));
    569 	fdc_out(ctlr, (head<<2) | unit);
    570 	fdc_out(ctlr, cyl);			/* cyl */
    571 	fdc_out(ctlr, head);			/* head */
    572 	fdc_out(ctlr, sec);			/* sec */
    573 	fdc_out(ctlr, un->un_type->secsize);	/* secsize */
    574 	fdc_out(ctlr, un->un_type->seccount);	/* EOT (end of track) */
    575 	fdc_out(ctlr, un->un_type->gap);	/* GAP3 */
    576 	fdc_out(ctlr, un->un_type->datalen);	/* DTL (data length) */
    577 
    578 	if (fdc_intr_wait() == FAIL) {  /* wait interrupt */
    579 		printf("fdc: DMA transfer Timeout\n");
    580 		return (FAIL);
    581 	}
    582 
    583 	for (i = 0; i < 7; i++) {
    584 		fdc_in(ctlr, &result);
    585 		stat[i] = (int)(result & 0xff);
    586 	}
    587 	if (stat[0] & ST0_IC_MASK) {	/* not normal terminate */
    588 		if ((stat[1] & ~ST1_EN) || stat[2])
    589 		goto bad;
    590 	}
    591 	if (!dma_finished(FD_DMA_CHAN)) {
    592 		printf("DMA not finished\n");
    593 		goto bad;
    594 	}
    595 	return (SUCCESS);
    596 
    597 bad:
    598 	printf("       func: %s\n", (func == F_READ ? "F_READ" : "F_WRITE"));
    599 	printf("	st0 = 0x%x\n", stat[0]);
    600 	printf("	st1 = 0x%x\n", stat[1]);
    601 	printf("	st2 = 0x%x\n", stat[2]);
    602 	printf("	  c = 0x%x\n", stat[3]);
    603 	printf("	  h = 0x%x\n", stat[4]);
    604 	printf("	  r = 0x%x\n", stat[5]);
    605 	printf("	  n = 0x%x\n", stat[6]);
    606 	return (FAIL);
    607 }
    608 
    609 /*-----------------------------------------------------------------------
    610  * Interrupt Controller Operation Functions
    611  *-----------------------------------------------------------------------
    612  */
    613 
    614 /* 8259A interrupt controller register */
    615 #define	INT_CTL0	0x20
    616 #define	INT_CTL1	0x21
    617 #define	INT2_CTL0	0xA0
    618 #define	INT2_CTL1	0xA1
    619 
    620 #define	CASCADE_IRQ	2
    621 
    622 #define	ICW1_AT		0x11    /* edge triggered, cascade, need ICW4 */
    623 #define	ICW4_AT		0x01    /* not SFNM, not buffered, normal EOI, 8086 */
    624 #define	OCW3_PL		0x0e	/* polling mode */
    625 #define	OCW2_CLEAR	0x20	/* interrupt clear */
    626 
    627 /*
    628  * IRC programing sequence
    629  *
    630  * after reset
    631  * 1.	ICW1 (write port:INT_CTL0 data:bit4=1)
    632  * 2.	ICW2 (write port:INT_CTL1)
    633  * 3.	ICW3 (write port:INT_CTL1)
    634  * 4.	ICW4 (write port:INT_CTL1)
    635  *
    636  * after ICW
    637  *	OCW1 (write port:INT_CTL1)
    638  *	OCW2 (write port:INT_CTL0 data:bit3=0,bit4=0)
    639  *	OCW3 (write port:INT_CTL0 data:bit3=1,bit4=0)
    640  *
    641  *	IMR  (read port:INT_CTL1)
    642  *	IRR  (read port:INT_CTL0)	OCW3(bit1=1,bit0=0)
    643  *	ISR  (read port:INT_CTL0)	OCW3(bit1=1,bit0=1)
    644  *	PL   (read port:INT_CTL0)	OCW3(bit2=1,bit1=1)
    645  */
    646 
    647 u_int INT_MASK;
    648 u_int INT2_MASK;
    649 
    650 /*===========================================================================*
    651  *                             irq initialize                                *
    652  *===========================================================================*/
    653 void
    654 irq_init(void)
    655 {
    656 	outb(INT_CTL0, ICW1_AT);		/* ICW1 */
    657 	outb(INT_CTL1, 0);			/* ICW2 for master */
    658 	outb(INT_CTL1, (1 << CASCADE_IRQ));	/* ICW3 tells slaves */
    659 	outb(INT_CTL1, ICW4_AT);		/* ICW4 */
    660 
    661 	outb(INT_CTL1, (INT_MASK = ~(1 << CASCADE_IRQ)));
    662 				/* IRQ mask(exclusive of cascade) */
    663 
    664 	outb(INT2_CTL0, ICW1_AT);		/* ICW1 */
    665 	outb(INT2_CTL1, 8); 			/* ICW2 for slave */
    666 	outb(INT2_CTL1, CASCADE_IRQ);		/* ICW3 is slave nr */
    667 	outb(INT2_CTL1, ICW4_AT);		/* ICW4 */
    668 
    669 	outb(INT2_CTL1, (INT2_MASK = ~0));	/* IRQ 8-15 mask */
    670 }
    671 
    672 /*===========================================================================*
    673  *                           irq polling check                               *
    674  *===========================================================================*/
    675 int
    676 irq_polling(int irq_no, int timeout)
    677 {
    678 	int	irc_no;
    679 	int	data;
    680 	int	ret;
    681 
    682 	if (irq_no > 8) irc_no = 1;
    683 		else irc_no = 0;
    684 
    685 	outb(irc_no ? INT2_CTL1 : INT_CTL1, ~(1 << (irq_no >> (irc_no * 3))));
    686 
    687 	while (--timeout > 0) {
    688 		outb(irc_no ? INT2_CTL0 : INT_CTL0, OCW3_PL);
    689 						/* set polling mode */
    690 		data = inb(irc_no ? INT2_CTL0 : INT_CTL0);
    691 		if (data & 0x80) {	/* if interrupt request */
    692 			if ((irq_no >> (irc_no * 3)) == (data & 0x7)) {
    693 				ret = SUCCESS;
    694 				break;
    695 			}
    696 		}
    697 	}
    698 	if (!timeout) ret = FAIL;
    699 
    700 	if (irc_no) {				/* interrupt clear */
    701 		outb(INT2_CTL0, OCW2_CLEAR | (irq_no >> 3));
    702 		outb(INT_CTL0, OCW2_CLEAR | CASCADE_IRQ);
    703 	} else {
    704 		outb(INT_CTL0, OCW2_CLEAR | irq_no);
    705 	}
    706 
    707 	outb(INT_CTL1, INT_MASK);
    708 	outb(INT2_CTL1, INT2_MASK);
    709 
    710 	return (ret);
    711 }
    712 
    713 /*---------------------------------------------------------------------------*
    714  *			DMA Controller Define			 	     *
    715  *---------------------------------------------------------------------------*/
    716 /* DMA Controller Registers */
    717 #define	DMA_ADDR	0x004    /* port for low 16 bits of DMA address */
    718 #define	DMA_LTOP	0x081    /* port for top low 8bit DMA addr(ch2) */
    719 #define	DMA_HTOP	0x481    /* port for top high 8bit DMA addr(ch2) */
    720 #define	DMA_COUNT	0x005    /* port for DMA count (count =  bytes - 1) */
    721 #define	DMA_DEVCON	0x008    /* DMA device control register */
    722 #define	DMA_SR		0x008    /* DMA status register */
    723 #define	DMA_RESET	0x00D    /* DMA software reset register */
    724 #define	DMA_FLIPFLOP	0x00C    /* DMA byte pointer flip-flop */
    725 #define	DMA_MODE	0x00B    /* DMA mode port */
    726 #define	DMA_INIT	0x00A    /* DMA init port */
    727 
    728 #define	DMA_RESET_VAL	0x06
    729 /* DMA channel commands. */
    730 #define	DMA_READ	0x46    /* DMA read opcode */
    731 #define	DMA_WRITE	0x4A    /* DMA write opcode */
    732 
    733 /*===========================================================================*
    734  *				dma_setup				     *
    735  *===========================================================================*/
    736 void
    737 dma_setup(u_char *buf, int size, int func, int chan)
    738 {
    739 	u_long pbuf = local_to_PCI((u_long)buf);
    740 
    741 #if 0
    742 	outb(DMA_RESET, 0);
    743 	DELAY(1);
    744 	outb(DMA_DEVCON, 0x00);
    745 	outb(DMA_INIT, DMA_RESET_VAL);	/* reset the dma controller */
    746 #endif
    747 	outb(DMA_MODE, func == F_READ ? DMA_READ : DMA_WRITE);
    748 	outb(DMA_FLIPFLOP, 0);		/* write anything to reset it */
    749 
    750 	outb(DMA_ADDR, (int)pbuf >>  0);
    751 	outb(DMA_ADDR, (int)pbuf >>  8);
    752 	outb(DMA_LTOP, (int)pbuf >> 16);
    753 	outb(DMA_HTOP, (int)pbuf >> 24);
    754 
    755 	outb(DMA_COUNT, (size - 1) >> 0);
    756 	outb(DMA_COUNT, (size - 1) >> 8);
    757 	outb(DMA_INIT, chan);		/* some sort of enable */
    758 }
    759 
    760 int
    761 dma_finished(int chan)
    762 {
    763 
    764 	return ((inb(DMA_SR) & 0x0f) == (1 << chan));
    765 }
    766