Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_dagdegrd.c,v 1.33 2022/01/24 09:14:37 andvar Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegrd.c
     31  *
     32  * code for creating degraded read DAGs
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.33 2022/01/24 09:14:37 andvar Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegrd.h"
     48 #include "rf_map.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 void
     79 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
     80 				 RF_AccessStripeMap_t *asmap,
     81 				 RF_DagHeader_t *dag_h,
     82 				 void *bp,
     83 				 RF_RaidAccessFlags_t flags,
     84 				 RF_AllocListElem_t *allocList)
     85 {
     86 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     87 	    &rf_xorRecoveryFuncs);
     88 }
     89 
     90 
     91 /******************************************************************************
     92  *
     93  * DAG creation code begins here
     94  */
     95 
     96 
     97 /******************************************************************************
     98  * Create a degraded read DAG for RAID level 1
     99  *
    100  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
    101  *
    102  * The "Rd" node reads data from the surviving disk in the mirror pair
    103  *   Rpd - read of primary copy
    104  *   Rsd - read of secondary copy
    105  *
    106  * Parameters:  raidPtr   - description of the physical array
    107  *              asmap     - logical & physical addresses for this access
    108  *              bp        - buffer ptr (for holding write data)
    109  *              flags     - general flags (e.g. disk locking)
    110  *              allocList - list of memory allocated in DAG creation
    111  *****************************************************************************/
    112 
    113 void
    114 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
    115 				RF_AccessStripeMap_t *asmap,
    116 				RF_DagHeader_t *dag_h,
    117 				void *bp,
    118 				RF_RaidAccessFlags_t flags,
    119 				RF_AllocListElem_t *allocList)
    120 {
    121 	RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
    122 	RF_StripeNum_t parityStripeID;
    123 	RF_ReconUnitNum_t which_ru;
    124 	RF_PhysDiskAddr_t *pda;
    125 	int     useMirror;
    126 
    127 	useMirror = 0;
    128 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    129 	    asmap->raidAddress, &which_ru);
    130 #if RF_DEBUG_DAG
    131 	if (rf_dagDebug) {
    132 		printf("[Creating RAID level 1 degraded read DAG]\n");
    133 	}
    134 #endif
    135 	dag_h->creator = "RaidOneDegradedReadDAG";
    136 	/* alloc the Wnd nodes and the Wmir node */
    137 	if (asmap->numDataFailed == 0)
    138 		useMirror = RF_FALSE;
    139 	else
    140 		useMirror = RF_TRUE;
    141 
    142 	/* total number of nodes = 1 + (block + commit + terminator) */
    143 
    144 	rdNode = rf_AllocDAGNode(raidPtr);
    145 	rdNode->list_next = dag_h->nodes;
    146 	dag_h->nodes = rdNode;
    147 
    148 	blockNode = rf_AllocDAGNode(raidPtr);
    149 	blockNode->list_next = dag_h->nodes;
    150 	dag_h->nodes = blockNode;
    151 
    152 	commitNode = rf_AllocDAGNode(raidPtr);
    153 	commitNode->list_next = dag_h->nodes;
    154 	dag_h->nodes = commitNode;
    155 
    156 	termNode = rf_AllocDAGNode(raidPtr);
    157 	termNode->list_next = dag_h->nodes;
    158 	dag_h->nodes = termNode;
    159 
    160 	/* this dag can not commit until the commit node is reached.   errors
    161 	 * prior to the commit point imply the dag has failed and must be
    162 	 * retried */
    163 	dag_h->numCommitNodes = 1;
    164 	dag_h->numCommits = 0;
    165 	dag_h->numSuccedents = 1;
    166 
    167 	/* initialize the block, commit, and terminator nodes */
    168 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    169 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    170 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    171 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    172 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    173 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    174 
    175 	pda = asmap->physInfo;
    176 	RF_ASSERT(pda != NULL);
    177 	/* parityInfo must describe entire parity unit */
    178 	RF_ASSERT(asmap->parityInfo->next == NULL);
    179 
    180 	/* initialize the data node */
    181 	if (!useMirror) {
    182 		/* read primary copy of data */
    183 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    184 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    185 		rdNode->params[0].p = pda;
    186 		rdNode->params[1].p = pda->bufPtr;
    187 		rdNode->params[2].v = parityStripeID;
    188 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    189 						       which_ru);
    190 	} else {
    191 		/* read secondary copy of data */
    192 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    193 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    194 		rdNode->params[0].p = asmap->parityInfo;
    195 		rdNode->params[1].p = pda->bufPtr;
    196 		rdNode->params[2].v = parityStripeID;
    197 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    198 						       which_ru);
    199 	}
    200 
    201 	/* connect header to block node */
    202 	RF_ASSERT(dag_h->numSuccedents == 1);
    203 	RF_ASSERT(blockNode->numAntecedents == 0);
    204 	dag_h->succedents[0] = blockNode;
    205 
    206 	/* connect block node to rdnode */
    207 	RF_ASSERT(blockNode->numSuccedents == 1);
    208 	RF_ASSERT(rdNode->numAntecedents == 1);
    209 	blockNode->succedents[0] = rdNode;
    210 	rdNode->antecedents[0] = blockNode;
    211 	rdNode->antType[0] = rf_control;
    212 
    213 	/* connect rdnode to commit node */
    214 	RF_ASSERT(rdNode->numSuccedents == 1);
    215 	RF_ASSERT(commitNode->numAntecedents == 1);
    216 	rdNode->succedents[0] = commitNode;
    217 	commitNode->antecedents[0] = rdNode;
    218 	commitNode->antType[0] = rf_control;
    219 
    220 	/* connect commit node to terminator */
    221 	RF_ASSERT(commitNode->numSuccedents == 1);
    222 	RF_ASSERT(termNode->numAntecedents == 1);
    223 	RF_ASSERT(termNode->numSuccedents == 0);
    224 	commitNode->succedents[0] = termNode;
    225 	termNode->antecedents[0] = commitNode;
    226 	termNode->antType[0] = rf_control;
    227 }
    228 
    229 
    230 
    231 /******************************************************************************
    232  *
    233  * creates a DAG to perform a degraded-mode read of data within one stripe.
    234  * This DAG is as follows:
    235  *
    236  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
    237  *              -> Rrd ->
    238  *              -> Rp -->
    239  *
    240  * Each R node is a successor of the L node
    241  * One successor arc from each R node goes to C, and the other to X
    242  * There is one Rud for each chunk of surviving user data requested by the
    243  * user, and one Rrd for each chunk of surviving user data _not_ being read by
    244  * the user
    245  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
    246  * X = XOR, C = Commit, T = terminate
    247  *
    248  * The block node guarantees a single source node.
    249  *
    250  * Note:  The target buffer for the XOR node is set to the actual user buffer
    251  * where the failed data is supposed to end up.  This buffer is zero'd by the
    252  * code here.  Thus, if you create a degraded read dag, use it, and then
    253  * re-use, you have to be sure to zero the target buffer prior to the re-use.
    254  *
    255  * The recfunc argument at the end specifies the name and function used for
    256  * the redundancy
    257  * recovery function.
    258  *
    259  *****************************************************************************/
    260 
    261 void
    262 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    263 			 RF_DagHeader_t *dag_h, void *bp,
    264 			 RF_RaidAccessFlags_t flags,
    265 			 RF_AllocListElem_t *allocList,
    266 			 const RF_RedFuncs_t *recFunc)
    267 {
    268 	RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
    269 	RF_DagNode_t *commitNode, *rpNode, *termNode;
    270 	RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
    271 	int     nRrdNodes, nRudNodes, nXorBufs, i;
    272 	int     j, paramNum;
    273 	RF_SectorCount_t sectorsPerSU;
    274 	RF_ReconUnitNum_t which_ru;
    275 	char    overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
    276 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    277 	RF_PhysDiskAddr_t *pda, *parityPDA;
    278 	RF_StripeNum_t parityStripeID;
    279 	RF_PhysDiskAddr_t *failedPDA;
    280 	RF_RaidLayout_t *layoutPtr;
    281 	char   *rpBuf;
    282 
    283 	layoutPtr = &(raidPtr->Layout);
    284 	/* failedPDA points to the pda within the asm that targets the failed
    285 	 * disk */
    286 	failedPDA = asmap->failedPDAs[0];
    287 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    288 	    asmap->raidAddress, &which_ru);
    289 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    290 
    291 #if RF_DEBUG_DAG
    292 	if (rf_dagDebug) {
    293 		printf("[Creating degraded read DAG]\n");
    294 	}
    295 #endif
    296 	RF_ASSERT(asmap->numDataFailed == 1);
    297 	dag_h->creator = "DegradedReadDAG";
    298 
    299 	/*
    300          * generate two ASMs identifying the surviving data we need
    301          * in order to recover the lost data
    302          */
    303 
    304 	/* overlappingPDAs array must be zero'd */
    305 	memset(overlappingPDAs, 0, RF_MAXCOL);
    306 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
    307 	    &rpBuf, overlappingPDAs, allocList);
    308 
    309 	/*
    310          * create all the nodes at once
    311          *
    312          * -1 because no access is generated for the failed pda
    313          */
    314 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
    315 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    316 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    317 
    318 	blockNode = rf_AllocDAGNode(raidPtr);
    319 	blockNode->list_next = dag_h->nodes;
    320 	dag_h->nodes = blockNode;
    321 
    322 	commitNode = rf_AllocDAGNode(raidPtr);
    323 	commitNode->list_next = dag_h->nodes;
    324 	dag_h->nodes = commitNode;
    325 
    326 	xorNode = rf_AllocDAGNode(raidPtr);
    327 	xorNode->list_next = dag_h->nodes;
    328 	dag_h->nodes = xorNode;
    329 
    330 	rpNode = rf_AllocDAGNode(raidPtr);
    331 	rpNode->list_next = dag_h->nodes;
    332 	dag_h->nodes = rpNode;
    333 
    334 	termNode = rf_AllocDAGNode(raidPtr);
    335 	termNode->list_next = dag_h->nodes;
    336 	dag_h->nodes = termNode;
    337 
    338 	for (i = 0; i < nRudNodes; i++) {
    339 		tmpNode = rf_AllocDAGNode(raidPtr);
    340 		tmpNode->list_next = dag_h->nodes;
    341 		dag_h->nodes = tmpNode;
    342 	}
    343 	rudNodes = dag_h->nodes;
    344 
    345 	for (i = 0; i < nRrdNodes; i++) {
    346 		tmpNode = rf_AllocDAGNode(raidPtr);
    347 		tmpNode->list_next = dag_h->nodes;
    348 		dag_h->nodes = tmpNode;
    349 	}
    350 	rrdNodes = dag_h->nodes;
    351 
    352 	/* initialize nodes */
    353 	dag_h->numCommitNodes = 1;
    354 	dag_h->numCommits = 0;
    355 	/* this dag can not commit until the commit node is reached errors
    356 	 * prior to the commit point imply the dag has failed */
    357 	dag_h->numSuccedents = 1;
    358 
    359 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    360 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    361 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    362 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    363 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    364 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    365 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
    366 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
    367 	    recFunc->SimpleName, allocList);
    368 
    369 	/* fill in the Rud nodes */
    370 	tmprudNode = rudNodes;
    371 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
    372 		if (pda == failedPDA) {
    373 			i--;
    374 			continue;
    375 		}
    376 		rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    377 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    378 		    "Rud", allocList);
    379 		RF_ASSERT(pda);
    380 		tmprudNode->params[0].p = pda;
    381 		tmprudNode->params[1].p = pda->bufPtr;
    382 		tmprudNode->params[2].v = parityStripeID;
    383 		tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    384 		tmprudNode = tmprudNode->list_next;
    385 	}
    386 
    387 	/* fill in the Rrd nodes */
    388 	i = 0;
    389 	tmprrdNode = rrdNodes;
    390 	if (new_asm_h[0]) {
    391 		for (pda = new_asm_h[0]->stripeMap->physInfo;
    392 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    393 		    i++, pda = pda->next) {
    394 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    395 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    396 			    dag_h, "Rrd", allocList);
    397 			RF_ASSERT(pda);
    398 			tmprrdNode->params[0].p = pda;
    399 			tmprrdNode->params[1].p = pda->bufPtr;
    400 			tmprrdNode->params[2].v = parityStripeID;
    401 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    402 			tmprrdNode = tmprrdNode->list_next;
    403 		}
    404 	}
    405 	if (new_asm_h[1]) {
    406 		/* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
    407 		   we need to just continue using tmprrdNode for the next 'j' elements. */
    408 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    409 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    410 		    j++, pda = pda->next) {
    411 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    412 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    413 			    dag_h, "Rrd", allocList);
    414 			RF_ASSERT(pda);
    415 			tmprrdNode->params[0].p = pda;
    416 			tmprrdNode->params[1].p = pda->bufPtr;
    417 			tmprrdNode->params[2].v = parityStripeID;
    418 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    419 			tmprrdNode = tmprrdNode->list_next;
    420 		}
    421 	}
    422 	/* make a PDA for the parity unit */
    423 	parityPDA = rf_AllocPhysDiskAddr(raidPtr);
    424 	parityPDA->next = dag_h->pda_cleanup_list;
    425 	dag_h->pda_cleanup_list = parityPDA;
    426 	parityPDA->col = asmap->parityInfo->col;
    427 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    428 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    429 	parityPDA->numSector = failedPDA->numSector;
    430 
    431 	/* initialize the Rp node */
    432 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    433 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
    434 	rpNode->params[0].p = parityPDA;
    435 	rpNode->params[1].p = rpBuf;
    436 	rpNode->params[2].v = parityStripeID;
    437 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    438 
    439 	/*
    440          * the last and nastiest step is to assign all
    441          * the parameters of the Xor node
    442          */
    443 	paramNum = 0;
    444 	tmprrdNode = rrdNodes;
    445 	for (i = 0; i < nRrdNodes; i++) {
    446 		/* all the Rrd nodes need to be xored together */
    447 		xorNode->params[paramNum++] = tmprrdNode->params[0];
    448 		xorNode->params[paramNum++] = tmprrdNode->params[1];
    449 		tmprrdNode = tmprrdNode->list_next;
    450 	}
    451 	tmprudNode = rudNodes;
    452 	for (i = 0; i < nRudNodes; i++) {
    453 		/* any Rud nodes that overlap the failed access need to be
    454 		 * xored in */
    455 		if (overlappingPDAs[i]) {
    456 			pda = rf_AllocPhysDiskAddr(raidPtr);
    457 			memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    458 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
    459 			pda->next = dag_h->pda_cleanup_list;
    460 			dag_h->pda_cleanup_list = pda;
    461 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    462 			xorNode->params[paramNum++].p = pda;
    463 			xorNode->params[paramNum++].p = pda->bufPtr;
    464 		}
    465 		tmprudNode = tmprudNode->list_next;
    466 	}
    467 
    468 	/* install parity pda as last set of params to be xor'd */
    469 	xorNode->params[paramNum++].p = parityPDA;
    470 	xorNode->params[paramNum++].p = rpBuf;
    471 
    472 	/*
    473          * the last 2 params to the recovery xor node are
    474          * the failed PDA and the raidPtr
    475          */
    476 	xorNode->params[paramNum++].p = failedPDA;
    477 	xorNode->params[paramNum++].p = raidPtr;
    478 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    479 
    480 	/*
    481          * The xor node uses results[0] as the target buffer.
    482          * Set pointer and zero the buffer. In the kernel, this
    483          * may be a user buffer in which case we have to remap it.
    484          */
    485 	xorNode->results[0] = failedPDA->bufPtr;
    486 	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
    487 		failedPDA->numSector));
    488 
    489 	/* connect nodes to form graph */
    490 	/* connect the header to the block node */
    491 	RF_ASSERT(dag_h->numSuccedents == 1);
    492 	RF_ASSERT(blockNode->numAntecedents == 0);
    493 	dag_h->succedents[0] = blockNode;
    494 
    495 	/* connect the block node to the read nodes */
    496 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
    497 	RF_ASSERT(rpNode->numAntecedents == 1);
    498 	blockNode->succedents[0] = rpNode;
    499 	rpNode->antecedents[0] = blockNode;
    500 	rpNode->antType[0] = rf_control;
    501 	tmprrdNode = rrdNodes;
    502 	for (i = 0; i < nRrdNodes; i++) {
    503 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    504 		blockNode->succedents[1 + i] = tmprrdNode;
    505 		tmprrdNode->antecedents[0] = blockNode;
    506 		tmprrdNode->antType[0] = rf_control;
    507 		tmprrdNode = tmprrdNode->list_next;
    508 	}
    509 	tmprudNode = rudNodes;
    510 	for (i = 0; i < nRudNodes; i++) {
    511 		RF_ASSERT(tmprudNode->numSuccedents == 1);
    512 		blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
    513 		tmprudNode->antecedents[0] = blockNode;
    514 		tmprudNode->antType[0] = rf_control;
    515 		tmprudNode = tmprudNode->list_next;
    516 	}
    517 
    518 	/* connect the read nodes to the xor node */
    519 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
    520 	RF_ASSERT(rpNode->numSuccedents == 1);
    521 	rpNode->succedents[0] = xorNode;
    522 	xorNode->antecedents[0] = rpNode;
    523 	xorNode->antType[0] = rf_trueData;
    524 	tmprrdNode = rrdNodes;
    525 	for (i = 0; i < nRrdNodes; i++) {
    526 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    527 		tmprrdNode->succedents[0] = xorNode;
    528 		xorNode->antecedents[1 + i] = tmprrdNode;
    529 		xorNode->antType[1 + i] = rf_trueData;
    530 		tmprrdNode = tmprrdNode->list_next;
    531 	}
    532 	tmprudNode = rudNodes;
    533 	for (i = 0; i < nRudNodes; i++) {
    534 		RF_ASSERT(tmprudNode->numSuccedents == 1);
    535 		tmprudNode->succedents[0] = xorNode;
    536 		xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
    537 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
    538 		tmprudNode = tmprudNode->list_next;
    539 	}
    540 
    541 	/* connect the xor node to the commit node */
    542 	RF_ASSERT(xorNode->numSuccedents == 1);
    543 	RF_ASSERT(commitNode->numAntecedents == 1);
    544 	xorNode->succedents[0] = commitNode;
    545 	commitNode->antecedents[0] = xorNode;
    546 	commitNode->antType[0] = rf_control;
    547 
    548 	/* connect the termNode to the commit node */
    549 	RF_ASSERT(commitNode->numSuccedents == 1);
    550 	RF_ASSERT(termNode->numAntecedents == 1);
    551 	RF_ASSERT(termNode->numSuccedents == 0);
    552 	commitNode->succedents[0] = termNode;
    553 	termNode->antType[0] = rf_control;
    554 	termNode->antecedents[0] = commitNode;
    555 }
    556 
    557 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
    558 /******************************************************************************
    559  * Create a degraded read DAG for Chained Declustering
    560  *
    561  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
    562  *
    563  * The "Rd" node reads data from the surviving disk in the mirror pair
    564  *   Rpd - read of primary copy
    565  *   Rsd - read of secondary copy
    566  *
    567  * Parameters:  raidPtr   - description of the physical array
    568  *              asmap     - logical & physical addresses for this access
    569  *              bp        - buffer ptr (for holding write data)
    570  *              flags     - general flags (e.g. disk locking)
    571  *              allocList - list of memory allocated in DAG creation
    572  *****************************************************************************/
    573 
    574 void
    575 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    576 			      RF_DagHeader_t *dag_h, void *bp,
    577 			      RF_RaidAccessFlags_t flags,
    578 			      RF_AllocListElem_t *allocList)
    579 {
    580 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    581 	RF_StripeNum_t parityStripeID;
    582 	int     useMirror, i, shiftable;
    583 	RF_ReconUnitNum_t which_ru;
    584 	RF_PhysDiskAddr_t *pda;
    585 
    586 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    587 		shiftable = RF_TRUE;
    588 	} else {
    589 		shiftable = RF_FALSE;
    590 	}
    591 	useMirror = 0;
    592 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    593 	    asmap->raidAddress, &which_ru);
    594 
    595 #if RF_DEBUG_DAG
    596 	if (rf_dagDebug) {
    597 		printf("[Creating RAID C degraded read DAG]\n");
    598 	}
    599 #endif
    600 	dag_h->creator = "RaidCDegradedReadDAG";
    601 	/* alloc the Wnd nodes and the Wmir node */
    602 	if (asmap->numDataFailed == 0)
    603 		useMirror = RF_FALSE;
    604 	else
    605 		useMirror = RF_TRUE;
    606 
    607 	/* total number of nodes = 1 + (block + commit + terminator) */
    608 	nodes = RF_MallocAndAdd(4 * sizeof(*nodes), allocList);
    609 	i = 0;
    610 	rdNode = &nodes[i];
    611 	i++;
    612 	blockNode = &nodes[i];
    613 	i++;
    614 	commitNode = &nodes[i];
    615 	i++;
    616 	termNode = &nodes[i];
    617 	i++;
    618 
    619 	/*
    620          * This dag can not commit until the commit node is reached.
    621          * Errors prior to the commit point imply the dag has failed
    622          * and must be retried.
    623          */
    624 	dag_h->numCommitNodes = 1;
    625 	dag_h->numCommits = 0;
    626 	dag_h->numSuccedents = 1;
    627 
    628 	/* initialize the block, commit, and terminator nodes */
    629 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    630 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    631 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    632 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    633 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    634 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    635 
    636 	pda = asmap->physInfo;
    637 	RF_ASSERT(pda != NULL);
    638 	/* parityInfo must describe entire parity unit */
    639 	RF_ASSERT(asmap->parityInfo->next == NULL);
    640 
    641 	/* initialize the data node */
    642 	if (!useMirror) {
    643 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    644 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    645 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
    646 			/* shift this read to the next disk in line */
    647 			rdNode->params[0].p = asmap->parityInfo;
    648 			rdNode->params[1].p = pda->bufPtr;
    649 			rdNode->params[2].v = parityStripeID;
    650 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    651 		} else {
    652 			/* read primary copy */
    653 			rdNode->params[0].p = pda;
    654 			rdNode->params[1].p = pda->bufPtr;
    655 			rdNode->params[2].v = parityStripeID;
    656 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    657 		}
    658 	} else {
    659 		/* read secondary copy of data */
    660 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    661 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    662 		rdNode->params[0].p = asmap->parityInfo;
    663 		rdNode->params[1].p = pda->bufPtr;
    664 		rdNode->params[2].v = parityStripeID;
    665 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    666 	}
    667 
    668 	/* connect header to block node */
    669 	RF_ASSERT(dag_h->numSuccedents == 1);
    670 	RF_ASSERT(blockNode->numAntecedents == 0);
    671 	dag_h->succedents[0] = blockNode;
    672 
    673 	/* connect block node to rdnode */
    674 	RF_ASSERT(blockNode->numSuccedents == 1);
    675 	RF_ASSERT(rdNode->numAntecedents == 1);
    676 	blockNode->succedents[0] = rdNode;
    677 	rdNode->antecedents[0] = blockNode;
    678 	rdNode->antType[0] = rf_control;
    679 
    680 	/* connect rdnode to commit node */
    681 	RF_ASSERT(rdNode->numSuccedents == 1);
    682 	RF_ASSERT(commitNode->numAntecedents == 1);
    683 	rdNode->succedents[0] = commitNode;
    684 	commitNode->antecedents[0] = rdNode;
    685 	commitNode->antType[0] = rf_control;
    686 
    687 	/* connect commit node to terminator */
    688 	RF_ASSERT(commitNode->numSuccedents == 1);
    689 	RF_ASSERT(termNode->numAntecedents == 1);
    690 	RF_ASSERT(termNode->numSuccedents == 0);
    691 	commitNode->succedents[0] = termNode;
    692 	termNode->antecedents[0] = commitNode;
    693 	termNode->antType[0] = rf_control;
    694 }
    695 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
    696 
    697 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
    698 /*
    699  * XXX move this elsewhere?
    700  */
    701 void
    702 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    703 			       RF_PhysDiskAddr_t **pdap, int *nNodep,
    704 			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
    705 			       RF_AllocListElem_t *allocList)
    706 {
    707 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    708 	int     PDAPerDisk, i;
    709 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    710 	int     numDataCol = layoutPtr->numDataCol;
    711 	int     state;
    712 	RF_SectorNum_t suoff, suend;
    713 	unsigned firstDataCol, napdas, count;
    714 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
    715 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    716 	RF_PhysDiskAddr_t *pda_p;
    717 	RF_PhysDiskAddr_t *phys_p;
    718 	RF_RaidAddr_t sosAddr;
    719 
    720 	/* determine how many pda's we will have to generate per unaccess
    721 	 * stripe. If there is only one failed data unit, it is one; if two,
    722 	 * possibly two, depending whether they overlap. */
    723 
    724 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    725 	fone_end = fone_start + fone->numSector;
    726 
    727 #define BUF_ALLOC(num) \
    728   RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)
    729 #define CONS_PDA(if,start,num) \
    730   pda_p->col = asmap->if->col; \
    731   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    732   pda_p->numSector = num; \
    733   pda_p->next = NULL; \
    734   pda_p->bufPtr = BUF_ALLOC(num)
    735 
    736 	if (asmap->numDataFailed == 1) {
    737 		PDAPerDisk = 1;
    738 		state = 1;
    739 		*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
    740 		pda_p = *pqpdap;
    741 		/* build p */
    742 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    743 		pda_p->type = RF_PDA_TYPE_PARITY;
    744 		pda_p++;
    745 		/* build q */
    746 		CONS_PDA(qInfo, fone_start, fone->numSector);
    747 		pda_p->type = RF_PDA_TYPE_Q;
    748 	} else {
    749 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    750 		ftwo_end = ftwo_start + ftwo->numSector;
    751 		if (fone->numSector + ftwo->numSector > secPerSU) {
    752 			PDAPerDisk = 1;
    753 			state = 2;
    754 			*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
    755 			pda_p = *pqpdap;
    756 			CONS_PDA(parityInfo, 0, secPerSU);
    757 			pda_p->type = RF_PDA_TYPE_PARITY;
    758 			pda_p++;
    759 			CONS_PDA(qInfo, 0, secPerSU);
    760 			pda_p->type = RF_PDA_TYPE_Q;
    761 		} else {
    762 			PDAPerDisk = 2;
    763 			state = 3;
    764 			/* four of them, fone, then ftwo */
    765 			*pqpdap = RF_MallocAndAdd(4 * sizeof(**pqpdap), allocList);
    766 			pda_p = *pqpdap;
    767 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    768 			pda_p->type = RF_PDA_TYPE_PARITY;
    769 			pda_p++;
    770 			CONS_PDA(qInfo, fone_start, fone->numSector);
    771 			pda_p->type = RF_PDA_TYPE_Q;
    772 			pda_p++;
    773 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    774 			pda_p->type = RF_PDA_TYPE_PARITY;
    775 			pda_p++;
    776 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    777 			pda_p->type = RF_PDA_TYPE_Q;
    778 		}
    779 	}
    780 	/* figure out number of nonaccessed pda */
    781 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
    782 	*nPQNodep = PDAPerDisk;
    783 
    784 	/* sweep over the over accessed pda's, figuring out the number of
    785 	 * additional pda's to generate. Of course, skip the failed ones */
    786 
    787 	count = 0;
    788 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
    789 		if ((pda_p == fone) || (pda_p == ftwo))
    790 			continue;
    791 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
    792 		suend = suoff + pda_p->numSector;
    793 		switch (state) {
    794 		case 1:	/* one failed PDA to overlap */
    795 			/* if a PDA doesn't contain the failed unit, it can
    796 			 * only miss the start or end, not both */
    797 			if ((suoff > fone_start) || (suend < fone_end))
    798 				count++;
    799 			break;
    800 		case 2:	/* whole stripe */
    801 			if (suoff)	/* leak at beginning */
    802 				count++;
    803 			if (suend < numDataCol)	/* leak at end */
    804 				count++;
    805 			break;
    806 		case 3:	/* two disjoint units */
    807 			if ((suoff > fone_start) || (suend < fone_end))
    808 				count++;
    809 			if ((suoff > ftwo_start) || (suend < ftwo_end))
    810 				count++;
    811 			break;
    812 		default:
    813 			RF_PANIC();
    814 		}
    815 	}
    816 
    817 	napdas += count;
    818 	*nNodep = napdas;
    819 	if (napdas == 0)
    820 		return;		/* short circuit */
    821 
    822 	/* allocate up our list of pda's */
    823 
    824 	pda_p = RF_MallocAndAdd(napdas * sizeof(*pdap), allocList);
    825 	*pdap = pda_p;
    826 
    827 	/* linkem together */
    828 	for (i = 0; i < (napdas - 1); i++)
    829 		pda_p[i].next = pda_p + (i + 1);
    830 
    831 	/* march through the one's up to the first accessed disk */
    832 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
    833 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    834 	for (i = 0; i < firstDataCol; i++) {
    835 		if ((pda_p - (*pdap)) == napdas)
    836 			continue;
    837 		pda_p->type = RF_PDA_TYPE_DATA;
    838 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    839 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    840 		/* skip over dead disks */
    841 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    842 			continue;
    843 		switch (state) {
    844 		case 1:	/* fone */
    845 			pda_p->numSector = fone->numSector;
    846 			pda_p->raidAddress += fone_start;
    847 			pda_p->startSector += fone_start;
    848 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    849 			break;
    850 		case 2:	/* full stripe */
    851 			pda_p->numSector = secPerSU;
    852 			pda_p->bufPtr = BUF_ALLOC(secPerSU);
    853 			break;
    854 		case 3:	/* two slabs */
    855 			pda_p->numSector = fone->numSector;
    856 			pda_p->raidAddress += fone_start;
    857 			pda_p->startSector += fone_start;
    858 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    859 			pda_p++;
    860 			pda_p->type = RF_PDA_TYPE_DATA;
    861 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    862 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    863 			pda_p->numSector = ftwo->numSector;
    864 			pda_p->raidAddress += ftwo_start;
    865 			pda_p->startSector += ftwo_start;
    866 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    867 			break;
    868 		default:
    869 			RF_PANIC();
    870 		}
    871 		pda_p++;
    872 	}
    873 
    874 	/* march through the touched stripe units */
    875 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
    876 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
    877 			continue;
    878 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
    879 		suend = suoff + phys_p->numSector;
    880 		switch (state) {
    881 		case 1:	/* single buffer */
    882 			if (suoff > fone_start) {
    883 				RF_ASSERT(suend >= fone_end);
    884 				/* The data read starts after the mapped
    885 				 * access, snip off the beginning */
    886 				pda_p->numSector = suoff - fone_start;
    887 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    888 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    889 				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    890 				pda_p++;
    891 			}
    892 			if (suend < fone_end) {
    893 				RF_ASSERT(suoff <= fone_start);
    894 				/* The data read stops before the end of the
    895 				 * failed access, extend */
    896 				pda_p->numSector = fone_end - suend;
    897 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    898 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    899 				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    900 				pda_p++;
    901 			}
    902 			break;
    903 		case 2:	/* whole stripe unit */
    904 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
    905 			if (suend < secPerSU) {	/* short read, snip from end
    906 						 * on */
    907 				pda_p->numSector = secPerSU - suend;
    908 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    909 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    910 				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    911 				pda_p++;
    912 			} else
    913 				if (suoff > 0) {	/* short at front */
    914 					pda_p->numSector = suoff;
    915 					pda_p->raidAddress = sosAddr + (i * secPerSU);
    916 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    917 					pda_p->bufPtr =
    918 					    BUF_ALLOC(pda_p->numSector);
    919 					pda_p++;
    920 				}
    921 			break;
    922 		case 3:	/* two nonoverlapping failures */
    923 			if ((suoff > fone_start) || (suend < fone_end)) {
    924 				if (suoff > fone_start) {
    925 					RF_ASSERT(suend >= fone_end);
    926 					/* The data read starts after the
    927 					 * mapped access, snip off the
    928 					 * beginning */
    929 					pda_p->numSector = suoff - fone_start;
    930 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    931 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    932 					pda_p->bufPtr =
    933 					    BUF_ALLOC(pda_p->numSector);
    934 					pda_p++;
    935 				}
    936 				if (suend < fone_end) {
    937 					RF_ASSERT(suoff <= fone_start);
    938 					/* The data read stops before the end
    939 					 * of the failed access, extend */
    940 					pda_p->numSector = fone_end - suend;
    941 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    942 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    943 					pda_p->bufPtr =
    944 					    BUF_ALLOC(pda_p->numSector);
    945 					pda_p++;
    946 				}
    947 			}
    948 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
    949 				if (suoff > ftwo_start) {
    950 					RF_ASSERT(suend >= ftwo_end);
    951 					/* The data read starts after the
    952 					 * mapped access, snip off the
    953 					 * beginning */
    954 					pda_p->numSector = suoff - ftwo_start;
    955 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
    956 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    957 					pda_p->bufPtr =
    958 					    BUF_ALLOC(pda_p->numSector);
    959 					pda_p++;
    960 				}
    961 				if (suend < ftwo_end) {
    962 					RF_ASSERT(suoff <= ftwo_start);
    963 					/* The data read stops before the end
    964 					 * of the failed access, extend */
    965 					pda_p->numSector = ftwo_end - suend;
    966 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    967 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    968 					pda_p->bufPtr =
    969 					    BUF_ALLOC(pda_p->numSector);
    970 					pda_p++;
    971 				}
    972 			}
    973 			break;
    974 		default:
    975 			RF_PANIC();
    976 		}
    977 	}
    978 
    979 	/* after the last accessed disk */
    980 	for (; i < numDataCol; i++) {
    981 		if ((pda_p - (*pdap)) == napdas)
    982 			continue;
    983 		pda_p->type = RF_PDA_TYPE_DATA;
    984 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    985 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    986 		/* skip over dead disks */
    987 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    988 			continue;
    989 		switch (state) {
    990 		case 1:	/* fone */
    991 			pda_p->numSector = fone->numSector;
    992 			pda_p->raidAddress += fone_start;
    993 			pda_p->startSector += fone_start;
    994 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    995 			break;
    996 		case 2:	/* full stripe */
    997 			pda_p->numSector = secPerSU;
    998 			pda_p->bufPtr = BUF_ALLOC(secPerSU);
    999 			break;
   1000 		case 3:	/* two slabs */
   1001 			pda_p->numSector = fone->numSector;
   1002 			pda_p->raidAddress += fone_start;
   1003 			pda_p->startSector += fone_start;
   1004 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
   1005 			pda_p++;
   1006 			pda_p->type = RF_PDA_TYPE_DATA;
   1007 			pda_p->raidAddress = sosAddr + (i * secPerSU);
   1008 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
   1009 			pda_p->numSector = ftwo->numSector;
   1010 			pda_p->raidAddress += ftwo_start;
   1011 			pda_p->startSector += ftwo_start;
   1012 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
   1013 			break;
   1014 		default:
   1015 			RF_PANIC();
   1016 		}
   1017 		pda_p++;
   1018 	}
   1019 
   1020 	RF_ASSERT(pda_p - *pdap == napdas);
   1021 	return;
   1022 }
   1023 #define INIT_DISK_NODE(node,name) \
   1024 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
   1025 (node)->succedents[0] = unblockNode; \
   1026 (node)->succedents[1] = recoveryNode; \
   1027 (node)->antecedents[0] = blockNode; \
   1028 (node)->antType[0] = rf_control
   1029 
   1030 #define DISK_NODE_PARAMS(_node_,_p_) \
   1031   (_node_).params[0].p = _p_ ; \
   1032   (_node_).params[1].p = (_p_)->bufPtr; \
   1033   (_node_).params[2].v = parityStripeID; \
   1034   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
   1035 
   1036 void
   1037 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1038 		 RF_DagHeader_t *dag_h, void *bp,
   1039 		 RF_RaidAccessFlags_t flags,
   1040 		 RF_AllocListElem_t *allocList,
   1041 		 const char *redundantReadNodeName,
   1042 		 const char *recoveryNodeName,
   1043 		 void (*recovFunc) (RF_DagNode_t *))
   1044 {
   1045 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1046 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
   1047 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
   1048 	RF_PhysDiskAddr_t *pda, *pqPDAs;
   1049 	RF_PhysDiskAddr_t *npdas;
   1050 	int     nNodes, nRrdNodes, nRudNodes, i;
   1051 	RF_ReconUnitNum_t which_ru;
   1052 	int     nReadNodes, nPQNodes;
   1053 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
   1054 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
   1055 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
   1056 
   1057 #if RF_DEBUG_DAG
   1058 	if (rf_dagDebug)
   1059 		printf("[Creating Double Degraded Read DAG]\n");
   1060 #endif
   1061 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
   1062 
   1063 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
   1064 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
   1065 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
   1066 
   1067 	nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
   1068 	i = 0;
   1069 	blockNode = &nodes[i];
   1070 	i += 1;
   1071 	unblockNode = &nodes[i];
   1072 	i += 1;
   1073 	recoveryNode = &nodes[i];
   1074 	i += 1;
   1075 	termNode = &nodes[i];
   1076 	i += 1;
   1077 	rudNodes = &nodes[i];
   1078 	i += nRudNodes;
   1079 	rrdNodes = &nodes[i];
   1080 	i += nRrdNodes;
   1081 	rpNodes = &nodes[i];
   1082 	i += nPQNodes;
   1083 	rqNodes = &nodes[i];
   1084 	i += nPQNodes;
   1085 	RF_ASSERT(i == nNodes);
   1086 
   1087 	dag_h->numSuccedents = 1;
   1088 	dag_h->succedents[0] = blockNode;
   1089 	dag_h->creator = "DoubleDegRead";
   1090 	dag_h->numCommits = 0;
   1091 	dag_h->numCommitNodes = 1;	/* unblock */
   1092 
   1093 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
   1094 	termNode->antecedents[0] = unblockNode;
   1095 	termNode->antType[0] = rf_control;
   1096 	termNode->antecedents[1] = recoveryNode;
   1097 	termNode->antType[1] = rf_control;
   1098 
   1099 	/* init the block and unblock nodes */
   1100 	/* The block node has all nodes except itself, unblock and recovery as
   1101 	 * successors. Similarly for predecessors of the unblock. */
   1102 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1103 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
   1104 
   1105 	for (i = 0; i < nReadNodes; i++) {
   1106 		blockNode->succedents[i] = rudNodes + i;
   1107 		unblockNode->antecedents[i] = rudNodes + i;
   1108 		unblockNode->antType[i] = rf_control;
   1109 	}
   1110 	unblockNode->succedents[0] = termNode;
   1111 
   1112 	/* The recovery node has all the reads as predecessors, and the term
   1113 	 * node as successors. It gets a pda as a param from each of the read
   1114 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
   1115 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
   1116 	    1,			/* succesors */
   1117 	    nReadNodes,		/* preds */
   1118 	    nReadNodes + 2,	/* params */
   1119 	    asmap->numDataFailed,	/* results */
   1120 	    dag_h, recoveryNodeName, allocList);
   1121 
   1122 	recoveryNode->succedents[0] = termNode;
   1123 	for (i = 0; i < nReadNodes; i++) {
   1124 		recoveryNode->antecedents[i] = rudNodes + i;
   1125 		recoveryNode->antType[i] = rf_trueData;
   1126 	}
   1127 
   1128 	/* build the read nodes, then come back and fill in recovery params
   1129 	 * and results */
   1130 	pda = asmap->physInfo;
   1131 	for (i = 0; i < nRudNodes; pda = pda->next) {
   1132 		if ((pda == failedPDA) || (pda == failedPDAtwo))
   1133 			continue;
   1134 		INIT_DISK_NODE(rudNodes + i, "Rud");
   1135 		RF_ASSERT(pda);
   1136 		DISK_NODE_PARAMS(rudNodes[i], pda);
   1137 		i++;
   1138 	}
   1139 
   1140 	pda = npdas;
   1141 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
   1142 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
   1143 		RF_ASSERT(pda);
   1144 		DISK_NODE_PARAMS(rrdNodes[i], pda);
   1145 	}
   1146 
   1147 	/* redundancy pdas */
   1148 	pda = pqPDAs;
   1149 	INIT_DISK_NODE(rpNodes, "Rp");
   1150 	RF_ASSERT(pda);
   1151 	DISK_NODE_PARAMS(rpNodes[0], pda);
   1152 	pda++;
   1153 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
   1154 	RF_ASSERT(pda);
   1155 	DISK_NODE_PARAMS(rqNodes[0], pda);
   1156 	if (nPQNodes == 2) {
   1157 		pda++;
   1158 		INIT_DISK_NODE(rpNodes + 1, "Rp");
   1159 		RF_ASSERT(pda);
   1160 		DISK_NODE_PARAMS(rpNodes[1], pda);
   1161 		pda++;
   1162 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
   1163 		RF_ASSERT(pda);
   1164 		DISK_NODE_PARAMS(rqNodes[1], pda);
   1165 	}
   1166 	/* fill in recovery node params */
   1167 	for (i = 0; i < nReadNodes; i++)
   1168 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
   1169 	recoveryNode->params[i++].p = (void *) raidPtr;
   1170 	recoveryNode->params[i++].p = (void *) asmap;
   1171 	recoveryNode->results[0] = failedPDA;
   1172 	if (asmap->numDataFailed == 2)
   1173 		recoveryNode->results[1] = failedPDAtwo;
   1174 
   1175 	/* zero fill the target data buffers? */
   1176 }
   1177 
   1178 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
   1179