Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: gem.c,v 1.139 2025/04/27 16:03:16 gson Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   https://web.archive.org/web/20090701010806/http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.139 2025/04/27 16:03:16 gson Exp $");
     41 
     42 #include "opt_inet.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/callout.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/syslog.h>
     49 #include <sys/kernel.h>
     50 #include <sys/socket.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/device.h>
     54 
     55 #include <machine/endian.h>
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #ifdef INET
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 #include <netinet/tcp.h>
     68 #include <netinet/udp.h>
     69 #endif
     70 
     71 #include <net/bpf.h>
     72 
     73 #include <sys/bus.h>
     74 #include <sys/intr.h>
     75 
     76 #include <dev/mii/mii.h>
     77 #include <dev/mii/miivar.h>
     78 #include <dev/mii/mii_bitbang.h>
     79 
     80 #include <dev/ic/gemreg.h>
     81 #include <dev/ic/gemvar.h>
     82 
     83 #define TRIES	10000
     84 
     85 static void	gem_inten(struct gem_softc *);
     86 static void	gem_start(struct ifnet *);
     87 static void	gem_stop(struct ifnet *, int);
     88 int		gem_ioctl(struct ifnet *, u_long, void *);
     89 void		gem_tick(void *);
     90 void		gem_watchdog(struct ifnet *);
     91 void		gem_rx_watchdog(void *);
     92 void		gem_pcs_start(struct gem_softc *sc);
     93 void		gem_pcs_stop(struct gem_softc *sc, int);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 static int	gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    100 		    uint32_t, uint32_t);
    101 void		gem_reset(struct gem_softc *);
    102 int		gem_reset_rx(struct gem_softc *sc);
    103 static void	gem_reset_rxdma(struct gem_softc *sc);
    104 static void	gem_rx_common(struct gem_softc *sc);
    105 int		gem_reset_tx(struct gem_softc *sc);
    106 int		gem_disable_rx(struct gem_softc *sc);
    107 int		gem_disable_tx(struct gem_softc *sc);
    108 static void	gem_rxdrain(struct gem_softc *sc);
    109 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    110 void		gem_setladrf(struct gem_softc *);
    111 
    112 /* MII methods & callbacks */
    113 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
    114 static int	gem_mii_writereg(device_t, int, int, uint16_t);
    115 static void	gem_mii_statchg(struct ifnet *);
    116 
    117 static int	gem_ifflags_cb(struct ethercom *);
    118 
    119 void		gem_statuschange(struct gem_softc *);
    120 
    121 int		gem_ser_mediachange(struct ifnet *);
    122 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    123 
    124 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
    125 
    126 struct mbuf	*gem_get(struct gem_softc *, int, int);
    127 int		gem_put(struct gem_softc *, int, struct mbuf *);
    128 void		gem_read(struct gem_softc *, int, int);
    129 int		gem_pint(struct gem_softc *);
    130 int		gem_eint(struct gem_softc *, u_int);
    131 int		gem_rint(struct gem_softc *);
    132 int		gem_tint(struct gem_softc *);
    133 void		gem_power(int, void *);
    134 
    135 #ifdef GEM_DEBUG
    136 static void gem_txsoft_print(const struct gem_softc *, int, int);
    137 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    138 				printf x
    139 #else
    140 #define	DPRINTF(sc, x)	/* nothing */
    141 #endif
    142 
    143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    144 
    145 int
    146 gem_detach(struct gem_softc *sc, int flags)
    147 {
    148 	int i;
    149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    150 	bus_space_tag_t t = sc->sc_bustag;
    151 	bus_space_handle_t h = sc->sc_h1;
    152 
    153 	/*
    154 	 * Free any resources we've allocated during the attach.
    155 	 * Do this in reverse order and fall through.
    156 	 */
    157 	switch (sc->sc_att_stage) {
    158 	case GEM_ATT_BACKEND_2:
    159 	case GEM_ATT_BACKEND_1:
    160 	case GEM_ATT_FINISHED:
    161 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
    162 		gem_stop(&sc->sc_ethercom.ec_if, 1);
    163 
    164 #ifdef GEM_COUNTERS
    165 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
    166 			evcnt_detach(&sc->sc_ev_rxhist[i]);
    167 		evcnt_detach(&sc->sc_ev_rxnobuf);
    168 		evcnt_detach(&sc->sc_ev_rxfull);
    169 		evcnt_detach(&sc->sc_ev_rxint);
    170 		evcnt_detach(&sc->sc_ev_txint);
    171 		evcnt_detach(&sc->sc_ev_rxoverflow);
    172 #endif
    173 		evcnt_detach(&sc->sc_ev_intr);
    174 
    175 		rnd_detach_source(&sc->rnd_source);
    176 		ether_ifdetach(ifp);
    177 		if_detach(ifp);
    178 
    179 		callout_destroy(&sc->sc_tick_ch);
    180 		callout_destroy(&sc->sc_rx_watchdog);
    181 
    182 		/*FALLTHROUGH*/
    183 	case GEM_ATT_MII:
    184 		sc->sc_att_stage = GEM_ATT_MII;
    185 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    186 		ifmedia_fini(&sc->sc_mii.mii_media);
    187 
    188 		/*FALLTHROUGH*/
    189 	case GEM_ATT_7:
    190 		for (i = 0; i < GEM_NRXDESC; i++) {
    191 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    192 				bus_dmamap_destroy(sc->sc_dmatag,
    193 				    sc->sc_rxsoft[i].rxs_dmamap);
    194 		}
    195 		/*FALLTHROUGH*/
    196 	case GEM_ATT_6:
    197 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
    198 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    199 				bus_dmamap_destroy(sc->sc_dmatag,
    200 				    sc->sc_txsoft[i].txs_dmamap);
    201 		}
    202 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    203 		/*FALLTHROUGH*/
    204 	case GEM_ATT_5:
    205 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
    206 		/*FALLTHROUGH*/
    207 	case GEM_ATT_4:
    208 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    209 		/*FALLTHROUGH*/
    210 	case GEM_ATT_3:
    211 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    212 		/*FALLTHROUGH*/
    213 	case GEM_ATT_2:
    214 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
    215 		    sizeof(struct gem_control_data));
    216 		/*FALLTHROUGH*/
    217 	case GEM_ATT_1:
    218 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    219 		/*FALLTHROUGH*/
    220 	case GEM_ATT_0:
    221 		sc->sc_att_stage = GEM_ATT_0;
    222 		/*FALLTHROUGH*/
    223 	case GEM_ATT_BACKEND_0:
    224 		break;
    225 	}
    226 	return 0;
    227 }
    228 
    229 static void
    230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
    231 {
    232 	cfattach_t ca = device_cfattach(sc->sc_dev);
    233 
    234 	sc->sc_att_stage = stage;
    235 	(*ca->ca_detach)(sc->sc_dev, 0);
    236 }
    237 
    238 /*
    239  * gem_attach:
    240  *
    241  *	Attach a Gem interface to the system.
    242  */
    243 void
    244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
    245 {
    246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    247 	struct mii_data *mii = &sc->sc_mii;
    248 	bus_space_tag_t t = sc->sc_bustag;
    249 	bus_space_handle_t h = sc->sc_h1;
    250 	struct ifmedia_entry *ife;
    251 	int i, error, phyaddr;
    252 	uint32_t v;
    253 	char *nullbuf;
    254 
    255 	/* Make sure the chip is stopped. */
    256 	ifp->if_softc = sc;
    257 	gem_reset(sc);
    258 
    259 	/*
    260 	 * Allocate the control data structures, and create and load the
    261 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    262 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    263 	 */
    264 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    265 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    266 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    267 		aprint_error_dev(sc->sc_dev,
    268 		   "unable to allocate control data, error = %d\n",
    269 		    error);
    270 		gem_partial_detach(sc, GEM_ATT_0);
    271 		return;
    272 	}
    273 
    274 	/* XXX should map this in with correct endianness */
    275 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    276 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    277 	    BUS_DMA_COHERENT)) != 0) {
    278 		aprint_error_dev(sc->sc_dev,
    279 		    "unable to map control data, error = %d\n", error);
    280 		gem_partial_detach(sc, GEM_ATT_1);
    281 		return;
    282 	}
    283 
    284 	nullbuf =
    285 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    286 
    287 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    288 	    sizeof(struct gem_control_data), 1,
    289 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    290 		aprint_error_dev(sc->sc_dev,
    291 		    "unable to create control data DMA map, error = %d\n",
    292 		    error);
    293 		gem_partial_detach(sc, GEM_ATT_2);
    294 		return;
    295 	}
    296 
    297 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    298 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    299 	    0)) != 0) {
    300 		aprint_error_dev(sc->sc_dev,
    301 		    "unable to load control data DMA map, error = %d\n",
    302 		    error);
    303 		gem_partial_detach(sc, GEM_ATT_3);
    304 		return;
    305 	}
    306 
    307 	memset(nullbuf, 0, ETHER_MIN_TX);
    308 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    309 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    310 		aprint_error_dev(sc->sc_dev,
    311 		    "unable to create padding DMA map, error = %d\n", error);
    312 		gem_partial_detach(sc, GEM_ATT_4);
    313 		return;
    314 	}
    315 
    316 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    317 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    318 		aprint_error_dev(sc->sc_dev,
    319 		    "unable to load padding DMA map, error = %d\n", error);
    320 		gem_partial_detach(sc, GEM_ATT_5);
    321 		return;
    322 	}
    323 
    324 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    325 	    BUS_DMASYNC_PREWRITE);
    326 
    327 	/*
    328 	 * Initialize the transmit job descriptors.
    329 	 */
    330 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    331 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    332 
    333 	/*
    334 	 * Create the transmit buffer DMA maps.
    335 	 */
    336 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    337 		struct gem_txsoft *txs;
    338 
    339 		txs = &sc->sc_txsoft[i];
    340 		txs->txs_mbuf = NULL;
    341 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    342 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    343 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    344 		    &txs->txs_dmamap)) != 0) {
    345 			aprint_error_dev(sc->sc_dev,
    346 			    "unable to create tx DMA map %d, error = %d\n",
    347 			    i, error);
    348 			gem_partial_detach(sc, GEM_ATT_6);
    349 			return;
    350 		}
    351 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    352 	}
    353 
    354 	/*
    355 	 * Create the receive buffer DMA maps.
    356 	 */
    357 	for (i = 0; i < GEM_NRXDESC; i++) {
    358 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    359 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    360 			aprint_error_dev(sc->sc_dev,
    361 			    "unable to create rx DMA map %d, error = %d\n",
    362 			    i, error);
    363 			gem_partial_detach(sc, GEM_ATT_7);
    364 			return;
    365 		}
    366 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    367 	}
    368 
    369 	/* Initialize ifmedia structures and MII info */
    370 	mii->mii_ifp = ifp;
    371 	mii->mii_readreg = gem_mii_readreg;
    372 	mii->mii_writereg = gem_mii_writereg;
    373 	mii->mii_statchg = gem_mii_statchg;
    374 
    375 	sc->sc_ethercom.ec_mii = mii;
    376 
    377 	/*
    378 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    379 	 * Section 3.2.1 `Initialization Sequence'.
    380 	 * However, we can't assume SERDES or Serialink if neither
    381 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    382 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    383 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    384 	 * Also, for variants that report 2 PHY's, we prefer the external
    385 	 * PHY over the internal PHY, so we look for that first.
    386 	 */
    387 	gem_mifinit(sc);
    388 
    389 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    390 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    391 		    ether_mediastatus);
    392 		/* Look for external PHY */
    393 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
    394 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    395 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    396 			    sc->sc_mif_config);
    397 			switch (sc->sc_variant) {
    398 			case GEM_SUN_ERI:
    399 				phyaddr = GEM_PHYAD_EXTERNAL;
    400 				break;
    401 			default:
    402 				phyaddr = MII_PHY_ANY;
    403 				break;
    404 			}
    405 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    406 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    407 		}
    408 #ifdef GEM_DEBUG
    409 		  else
    410 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
    411 #endif
    412 		/* Look for internal PHY if no external PHY was found */
    413 		if (LIST_EMPTY(&mii->mii_phys) &&
    414 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
    415 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
    416 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    417 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    418 			    sc->sc_mif_config);
    419 			switch (sc->sc_variant) {
    420 			case GEM_SUN_ERI:
    421 			case GEM_APPLE_K2_GMAC:
    422 				phyaddr = GEM_PHYAD_INTERNAL;
    423 				break;
    424 			case GEM_APPLE_GMAC:
    425 				phyaddr = GEM_PHYAD_EXTERNAL;
    426 				break;
    427 			default:
    428 				phyaddr = MII_PHY_ANY;
    429 				break;
    430 			}
    431 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    432 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    433 #ifdef GEM_DEBUG
    434 			if (!LIST_EMPTY(&mii->mii_phys))
    435 				aprint_debug_dev(sc->sc_dev,
    436 				    "using internal PHY\n");
    437 #endif
    438 		}
    439 		if (LIST_EMPTY(&mii->mii_phys)) {
    440 				/* No PHY attached */
    441 				aprint_error_dev(sc->sc_dev,
    442 				    "PHY probe failed\n");
    443 				gem_partial_detach(sc, GEM_ATT_MII);
    444 				return;
    445 		} else {
    446 			struct mii_softc *child;
    447 
    448 			/*
    449 			 * Walk along the list of attached MII devices and
    450 			 * establish an `MII instance' to `PHY number'
    451 			 * mapping.
    452 			 */
    453 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    454 				/*
    455 				 * Note: we support just one PHY: the internal
    456 				 * or external MII is already selected for us
    457 				 * by the GEM_MIF_CONFIG  register.
    458 				 */
    459 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    460 					aprint_error_dev(sc->sc_dev,
    461 					    "cannot accommodate MII device"
    462 					    " %s at PHY %d, instance %d\n",
    463 					       device_xname(child->mii_dev),
    464 					       child->mii_phy, child->mii_inst);
    465 					continue;
    466 				}
    467 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    468 			}
    469 
    470 			if (sc->sc_variant != GEM_SUN_ERI)
    471 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    472 				    GEM_MII_DATAPATH_MII);
    473 
    474 			/*
    475 			 * XXX - we can really do the following ONLY if the
    476 			 * PHY indeed has the auto negotiation capability!!
    477 			 */
    478 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    479 		}
    480 	} else {
    481 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    482 		    gem_ser_mediastatus);
    483 		/* SERDES or Serialink */
    484 		if (sc->sc_flags & GEM_SERDES) {
    485 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    486 			    GEM_MII_DATAPATH_SERDES);
    487 		} else {
    488 			sc->sc_flags |= GEM_SERIAL;
    489 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    490 			    GEM_MII_DATAPATH_SERIAL);
    491 		}
    492 
    493 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
    494 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    495 
    496 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    497 		/* Check for FDX and HDX capabilities */
    498 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    499 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    500 			ifmedia_add(&mii->mii_media, IFM_ETHER |
    501 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
    502 			aprint_normal("1000baseSX-FDX, ");
    503 		}
    504 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    505 			ifmedia_add(&mii->mii_media, IFM_ETHER |
    506 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
    507 			aprint_normal("1000baseSX-HDX, ");
    508 		}
    509 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    510 		sc->sc_mii_media = IFM_AUTO;
    511 		aprint_normal("auto\n");
    512 
    513 		gem_pcs_stop(sc, 1);
    514 	}
    515 
    516 	/*
    517 	 * From this point forward, the attachment cannot fail.  A failure
    518 	 * before this point releases all resources that may have been
    519 	 * allocated.
    520 	 */
    521 
    522 	/* Announce ourselves. */
    523 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
    524 	    ether_sprintf(enaddr));
    525 
    526 	/* Get RX FIFO size */
    527 	sc->sc_rxfifosize = 64 *
    528 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    529 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    530 
    531 	/* Get TX FIFO size */
    532 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    533 	aprint_normal(", %uKB TX fifo\n", v / 16);
    534 
    535 	/* Initialize ifnet structure. */
    536 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    537 	ifp->if_softc = sc;
    538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    539 	sc->sc_if_flags = ifp->if_flags;
    540 #if 0
    541 	/*
    542 	 * The GEM hardware supports basic TCP checksum offloading only.
    543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    544 	 * have bugs in the receive checksum, so don't enable it for now.
    545 	 */
    546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    547 	    (GEM_IS_APPLE(sc) &&
    548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    550 #endif
    551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    552 	ifp->if_start = gem_start;
    553 	ifp->if_ioctl = gem_ioctl;
    554 	ifp->if_watchdog = gem_watchdog;
    555 	ifp->if_stop = gem_stop;
    556 	ifp->if_init = gem_init;
    557 	IFQ_SET_READY(&ifp->if_snd);
    558 
    559 	/*
    560 	 * If we support GigE media, we support jumbo frames too.
    561 	 * Unless we are Apple.
    562 	 */
    563 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
    564 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
    565 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
    566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
    567 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
    568 			if (!GEM_IS_APPLE(sc))
    569 				sc->sc_ethercom.ec_capabilities
    570 				    |= ETHERCAP_JUMBO_MTU;
    571 			sc->sc_flags |= GEM_GIGABIT;
    572 			break;
    573 		}
    574 	}
    575 
    576 	/* claim 802.1q capability */
    577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    578 
    579 	/* Attach the interface. */
    580 	if_attach(ifp);
    581 	if_deferred_start_init(ifp, NULL);
    582 	ether_ifattach(ifp, enaddr);
    583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    584 
    585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    587 
    588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    589 	    NULL, device_xname(sc->sc_dev), "interrupts");
    590 #ifdef GEM_COUNTERS
    591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
    593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
    595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
    597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
    599 	evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
    600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
    601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
    603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
    605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
    607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
    609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
    611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
    613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
    615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
    617 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    618 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
    619 #endif
    620 
    621 	callout_init(&sc->sc_tick_ch, 0);
    622 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
    623 
    624 	callout_init(&sc->sc_rx_watchdog, 0);
    625 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
    626 
    627 	sc->sc_att_stage = GEM_ATT_FINISHED;
    628 
    629 	return;
    630 }
    631 
    632 void
    633 gem_tick(void *arg)
    634 {
    635 	struct gem_softc *sc = arg;
    636 	int s;
    637 
    638 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    639 		/*
    640 		 * We have to reset everything if we failed to get a
    641 		 * PCS interrupt.  Restarting the callout is handled
    642 		 * in gem_pcs_start().
    643 		 */
    644 		gem_init(&sc->sc_ethercom.ec_if);
    645 	} else {
    646 		s = splnet();
    647 		mii_tick(&sc->sc_mii);
    648 		splx(s);
    649 		callout_schedule(&sc->sc_tick_ch, hz);
    650 	}
    651 }
    652 
    653 static int
    654 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
    655     uint32_t set)
    656 {
    657 	int i;
    658 	uint32_t reg;
    659 
    660 	for (i = TRIES; i--; DELAY(100)) {
    661 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    662 		if ((reg & clr) == 0 && (reg & set) == set)
    663 			return (1);
    664 	}
    665 	return (0);
    666 }
    667 
    668 void
    669 gem_reset(struct gem_softc *sc)
    670 {
    671 	bus_space_tag_t t = sc->sc_bustag;
    672 	bus_space_handle_t h = sc->sc_h2;
    673 	int s;
    674 
    675 	s = splnet();
    676 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
    677 	gem_reset_rx(sc);
    678 	gem_reset_tx(sc);
    679 
    680 	/* Do a full reset */
    681 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
    682 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    683 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
    684 	splx(s);
    685 }
    686 
    687 
    688 /*
    689  * gem_rxdrain:
    690  *
    691  *	Drain the receive queue.
    692  */
    693 static void
    694 gem_rxdrain(struct gem_softc *sc)
    695 {
    696 	struct gem_rxsoft *rxs;
    697 	int i;
    698 
    699 	for (i = 0; i < GEM_NRXDESC; i++) {
    700 		rxs = &sc->sc_rxsoft[i];
    701 		if (rxs->rxs_mbuf != NULL) {
    702 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    703 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    704 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    705 			m_freem(rxs->rxs_mbuf);
    706 			rxs->rxs_mbuf = NULL;
    707 		}
    708 	}
    709 }
    710 
    711 /*
    712  * Reset the whole thing.
    713  */
    714 static void
    715 gem_stop(struct ifnet *ifp, int disable)
    716 {
    717 	struct gem_softc *sc = ifp->if_softc;
    718 	struct gem_txsoft *txs;
    719 
    720 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
    721 
    722 	callout_halt(&sc->sc_tick_ch, NULL);
    723 	callout_halt(&sc->sc_rx_watchdog, NULL);
    724 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    725 		gem_pcs_stop(sc, disable);
    726 	else
    727 		mii_down(&sc->sc_mii);
    728 
    729 	/* XXX - Should we reset these instead? */
    730 	gem_disable_tx(sc);
    731 	gem_disable_rx(sc);
    732 
    733 	/*
    734 	 * Release any queued transmit buffers.
    735 	 */
    736 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    737 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    738 		if (txs->txs_mbuf != NULL) {
    739 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    740 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    741 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    742 			m_freem(txs->txs_mbuf);
    743 			txs->txs_mbuf = NULL;
    744 		}
    745 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    746 	}
    747 
    748 	/*
    749 	 * Mark the interface down and cancel the watchdog timer.
    750 	 */
    751 	ifp->if_flags &= ~IFF_RUNNING;
    752 	sc->sc_if_flags = ifp->if_flags;
    753 	ifp->if_timer = 0;
    754 
    755 	if (disable)
    756 		gem_rxdrain(sc);
    757 }
    758 
    759 
    760 /*
    761  * Reset the receiver
    762  */
    763 int
    764 gem_reset_rx(struct gem_softc *sc)
    765 {
    766 	bus_space_tag_t t = sc->sc_bustag;
    767 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    768 
    769 	/*
    770 	 * Resetting while DMA is in progress can cause a bus hang, so we
    771 	 * disable DMA first.
    772 	 */
    773 	gem_disable_rx(sc);
    774 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    775 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    776 	/* Wait till it finishes */
    777 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    778 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
    779 	/* Wait 5ms extra. */
    780 	delay(5000);
    781 
    782 	/* Finally, reset the ERX */
    783 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    784 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    785 	/* Wait till it finishes */
    786 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    787 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    788 		return (1);
    789 	}
    790 	return (0);
    791 }
    792 
    793 
    794 /*
    795  * Reset the receiver DMA engine.
    796  *
    797  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    798  * etc in order to reset the receiver DMA engine only and not do a full
    799  * reset which amongst others also downs the link and clears the FIFOs.
    800  */
    801 static void
    802 gem_reset_rxdma(struct gem_softc *sc)
    803 {
    804 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    805 	bus_space_tag_t t = sc->sc_bustag;
    806 	bus_space_handle_t h = sc->sc_h1;
    807 	int i;
    808 
    809 	if (gem_reset_rx(sc) != 0) {
    810 		gem_init(ifp);
    811 		return;
    812 	}
    813 	for (i = 0; i < GEM_NRXDESC; i++)
    814 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    815 			GEM_UPDATE_RXDESC(sc, i);
    816 	sc->sc_rxptr = 0;
    817 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    818 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    819 
    820 	/* Reprogram Descriptor Ring Base Addresses */
    821 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
    822 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
    823 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    824 
    825 	/* Redo ERX Configuration */
    826 	gem_rx_common(sc);
    827 
    828 	/* Give the receiver a swift kick */
    829 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    830 }
    831 
    832 /*
    833  * Common RX configuration for gem_init() and gem_reset_rxdma().
    834  */
    835 static void
    836 gem_rx_common(struct gem_softc *sc)
    837 {
    838 	bus_space_tag_t t = sc->sc_bustag;
    839 	bus_space_handle_t h = sc->sc_h1;
    840 	uint32_t v;
    841 
    842 	/* Encode Receive Descriptor ring size: four possible values */
    843 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    844 
    845 	/* Set receive h/w checksum offset */
    846 #ifdef INET
    847 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    848 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    849 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    850 #endif
    851 
    852 	/* Enable RX DMA */
    853 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    854 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    855 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    856 
    857 	/*
    858 	 * The following value is for an OFF Threshold of about 3/4 full
    859 	 * and an ON Threshold of 1/4 full.
    860 	 */
    861 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    862 	    (3 * sc->sc_rxfifosize / 256) |
    863 	    ((sc->sc_rxfifosize / 256) << 12));
    864 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    865 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
    866 }
    867 
    868 /*
    869  * Reset the transmitter
    870  */
    871 int
    872 gem_reset_tx(struct gem_softc *sc)
    873 {
    874 	bus_space_tag_t t = sc->sc_bustag;
    875 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    876 
    877 	/*
    878 	 * Resetting while DMA is in progress can cause a bus hang, so we
    879 	 * disable DMA first.
    880 	 */
    881 	gem_disable_tx(sc);
    882 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    883 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    884 	/* Wait till it finishes */
    885 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    886 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
    887 	/* Wait 5ms extra. */
    888 	delay(5000);
    889 
    890 	/* Finally, reset the ETX */
    891 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    892 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    893 	/* Wait till it finishes */
    894 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    895 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
    896 		return (1);
    897 	}
    898 	return (0);
    899 }
    900 
    901 /*
    902  * disable receiver.
    903  */
    904 int
    905 gem_disable_rx(struct gem_softc *sc)
    906 {
    907 	bus_space_tag_t t = sc->sc_bustag;
    908 	bus_space_handle_t h = sc->sc_h1;
    909 	uint32_t cfg;
    910 
    911 	/* Flip the enable bit */
    912 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    913 	cfg &= ~GEM_MAC_RX_ENABLE;
    914 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    915 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    916 	/* Wait for it to finish */
    917 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    918 }
    919 
    920 /*
    921  * disable transmitter.
    922  */
    923 int
    924 gem_disable_tx(struct gem_softc *sc)
    925 {
    926 	bus_space_tag_t t = sc->sc_bustag;
    927 	bus_space_handle_t h = sc->sc_h1;
    928 	uint32_t cfg;
    929 
    930 	/* Flip the enable bit */
    931 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    932 	cfg &= ~GEM_MAC_TX_ENABLE;
    933 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    934 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    935 	/* Wait for it to finish */
    936 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    937 }
    938 
    939 /*
    940  * Initialize interface.
    941  */
    942 int
    943 gem_meminit(struct gem_softc *sc)
    944 {
    945 	struct gem_rxsoft *rxs;
    946 	int i, error;
    947 
    948 	/*
    949 	 * Initialize the transmit descriptor ring.
    950 	 */
    951 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    952 	for (i = 0; i < GEM_NTXDESC; i++) {
    953 		sc->sc_txdescs[i].gd_flags = 0;
    954 		sc->sc_txdescs[i].gd_addr = 0;
    955 	}
    956 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    957 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    958 	sc->sc_txfree = GEM_NTXDESC-1;
    959 	sc->sc_txnext = 0;
    960 	sc->sc_txwin = 0;
    961 
    962 	/*
    963 	 * Initialize the receive descriptor and receive job
    964 	 * descriptor rings.
    965 	 */
    966 	for (i = 0; i < GEM_NRXDESC; i++) {
    967 		rxs = &sc->sc_rxsoft[i];
    968 		if (rxs->rxs_mbuf == NULL) {
    969 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    970 				aprint_error_dev(sc->sc_dev,
    971 				    "unable to allocate or map rx "
    972 				    "buffer %d, error = %d\n",
    973 				    i, error);
    974 				/*
    975 				 * XXX Should attempt to run with fewer receive
    976 				 * XXX buffers instead of just failing.
    977 				 */
    978 				gem_rxdrain(sc);
    979 				return (1);
    980 			}
    981 		} else
    982 			GEM_INIT_RXDESC(sc, i);
    983 	}
    984 	sc->sc_rxptr = 0;
    985 	sc->sc_meminited = 1;
    986 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    987 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    988 
    989 	return (0);
    990 }
    991 
    992 static int
    993 gem_ringsize(int sz)
    994 {
    995 	switch (sz) {
    996 	case 32:
    997 		return GEM_RING_SZ_32;
    998 	case 64:
    999 		return GEM_RING_SZ_64;
   1000 	case 128:
   1001 		return GEM_RING_SZ_128;
   1002 	case 256:
   1003 		return GEM_RING_SZ_256;
   1004 	case 512:
   1005 		return GEM_RING_SZ_512;
   1006 	case 1024:
   1007 		return GEM_RING_SZ_1024;
   1008 	case 2048:
   1009 		return GEM_RING_SZ_2048;
   1010 	case 4096:
   1011 		return GEM_RING_SZ_4096;
   1012 	case 8192:
   1013 		return GEM_RING_SZ_8192;
   1014 	default:
   1015 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
   1016 		return GEM_RING_SZ_32;
   1017 	}
   1018 }
   1019 
   1020 
   1021 /*
   1022  * Start PCS
   1023  */
   1024 void
   1025 gem_pcs_start(struct gem_softc *sc)
   1026 {
   1027 	bus_space_tag_t t = sc->sc_bustag;
   1028 	bus_space_handle_t h = sc->sc_h1;
   1029 	uint32_t v;
   1030 
   1031 #ifdef GEM_DEBUG
   1032 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
   1033 #endif
   1034 
   1035 	/*
   1036 	 * Set up.  We must disable the MII before modifying the
   1037 	 * GEM_MII_ANAR register
   1038 	 */
   1039 	if (sc->sc_flags & GEM_SERDES) {
   1040 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1041 		    GEM_MII_DATAPATH_SERDES);
   1042 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1043 		    GEM_MII_SLINK_LOOPBACK);
   1044 	} else {
   1045 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1046 		    GEM_MII_DATAPATH_SERIAL);
   1047 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
   1048 	}
   1049 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1050 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
   1051 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
   1052 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
   1053 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
   1054 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
   1055 		v |= GEM_MII_ANEG_FUL_DUPLX;
   1056 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
   1057 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
   1058 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
   1059 		v |= GEM_MII_ANEG_HLF_DUPLX;
   1060 	}
   1061 
   1062 	/* Configure link. */
   1063 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
   1064 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1065 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1066 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
   1067 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
   1068 
   1069 	/* Start the 10 second timer */
   1070 	callout_schedule(&sc->sc_tick_ch, hz * 10);
   1071 }
   1072 
   1073 /*
   1074  * Stop PCS
   1075  */
   1076 void
   1077 gem_pcs_stop(struct gem_softc *sc, int disable)
   1078 {
   1079 	bus_space_tag_t t = sc->sc_bustag;
   1080 	bus_space_handle_t h = sc->sc_h1;
   1081 
   1082 #ifdef GEM_DEBUG
   1083 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
   1084 #endif
   1085 
   1086 	/* Tell link partner that we're going away */
   1087 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1088 
   1089 	/*
   1090 	 * Disable PCS MII.  The documentation suggests that setting
   1091 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1092 	 * negotiation will shut down the link.  However, it appears
   1093 	 * that we also need to unset the datapath mode.
   1094 	 */
   1095 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1096 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1097 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1098 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1099 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1100 
   1101 	if (disable) {
   1102 		if (sc->sc_flags & GEM_SERDES)
   1103 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1104 				GEM_MII_SLINK_POWER_OFF);
   1105 		else
   1106 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1107 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1108 	}
   1109 
   1110 	sc->sc_flags &= ~GEM_LINK;
   1111 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1112 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1113 }
   1114 
   1115 
   1116 /*
   1117  * Initialization of interface; set up initialization block
   1118  * and transmit/receive descriptor rings.
   1119  */
   1120 int
   1121 gem_init(struct ifnet *ifp)
   1122 {
   1123 	struct gem_softc *sc = ifp->if_softc;
   1124 	bus_space_tag_t t = sc->sc_bustag;
   1125 	bus_space_handle_t h = sc->sc_h1;
   1126 	int rc = 0, s;
   1127 	u_int max_frame_size;
   1128 	uint32_t v;
   1129 
   1130 	s = splnet();
   1131 
   1132 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
   1133 	/*
   1134 	 * Initialization sequence. The numbered steps below correspond
   1135 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1136 	 * Channel Engine manual (part of the PCIO manual).
   1137 	 * See also the STP2002-STQ document from Sun Microsystems.
   1138 	 */
   1139 
   1140 	/* step 1 & 2. Reset the Ethernet Channel */
   1141 	gem_stop(ifp, 0);
   1142 	gem_reset(sc);
   1143 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
   1144 
   1145 	/* Re-initialize the MIF */
   1146 	gem_mifinit(sc);
   1147 
   1148 	/* Set up correct datapath for non-SERDES/Serialink */
   1149 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1150 	    sc->sc_variant != GEM_SUN_ERI)
   1151 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1152 		    GEM_MII_DATAPATH_MII);
   1153 
   1154 	/* Call MI reset function if any */
   1155 	if (sc->sc_hwreset)
   1156 		(*sc->sc_hwreset)(sc);
   1157 
   1158 	/* step 3. Setup data structures in host memory */
   1159 	if (gem_meminit(sc) != 0) {
   1160 		splx(s);
   1161 		return 1;
   1162 	}
   1163 
   1164 	/* step 4. TX MAC registers & counters */
   1165 	gem_init_regs(sc);
   1166 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1167 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1168 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1169 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1170 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1171 	    max_frame_size|/* burst size */(0x2000<<16));
   1172 
   1173 	/* step 5. RX MAC registers & counters */
   1174 	gem_setladrf(sc);
   1175 
   1176 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1177 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
   1178 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
   1179 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1180 
   1181 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
   1182 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
   1183 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1184 
   1185 	/* step 8. Global Configuration & Interrupt Mask */
   1186 	gem_inten(sc);
   1187 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1188 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1189 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1190 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1191 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1192 
   1193 	/* step 9. ETX Configuration: use mostly default values */
   1194 
   1195 	/* Enable TX DMA */
   1196 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1197 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1198 	    v | GEM_TX_CONFIG_TXDMA_EN |
   1199 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
   1200 	    GEM_TX_CONFIG_TXFIFO_TH));
   1201 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1202 
   1203 	/* step 10. ERX Configuration */
   1204 	gem_rx_common(sc);
   1205 
   1206 	/* step 11. Configure Media */
   1207 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1208 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1209 		goto out;
   1210 
   1211 	/* step 12. RX_MAC Configuration Register */
   1212 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1213 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1214 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1215 
   1216 	/* step 14. Issue Transmit Pending command */
   1217 
   1218 	/* Call MI initialization function if any */
   1219 	if (sc->sc_hwinit)
   1220 		(*sc->sc_hwinit)(sc);
   1221 
   1222 	/* step 15.  Give the receiver a swift kick */
   1223 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1224 
   1225 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1226 		/* Configure PCS */
   1227 		gem_pcs_start(sc);
   1228 	else
   1229 		/* Start the one second timer. */
   1230 		callout_schedule(&sc->sc_tick_ch, hz);
   1231 
   1232 	sc->sc_flags &= ~GEM_LINK;
   1233 	ifp->if_flags |= IFF_RUNNING;
   1234 	ifp->if_timer = 0;
   1235 	sc->sc_if_flags = ifp->if_flags;
   1236 out:
   1237 	splx(s);
   1238 
   1239 	return (0);
   1240 }
   1241 
   1242 void
   1243 gem_init_regs(struct gem_softc *sc)
   1244 {
   1245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1246 	bus_space_tag_t t = sc->sc_bustag;
   1247 	bus_space_handle_t h = sc->sc_h1;
   1248 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1249 	uint32_t v;
   1250 
   1251 	/* These regs are not cleared on reset */
   1252 	if (!sc->sc_inited) {
   1253 
   1254 		/* Load recommended values */
   1255 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1256 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1257 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1258 
   1259 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1260 		/* Max frame and max burst size */
   1261 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1262 		    ETHER_MAX_LEN | (0x2000<<16));
   1263 
   1264 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1265 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1266 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1267 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1268 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1269 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1270 
   1271 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1272 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1273 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1274 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1275 
   1276 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1277 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1278 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1279 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1280 
   1281 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1282 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1283 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1284 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1285 
   1286 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1287 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1288 
   1289 		sc->sc_inited = 1;
   1290 	}
   1291 
   1292 	/* Counters need to be zeroed */
   1293 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1294 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1295 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1296 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1297 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1298 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1299 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1300 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1301 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1302 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1303 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1304 
   1305 	/* Set XOFF PAUSE time. */
   1306 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1307 
   1308 	/*
   1309 	 * Set the internal arbitration to "infinite" bursts of the
   1310 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1311 	 * split up in cache line size chunks. This greatly improves
   1312 	 * especially RX performance.
   1313 	 * Enable silicon bug workarounds for the Apple variants.
   1314 	 */
   1315 	bus_space_write_4(t, h, GEM_CONFIG,
   1316 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1317 	    ((sc->sc_flags & GEM_PCI) ?
   1318 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1319 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1320 
   1321 	/*
   1322 	 * Set the station address.
   1323 	 */
   1324 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1325 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1326 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1327 
   1328 	/*
   1329 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1330 	 */
   1331 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1332 	v = GEM_MAC_XIF_TX_MII_ENA;
   1333 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
   1334 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1335 			v |= GEM_MAC_XIF_FDPLX_LED;
   1336 				if (sc->sc_flags & GEM_GIGABIT)
   1337 					v |= GEM_MAC_XIF_GMII_MODE;
   1338 		}
   1339 	} else {
   1340 		v |= GEM_MAC_XIF_GMII_MODE;
   1341 	}
   1342 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1343 }
   1344 
   1345 #ifdef GEM_DEBUG
   1346 static void
   1347 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1348 {
   1349 	int i;
   1350 
   1351 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1352 		printf("descriptor %d:\t", i);
   1353 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1354 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1355 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1356 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1357 		if (i == lastdesc)
   1358 			break;
   1359 	}
   1360 }
   1361 #endif
   1362 
   1363 static void
   1364 gem_start(struct ifnet *ifp)
   1365 {
   1366 	struct gem_softc *sc = ifp->if_softc;
   1367 	struct mbuf *m0, *m;
   1368 	struct gem_txsoft *txs;
   1369 	bus_dmamap_t dmamap;
   1370 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1371 #ifdef GEM_DEBUG
   1372 	int otxnext;
   1373 #endif
   1374 	uint64_t flags = 0;
   1375 
   1376 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
   1377 		return;
   1378 
   1379 	/*
   1380 	 * Remember the previous number of free descriptors and
   1381 	 * the first descriptor we'll use.
   1382 	 */
   1383 	ofree = sc->sc_txfree;
   1384 #ifdef GEM_DEBUG
   1385 	otxnext = sc->sc_txnext;
   1386 #endif
   1387 
   1388 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1389 	    device_xname(sc->sc_dev), ofree, otxnext));
   1390 
   1391 	/*
   1392 	 * Loop through the send queue, setting up transmit descriptors
   1393 	 * until we drain the queue, or use up all available transmit
   1394 	 * descriptors.
   1395 	 */
   1396 #ifdef INET
   1397 next:
   1398 #endif
   1399 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1400 	    sc->sc_txfree != 0) {
   1401 		/*
   1402 		 * Grab a packet off the queue.
   1403 		 */
   1404 		IFQ_POLL(&ifp->if_snd, m0);
   1405 		if (m0 == NULL)
   1406 			break;
   1407 		m = NULL;
   1408 
   1409 		dmamap = txs->txs_dmamap;
   1410 
   1411 		/*
   1412 		 * Load the DMA map.  If this fails, the packet either
   1413 		 * didn't fit in the allotted number of segments, or we were
   1414 		 * short on resources.  In this case, we'll copy and try
   1415 		 * again.
   1416 		 */
   1417 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1418 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
   1419 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1420 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1421 			if (m0->m_pkthdr.len > MCLBYTES) {
   1422 				aprint_error_dev(sc->sc_dev,
   1423 				    "unable to allocate jumbo Tx cluster\n");
   1424 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1425 				m_freem(m0);
   1426 				continue;
   1427 			}
   1428 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1429 			if (m == NULL) {
   1430 				aprint_error_dev(sc->sc_dev,
   1431 				    "unable to allocate Tx mbuf\n");
   1432 				break;
   1433 			}
   1434 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1435 			if (m0->m_pkthdr.len > MHLEN) {
   1436 				MCLGET(m, M_DONTWAIT);
   1437 				if ((m->m_flags & M_EXT) == 0) {
   1438 					aprint_error_dev(sc->sc_dev,
   1439 					    "unable to allocate Tx cluster\n");
   1440 					m_freem(m);
   1441 					break;
   1442 				}
   1443 			}
   1444 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1445 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1446 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1447 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1448 			if (error) {
   1449 				aprint_error_dev(sc->sc_dev,
   1450 				    "unable to load Tx buffer, error = %d\n",
   1451 				    error);
   1452 				break;
   1453 			}
   1454 		}
   1455 
   1456 		/*
   1457 		 * Ensure we have enough descriptors free to describe
   1458 		 * the packet.
   1459 		 */
   1460 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1461 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1462 			/*
   1463 			 * Not enough free descriptors to transmit this
   1464 			 * packet.
   1465 			 */
   1466 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1467 			m_freem(m);
   1468 			break;
   1469 		}
   1470 
   1471 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1472 		if (m != NULL) {
   1473 			m_freem(m0);
   1474 			m0 = m;
   1475 		}
   1476 
   1477 		/*
   1478 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1479 		 */
   1480 
   1481 		/* Sync the DMA map. */
   1482 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1483 		    BUS_DMASYNC_PREWRITE);
   1484 
   1485 		/*
   1486 		 * Initialize the transmit descriptors.
   1487 		 */
   1488 		firsttx = sc->sc_txnext;
   1489 		for (nexttx = firsttx, seg = 0;
   1490 		     seg < dmamap->dm_nsegs;
   1491 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1492 
   1493 			/*
   1494 			 * If this is the first descriptor we're
   1495 			 * enqueueing, set the start of packet flag,
   1496 			 * and the checksum stuff if we want the hardware
   1497 			 * to do it.
   1498 			 */
   1499 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1500 			if (nexttx == firsttx) {
   1501 				flags |= GEM_TD_START_OF_PACKET;
   1502 #ifdef INET
   1503 				/* h/w checksum */
   1504 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1505 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1506 					struct ether_header *eh;
   1507 					uint16_t offset, start;
   1508 
   1509 					eh = mtod(m0, struct ether_header *);
   1510 					switch (ntohs(eh->ether_type)) {
   1511 					case ETHERTYPE_IP:
   1512 						start = ETHER_HDR_LEN;
   1513 						break;
   1514 					case ETHERTYPE_VLAN:
   1515 						start = ETHER_HDR_LEN +
   1516 							ETHER_VLAN_ENCAP_LEN;
   1517 						break;
   1518 					default:
   1519 						/* unsupported, drop it */
   1520 						bus_dmamap_unload(sc->sc_dmatag,
   1521 							dmamap);
   1522 						m_freem(m0);
   1523 						goto next;
   1524 					}
   1525 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1526 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1527 					flags |= (start <<
   1528 						  GEM_TD_CXSUM_STARTSHFT) |
   1529 						 (offset <<
   1530 						  GEM_TD_CXSUM_STUFFSHFT) |
   1531 						 GEM_TD_CXSUM_ENABLE;
   1532 				}
   1533 #endif
   1534 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1535 					sc->sc_txwin = 0;
   1536 					flags |= GEM_TD_INTERRUPT_ME;
   1537 				}
   1538 			}
   1539 			sc->sc_txdescs[nexttx].gd_addr =
   1540 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1541 			if (seg == dmamap->dm_nsegs - 1) {
   1542 				flags |= GEM_TD_END_OF_PACKET;
   1543 			} else {
   1544 				/* last flag set outside of loop */
   1545 				sc->sc_txdescs[nexttx].gd_flags =
   1546 					GEM_DMA_WRITE(sc, flags);
   1547 			}
   1548 			lasttx = nexttx;
   1549 		}
   1550 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1551 			/* add padding buffer at end of chain */
   1552 			flags &= ~GEM_TD_END_OF_PACKET;
   1553 			sc->sc_txdescs[lasttx].gd_flags =
   1554 			    GEM_DMA_WRITE(sc, flags);
   1555 
   1556 			sc->sc_txdescs[nexttx].gd_addr =
   1557 			    GEM_DMA_WRITE(sc,
   1558 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1559 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1560 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1561 			lasttx = nexttx;
   1562 			nexttx = GEM_NEXTTX(nexttx);
   1563 			seg++;
   1564 		}
   1565 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1566 
   1567 		KASSERT(lasttx != -1);
   1568 
   1569 		/*
   1570 		 * Store a pointer to the packet so we can free it later,
   1571 		 * and remember what txdirty will be once the packet is
   1572 		 * done.
   1573 		 */
   1574 		txs->txs_mbuf = m0;
   1575 		txs->txs_firstdesc = sc->sc_txnext;
   1576 		txs->txs_lastdesc = lasttx;
   1577 		txs->txs_ndescs = seg;
   1578 
   1579 #ifdef GEM_DEBUG
   1580 		if (ifp->if_flags & IFF_DEBUG) {
   1581 			printf("     gem_start %p transmit chain:\n", txs);
   1582 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1583 			    txs->txs_lastdesc);
   1584 		}
   1585 #endif
   1586 
   1587 		/* Sync the descriptors we're using. */
   1588 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1589 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1590 
   1591 		/* Advance the tx pointer. */
   1592 		sc->sc_txfree -= txs->txs_ndescs;
   1593 		sc->sc_txnext = nexttx;
   1594 
   1595 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1596 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1597 
   1598 		/*
   1599 		 * Pass the packet to any BPF listeners.
   1600 		 */
   1601 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1602 	}
   1603 
   1604 	if (sc->sc_txfree != ofree) {
   1605 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1606 		    device_xname(sc->sc_dev), lasttx, otxnext));
   1607 		/*
   1608 		 * The entire packet chain is set up.
   1609 		 * Kick the transmitter.
   1610 		 */
   1611 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1612 			device_xname(sc->sc_dev), nexttx));
   1613 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1614 			sc->sc_txnext);
   1615 
   1616 		/* Set a watchdog timer in case the chip flakes out. */
   1617 		ifp->if_timer = 5;
   1618 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1619 			device_xname(sc->sc_dev), ifp->if_timer));
   1620 	}
   1621 }
   1622 
   1623 /*
   1624  * Transmit interrupt.
   1625  */
   1626 int
   1627 gem_tint(struct gem_softc *sc)
   1628 {
   1629 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1630 	bus_space_tag_t t = sc->sc_bustag;
   1631 	bus_space_handle_t mac = sc->sc_h1;
   1632 	struct gem_txsoft *txs;
   1633 	int txlast;
   1634 	int progress = 0;
   1635 	uint32_t v;
   1636 
   1637 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1638 
   1639 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
   1640 
   1641 	/* Unload collision counters ... */
   1642 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1643 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1644 	if_statadd_ref(ifp, nsr, if_collisions, v +
   1645 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1646 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
   1647 	if_statadd_ref(ifp, nsr, if_oerrors, v);
   1648 
   1649 	/* ... then clear the hardware counters. */
   1650 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1651 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1652 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1653 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1654 
   1655 	/*
   1656 	 * Go through our Tx list and free mbufs for those
   1657 	 * frames that have been transmitted.
   1658 	 */
   1659 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1660 		/*
   1661 		 * In theory, we could harvest some descriptors before
   1662 		 * the ring is empty, but that's a bit complicated.
   1663 		 *
   1664 		 * GEM_TX_COMPLETION points to the last descriptor
   1665 		 * processed +1.
   1666 		 *
   1667 		 * Let's assume that the NIC writes back to the Tx
   1668 		 * descriptors before it updates the completion
   1669 		 * register.  If the NIC has posted writes to the
   1670 		 * Tx descriptors, PCI ordering requires that the
   1671 		 * posted writes flush to RAM before the register-read
   1672 		 * finishes.  So let's read the completion register,
   1673 		 * before syncing the descriptors, so that we
   1674 		 * examine Tx descriptors that are at least as
   1675 		 * current as the completion register.
   1676 		 */
   1677 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1678 		DPRINTF(sc,
   1679 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1680 				txs->txs_lastdesc, txlast));
   1681 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1682 			if (txlast >= txs->txs_firstdesc &&
   1683 			    txlast <= txs->txs_lastdesc)
   1684 				break;
   1685 		} else if (txlast >= txs->txs_firstdesc ||
   1686 			   txlast <= txs->txs_lastdesc)
   1687 			break;
   1688 
   1689 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1690 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1691 
   1692 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1693 		if (ifp->if_flags & IFF_DEBUG) {
   1694 			printf("    txsoft %p transmit chain:\n", txs);
   1695 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1696 			    txs->txs_lastdesc);
   1697 		}
   1698 #endif
   1699 
   1700 
   1701 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1702 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1703 
   1704 		sc->sc_txfree += txs->txs_ndescs;
   1705 
   1706 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1707 		    0, txs->txs_dmamap->dm_mapsize,
   1708 		    BUS_DMASYNC_POSTWRITE);
   1709 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1710 		m_freem(txs->txs_mbuf);
   1711 		txs->txs_mbuf = NULL;
   1712 
   1713 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1714 
   1715 		if_statinc_ref(ifp, nsr, if_opackets);
   1716 		progress = 1;
   1717 	}
   1718 
   1719 	IF_STAT_PUTREF(ifp);
   1720 
   1721 #if 0
   1722 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1723 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1724 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1725 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1726 			GEM_TX_DATA_PTR_HI) << 32) |
   1727 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1728 			GEM_TX_DATA_PTR_LO),
   1729 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1730 #endif
   1731 
   1732 	if (progress) {
   1733 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1734 			sc->sc_txwin = 0;
   1735 
   1736 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1737 		if_schedule_deferred_start(ifp);
   1738 	}
   1739 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1740 		device_xname(sc->sc_dev), ifp->if_timer));
   1741 
   1742 	return (1);
   1743 }
   1744 
   1745 /*
   1746  * Receive interrupt.
   1747  */
   1748 int
   1749 gem_rint(struct gem_softc *sc)
   1750 {
   1751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1752 	bus_space_tag_t t = sc->sc_bustag;
   1753 	bus_space_handle_t h = sc->sc_h1;
   1754 	struct gem_rxsoft *rxs;
   1755 	struct mbuf *m;
   1756 	uint64_t rxstat;
   1757 	uint32_t rxcomp;
   1758 	int i, len, progress = 0;
   1759 
   1760 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
   1761 
   1762 	/*
   1763 	 * Ignore spurious interrupt that sometimes occurs before
   1764 	 * we are set up when we network boot.
   1765 	 */
   1766 	if (!sc->sc_meminited)
   1767 		return 1;
   1768 
   1769 	/*
   1770 	 * Read the completion register once.  This limits
   1771 	 * how long the following loop can execute.
   1772 	 */
   1773 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1774 
   1775 	/*
   1776 	 * XXX Read the lastrx only once at the top for speed.
   1777 	 */
   1778 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1779 		sc->sc_rxptr, rxcomp));
   1780 
   1781 	/*
   1782 	 * Go into the loop at least once.
   1783 	 */
   1784 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1785 	     i = GEM_NEXTRX(i)) {
   1786 		rxs = &sc->sc_rxsoft[i];
   1787 
   1788 		GEM_CDRXSYNC(sc, i,
   1789 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1790 
   1791 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1792 
   1793 		if (rxstat & GEM_RD_OWN) {
   1794 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1795 			/*
   1796 			 * We have processed all of the receive buffers.
   1797 			 */
   1798 			break;
   1799 		}
   1800 
   1801 		progress++;
   1802 
   1803 		if (rxstat & GEM_RD_BAD_CRC) {
   1804 			if_statinc(ifp, if_ierrors);
   1805 			DPRINTF(sc, ("%s: receive error: CRC error\n",
   1806 			    device_xname(sc->sc_dev)));
   1807 			GEM_INIT_RXDESC(sc, i);
   1808 			continue;
   1809 		}
   1810 
   1811 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1812 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1813 #ifdef GEM_DEBUG
   1814 		if (ifp->if_flags & IFF_DEBUG) {
   1815 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1816 			printf("gd_flags: 0x%016llx\t", (long long)
   1817 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1818 			printf("gd_addr: 0x%016llx\n", (long long)
   1819 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1820 		}
   1821 #endif
   1822 
   1823 		/* No errors; receive the packet. */
   1824 		len = GEM_RD_BUFLEN(rxstat);
   1825 
   1826 		/*
   1827 		 * Allocate a new mbuf cluster.  If that fails, we are
   1828 		 * out of memory, and must drop the packet and recycle
   1829 		 * the buffer that's already attached to this descriptor.
   1830 		 */
   1831 		m = rxs->rxs_mbuf;
   1832 		if (gem_add_rxbuf(sc, i) != 0) {
   1833 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1834 			if_statinc(ifp, if_ierrors);
   1835 			aprint_error_dev(sc->sc_dev,
   1836 			    "receive error: RX no buffer space\n");
   1837 			GEM_INIT_RXDESC(sc, i);
   1838 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1839 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1840 			continue;
   1841 		}
   1842 		m->m_data += 2; /* We're already off by two */
   1843 
   1844 		m_set_rcvif(m, ifp);
   1845 		m->m_pkthdr.len = m->m_len = len;
   1846 
   1847 #ifdef INET
   1848 		/* hardware checksum */
   1849 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1850 			struct ether_header *eh;
   1851 			struct ip *ip;
   1852 			int32_t hlen, pktlen;
   1853 
   1854 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1855 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1856 					 ETHER_VLAN_ENCAP_LEN;
   1857 				eh = (struct ether_header *) (mtod(m, char *) +
   1858 					ETHER_VLAN_ENCAP_LEN);
   1859 			} else {
   1860 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1861 				eh = mtod(m, struct ether_header *);
   1862 			}
   1863 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1864 				goto swcsum;
   1865 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1866 
   1867 			/* IPv4 only */
   1868 			if (ip->ip_v != IPVERSION)
   1869 				goto swcsum;
   1870 
   1871 			hlen = ip->ip_hl << 2;
   1872 			if (hlen < sizeof(struct ip))
   1873 				goto swcsum;
   1874 
   1875 			/*
   1876 			 * bail if too short, has random trailing garbage,
   1877 			 * truncated, fragment, or has ethernet pad.
   1878 			 */
   1879 			if ((ntohs(ip->ip_len) < hlen) ||
   1880 			    (ntohs(ip->ip_len) != pktlen) ||
   1881 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1882 				goto swcsum;
   1883 
   1884 			switch (ip->ip_p) {
   1885 			case IPPROTO_TCP:
   1886 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1887 					goto swcsum;
   1888 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1889 					goto swcsum;
   1890 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1891 				break;
   1892 			case IPPROTO_UDP:
   1893 				/* FALLTHROUGH */
   1894 			default:
   1895 				goto swcsum;
   1896 			}
   1897 
   1898 			/* the uncomplemented sum is expected */
   1899 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1900 
   1901 			/* if the pkt had ip options, we have to deduct them */
   1902 			if (hlen > sizeof(struct ip)) {
   1903 				uint16_t *opts;
   1904 				uint32_t optsum, temp;
   1905 
   1906 				optsum = 0;
   1907 				temp = hlen - sizeof(struct ip);
   1908 				opts = (uint16_t *) ((char *) ip +
   1909 					sizeof(struct ip));
   1910 
   1911 				while (temp > 1) {
   1912 					optsum += ntohs(*opts++);
   1913 					temp -= 2;
   1914 				}
   1915 				while (optsum >> 16)
   1916 					optsum = (optsum >> 16) +
   1917 						 (optsum & 0xffff);
   1918 
   1919 				/* Deduct ip opts sum from hwsum. */
   1920 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
   1921 
   1922 				while (m->m_pkthdr.csum_data >> 16)
   1923 					m->m_pkthdr.csum_data =
   1924 						(m->m_pkthdr.csum_data >> 16) +
   1925 						(m->m_pkthdr.csum_data &
   1926 						 0xffff);
   1927 			}
   1928 
   1929 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1930 						  M_CSUM_NO_PSEUDOHDR;
   1931 		} else
   1932 swcsum:
   1933 			m->m_pkthdr.csum_flags = 0;
   1934 #endif
   1935 		/* Pass it on. */
   1936 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1937 	}
   1938 
   1939 	if (progress) {
   1940 		/* Update the receive pointer. */
   1941 		if (i == sc->sc_rxptr) {
   1942 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1943 #ifdef GEM_DEBUG
   1944 			if (ifp->if_flags & IFF_DEBUG)
   1945 				printf("%s: rint: ring wrap\n",
   1946 				    device_xname(sc->sc_dev));
   1947 #endif
   1948 		}
   1949 		sc->sc_rxptr = i;
   1950 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1951 	}
   1952 #ifdef GEM_COUNTERS
   1953 	if (progress <= 4) {
   1954 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1955 	} else if (progress < 32) {
   1956 		if (progress < 16)
   1957 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1958 		else
   1959 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1960 
   1961 	} else {
   1962 		if (progress < 64)
   1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1964 		else
   1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1966 	}
   1967 #endif
   1968 
   1969 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1970 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1971 
   1972 	/* Read error counters ... */
   1973 	if_statadd(ifp, if_ierrors,
   1974 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1975 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1976 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1977 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
   1978 
   1979 	/* ... then clear the hardware counters. */
   1980 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1981 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1982 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1983 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1984 
   1985 	return (1);
   1986 }
   1987 
   1988 
   1989 /*
   1990  * gem_add_rxbuf:
   1991  *
   1992  *	Add a receive buffer to the indicated descriptor.
   1993  */
   1994 int
   1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1996 {
   1997 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1998 	struct mbuf *m;
   1999 	int error;
   2000 
   2001 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2002 	if (m == NULL)
   2003 		return (ENOBUFS);
   2004 
   2005 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2006 	MCLGET(m, M_DONTWAIT);
   2007 	if ((m->m_flags & M_EXT) == 0) {
   2008 		m_freem(m);
   2009 		return (ENOBUFS);
   2010 	}
   2011 
   2012 #ifdef GEM_DEBUG
   2013 /* bzero the packet to check DMA */
   2014 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   2015 #endif
   2016 
   2017 	if (rxs->rxs_mbuf != NULL)
   2018 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   2019 
   2020 	rxs->rxs_mbuf = m;
   2021 
   2022 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   2023 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2024 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2025 	if (error) {
   2026 		aprint_error_dev(sc->sc_dev,
   2027 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   2028 		panic("gem_add_rxbuf");	/* XXX */
   2029 	}
   2030 
   2031 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   2032 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2033 
   2034 	GEM_INIT_RXDESC(sc, idx);
   2035 
   2036 	return (0);
   2037 }
   2038 
   2039 
   2040 int
   2041 gem_eint(struct gem_softc *sc, u_int status)
   2042 {
   2043 	char bits[128];
   2044 	uint32_t r, v;
   2045 
   2046 	if ((status & GEM_INTR_MIF) != 0) {
   2047 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
   2048 		return (1);
   2049 	}
   2050 
   2051 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   2052 		gem_reset_rxdma(sc);
   2053 		return (1);
   2054 	}
   2055 
   2056 	if (status & GEM_INTR_BERR) {
   2057 		if (sc->sc_flags & GEM_PCI)
   2058 			r = GEM_ERROR_STATUS;
   2059 		else
   2060 			r = GEM_SBUS_ERROR_STATUS;
   2061 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2062 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2063 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
   2064 		    v);
   2065 		return (1);
   2066 	}
   2067 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2068 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   2069 
   2070 	return (1);
   2071 }
   2072 
   2073 
   2074 /*
   2075  * PCS interrupts.
   2076  * We should receive these when the link status changes, but sometimes
   2077  * we don't receive them for link up.  We compensate for this in the
   2078  * gem_tick() callout.
   2079  */
   2080 int
   2081 gem_pint(struct gem_softc *sc)
   2082 {
   2083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2084 	bus_space_tag_t t = sc->sc_bustag;
   2085 	bus_space_handle_t h = sc->sc_h1;
   2086 	uint32_t v, v2;
   2087 
   2088 	/*
   2089 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2090 	 * latched, so we have to read it twice.  There is only one bit in
   2091 	 * use, so the value is meaningless.
   2092 	 */
   2093 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2094 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2095 
   2096 	if ((ifp->if_flags & IFF_UP) == 0)
   2097 		return 1;
   2098 
   2099 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2100 		return 1;
   2101 
   2102 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2103 	/* If we see remote fault, our link partner is probably going away */
   2104 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2105 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2106 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2107 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2108 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2109 	    GEM_MII_STATUS_ANEG_CPT) {
   2110 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2111 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2112 	}
   2113 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2114 		if (sc->sc_flags & GEM_LINK) {
   2115 			return 1;
   2116 		}
   2117 		callout_stop(&sc->sc_tick_ch);
   2118 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2119 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2120 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2121 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2122 		v &= v2;
   2123 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2124 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2125 #ifdef GEM_DEBUG
   2126 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
   2127 #endif
   2128 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2129 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2130 #ifdef GEM_DEBUG
   2131 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
   2132 #endif
   2133 		} else {
   2134 #ifdef GEM_DEBUG
   2135 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
   2136 #endif
   2137 		}
   2138 		gem_statuschange(sc);
   2139 	} else {
   2140 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2141 			return 1;
   2142 		}
   2143 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2144 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2145 #ifdef GEM_DEBUG
   2146 			aprint_debug_dev(sc->sc_dev, "link down\n");
   2147 #endif
   2148 		gem_statuschange(sc);
   2149 
   2150 		/* Start the 10 second timer */
   2151 		callout_schedule(&sc->sc_tick_ch, hz * 10);
   2152 	}
   2153 	return 1;
   2154 }
   2155 
   2156 
   2157 
   2158 int
   2159 gem_intr(void *v)
   2160 {
   2161 	struct gem_softc *sc = v;
   2162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2163 	bus_space_tag_t t = sc->sc_bustag;
   2164 	bus_space_handle_t h = sc->sc_h1;
   2165 	uint32_t status;
   2166 	int r = 0;
   2167 #ifdef GEM_DEBUG
   2168 	char bits[128];
   2169 #endif
   2170 
   2171 	/* XXX We should probably mask out interrupts until we're done */
   2172 
   2173 	sc->sc_ev_intr.ev_count++;
   2174 
   2175 	status = bus_space_read_4(t, h, GEM_STATUS);
   2176 #ifdef GEM_DEBUG
   2177 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2178 #endif
   2179 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2180 		device_xname(sc->sc_dev), (status >> 19), bits));
   2181 
   2182 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2183 		r |= gem_eint(sc, status);
   2184 
   2185 	/* We don't bother with GEM_INTR_TX_DONE */
   2186 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2187 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2188 		r |= gem_tint(sc);
   2189 	}
   2190 
   2191 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2192 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2193 		r |= gem_rint(sc);
   2194 	}
   2195 
   2196 	/* We should eventually do more than just print out error stats. */
   2197 	if (status & GEM_INTR_TX_MAC) {
   2198 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2199 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2200 			printf("%s: MAC tx fault, status %x\n",
   2201 			    device_xname(sc->sc_dev), txstat);
   2202 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2203 			gem_init(ifp);
   2204 	}
   2205 	if (status & GEM_INTR_RX_MAC) {
   2206 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2207 		/*
   2208 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2209 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2210 		 * silicon bug so handle them silently.  So if we detect
   2211 		 * an RX FIFO overflow, we fire off a timer, and check
   2212 		 * whether we're still making progress by looking at the
   2213 		 * RX FIFO write and read pointers.
   2214 		 */
   2215 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2216 			if_statinc(ifp, if_ierrors);
   2217 			GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
   2218 #ifdef GEM_DEBUG
   2219 			aprint_error_dev(sc->sc_dev,
   2220 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
   2221 #endif
   2222 			sc->sc_rx_fifo_wr_ptr =
   2223 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
   2224 			sc->sc_rx_fifo_rd_ptr =
   2225 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
   2226 			callout_schedule(&sc->sc_rx_watchdog, 400);
   2227 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2228 			printf("%s: MAC rx fault, status 0x%02x\n",
   2229 			    device_xname(sc->sc_dev), rxstat);
   2230 	}
   2231 	if (status & GEM_INTR_PCS) {
   2232 		r |= gem_pint(sc);
   2233 	}
   2234 
   2235 /* Do we need to do anything with these?
   2236 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2237 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2238 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2239 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
   2240 			    GEM_MAC_PAUSE_TIME(status2));
   2241 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2242 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
   2243 		if ((status2 & GEM_MAC_RESUME) != 0)
   2244 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
   2245 	}
   2246 	if ((status & GEM_INTR_MIF) != 0)
   2247 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
   2248 */
   2249 	rnd_add_uint32(&sc->rnd_source, status);
   2250 	return (r);
   2251 }
   2252 
   2253 void
   2254 gem_rx_watchdog(void *arg)
   2255 {
   2256 	struct gem_softc *sc = arg;
   2257 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2258 	bus_space_tag_t t = sc->sc_bustag;
   2259 	bus_space_handle_t h = sc->sc_h1;
   2260 	uint32_t rx_fifo_wr_ptr;
   2261 	uint32_t rx_fifo_rd_ptr;
   2262 	uint32_t state;
   2263 
   2264 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   2265 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
   2266 		return;
   2267 	}
   2268 
   2269 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
   2270 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
   2271 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
   2272 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
   2273 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
   2274 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
   2275 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
   2276 	{
   2277 		/*
   2278 		 * The RX state machine is still in overflow state and
   2279 		 * the RX FIFO write and read pointers seem to be
   2280 		 * stuck.  Whack the chip over the head to get things
   2281 		 * going again.
   2282 		 */
   2283 		aprint_error_dev(sc->sc_dev,
   2284 		    "receiver stuck in overflow, resetting\n");
   2285 		gem_init(ifp);
   2286 	} else {
   2287 		int needreset = 1;
   2288 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
   2289 			DPRINTF(sc,
   2290 			    ("%s: rx_watchdog: not in overflow state: 0x%x\n",
   2291 			    device_xname(sc->sc_dev), state));
   2292 		}
   2293 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
   2294 			DPRINTF(sc,
   2295 			    ("%s: rx_watchdog: wr & rd ptr different\n",
   2296 			    device_xname(sc->sc_dev)));
   2297 			needreset = 0;
   2298 		}
   2299 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
   2300 			DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
   2301 			    device_xname(sc->sc_dev)));
   2302 			needreset = 0;
   2303 		}
   2304 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
   2305 			DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
   2306 			    device_xname(sc->sc_dev)));
   2307 			needreset = 0;
   2308 		}
   2309 		if (needreset) {
   2310 			aprint_error_dev(sc->sc_dev,
   2311 			    "rx_watchdog: resetting anyway\n");
   2312 			gem_init(ifp);
   2313 		}
   2314 	}
   2315 }
   2316 
   2317 void
   2318 gem_watchdog(struct ifnet *ifp)
   2319 {
   2320 	struct gem_softc *sc = ifp->if_softc;
   2321 
   2322 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2323 		"GEM_MAC_RX_CONFIG %x\n",
   2324 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2325 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2326 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2327 
   2328 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   2329 	if_statinc(ifp, if_oerrors);
   2330 
   2331 	/* Try to get more packets going. */
   2332 	gem_init(ifp);
   2333 	gem_start(ifp);
   2334 }
   2335 
   2336 /*
   2337  * Initialize the MII Management Interface
   2338  */
   2339 void
   2340 gem_mifinit(struct gem_softc *sc)
   2341 {
   2342 	bus_space_tag_t t = sc->sc_bustag;
   2343 	bus_space_handle_t mif = sc->sc_h1;
   2344 
   2345 	/* Configure the MIF in frame mode */
   2346 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2347 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2348 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2349 }
   2350 
   2351 /*
   2352  * MII interface
   2353  *
   2354  * The GEM MII interface supports at least three different operating modes:
   2355  *
   2356  * Bitbang mode is implemented using data, clock and output enable registers.
   2357  *
   2358  * Frame mode is implemented by loading a complete frame into the frame
   2359  * register and polling the valid bit for completion.
   2360  *
   2361  * Polling mode uses the frame register but completion is indicated by
   2362  * an interrupt.
   2363  *
   2364  */
   2365 static int
   2366 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   2367 {
   2368 	struct gem_softc *sc = device_private(self);
   2369 	bus_space_tag_t t = sc->sc_bustag;
   2370 	bus_space_handle_t mif = sc->sc_h1;
   2371 	int n;
   2372 	uint32_t v;
   2373 
   2374 #ifdef GEM_DEBUG1
   2375 	if (sc->sc_debug)
   2376 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2377 #endif
   2378 
   2379 	/* Construct the frame command */
   2380 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2381 		GEM_MIF_FRAME_READ;
   2382 
   2383 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2384 	for (n = 0; n < 100; n++) {
   2385 		DELAY(1);
   2386 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2387 		if (v & GEM_MIF_FRAME_TA0) {
   2388 			*val = v & GEM_MIF_FRAME_DATA;
   2389 			return 0;
   2390 		}
   2391 	}
   2392 
   2393 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   2394 	return ETIMEDOUT;
   2395 }
   2396 
   2397 static int
   2398 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   2399 {
   2400 	struct gem_softc *sc = device_private(self);
   2401 	bus_space_tag_t t = sc->sc_bustag;
   2402 	bus_space_handle_t mif = sc->sc_h1;
   2403 	int n;
   2404 	uint32_t v;
   2405 
   2406 #ifdef GEM_DEBUG1
   2407 	if (sc->sc_debug)
   2408 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2409 			phy, reg, val);
   2410 #endif
   2411 
   2412 	/* Construct the frame command */
   2413 	v = GEM_MIF_FRAME_WRITE			|
   2414 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2415 	    (reg << GEM_MIF_REG_SHIFT)		|
   2416 	    (val & GEM_MIF_FRAME_DATA);
   2417 
   2418 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2419 	for (n = 0; n < 100; n++) {
   2420 		DELAY(1);
   2421 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2422 		if (v & GEM_MIF_FRAME_TA0)
   2423 			return 0;
   2424 	}
   2425 
   2426 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   2427 	return ETIMEDOUT;
   2428 }
   2429 
   2430 static void
   2431 gem_mii_statchg(struct ifnet *ifp)
   2432 {
   2433 	struct gem_softc *sc = ifp->if_softc;
   2434 #ifdef GEM_DEBUG
   2435 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2436 #endif
   2437 
   2438 #ifdef GEM_DEBUG
   2439 	if (sc->sc_debug)
   2440 		printf("gem_mii_statchg: status change: phy = %d\n",
   2441 			sc->sc_phys[instance]);
   2442 #endif
   2443 	gem_statuschange(sc);
   2444 }
   2445 
   2446 /*
   2447  * Common status change for gem_mii_statchg() and gem_pint()
   2448  */
   2449 void
   2450 gem_statuschange(struct gem_softc* sc)
   2451 {
   2452 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2453 	bus_space_tag_t t = sc->sc_bustag;
   2454 	bus_space_handle_t mac = sc->sc_h1;
   2455 	int gigabit;
   2456 	uint32_t rxcfg, txcfg, v;
   2457 
   2458 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2459 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2460 		sc->sc_flags |= GEM_LINK;
   2461 	else
   2462 		sc->sc_flags &= ~GEM_LINK;
   2463 
   2464 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2465 		gigabit = 1;
   2466 	else
   2467 		gigabit = 0;
   2468 
   2469 	/*
   2470 	 * The configuration done here corresponds to the steps F) and
   2471 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2472 	 * of the initialization sequence outlined in section 3.2.1 of
   2473 	 * the GEM Gigabit Ethernet ASIC Specification.
   2474 	 */
   2475 
   2476 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2477 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2478 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2479 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2480 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2481 	else if (gigabit) {
   2482 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2483 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2484 	}
   2485 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2486 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2487 	    BUS_SPACE_BARRIER_WRITE);
   2488 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2489 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
   2490 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2491 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2492 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2493 	    BUS_SPACE_BARRIER_WRITE);
   2494 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2495 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
   2496 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2497 
   2498 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2499 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2500 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2501 
   2502 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2503 	    gigabit != 0)
   2504 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2505 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2506 	else
   2507 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2508 		    GEM_MAC_SLOT_TIME_NORMAL);
   2509 
   2510 	/* XIF Configuration */
   2511 	if (sc->sc_flags & GEM_LINK)
   2512 		v = GEM_MAC_XIF_LINK_LED;
   2513 	else
   2514 		v = 0;
   2515 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2516 
   2517 	/* If an external transceiver is connected, enable its MII drivers */
   2518 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2519 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2520 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2521 			if (gigabit)
   2522 				v |= GEM_MAC_XIF_GMII_MODE;
   2523 			else
   2524 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2525 		} else
   2526 			/* Internal MII needs buf enable */
   2527 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2528 		/* MII needs echo disable if half duplex. */
   2529 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2530 			/* turn on full duplex LED */
   2531 			v |= GEM_MAC_XIF_FDPLX_LED;
   2532 		else
   2533 			/* half duplex -- disable echo */
   2534 			v |= GEM_MAC_XIF_ECHO_DISABL;
   2535 	} else {
   2536 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2537 			v |= GEM_MAC_XIF_FDPLX_LED;
   2538 		v |= GEM_MAC_XIF_GMII_MODE;
   2539 	}
   2540 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2541 
   2542 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2543 	    (sc->sc_flags & GEM_LINK) != 0) {
   2544 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2545 		    txcfg | GEM_MAC_TX_ENABLE);
   2546 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2547 		    rxcfg | GEM_MAC_RX_ENABLE);
   2548 	}
   2549 }
   2550 
   2551 int
   2552 gem_ser_mediachange(struct ifnet *ifp)
   2553 {
   2554 	struct gem_softc *sc = ifp->if_softc;
   2555 	u_int s, t;
   2556 
   2557 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2558 		return EINVAL;
   2559 
   2560 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2561 	if (s == IFM_AUTO) {
   2562 		if (sc->sc_mii_media != s) {
   2563 #ifdef GEM_DEBUG
   2564 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
   2565 #endif
   2566 			sc->sc_mii_media = s;
   2567 			if (ifp->if_flags & IFF_UP) {
   2568 				gem_pcs_stop(sc, 0);
   2569 				gem_pcs_start(sc);
   2570 			}
   2571 		}
   2572 		return 0;
   2573 	}
   2574 	if (s == IFM_1000_SX) {
   2575 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
   2576 		    & (IFM_FDX | IFM_HDX);
   2577 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
   2578 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
   2579 			sc->sc_mii_media |= t;
   2580 #ifdef GEM_DEBUG
   2581 			aprint_debug_dev(sc->sc_dev,
   2582 			    "setting media to 1000baseSX-%s\n",
   2583 			    t == IFM_FDX ? "FDX" : "HDX");
   2584 #endif
   2585 			if (ifp->if_flags & IFF_UP) {
   2586 				gem_pcs_stop(sc, 0);
   2587 				gem_pcs_start(sc);
   2588 			}
   2589 		}
   2590 		return 0;
   2591 	}
   2592 	return EINVAL;
   2593 }
   2594 
   2595 void
   2596 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2597 {
   2598 	struct gem_softc *sc = ifp->if_softc;
   2599 
   2600 	if ((ifp->if_flags & IFF_UP) == 0)
   2601 		return;
   2602 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2603 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2604 }
   2605 
   2606 static int
   2607 gem_ifflags_cb(struct ethercom *ec)
   2608 {
   2609 	struct ifnet *ifp = &ec->ec_if;
   2610 	struct gem_softc *sc = ifp->if_softc;
   2611 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
   2612 
   2613 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   2614 		return ENETRESET;
   2615 	else if ((change & IFF_PROMISC) != 0)
   2616 		gem_setladrf(sc);
   2617 	return 0;
   2618 }
   2619 
   2620 /*
   2621  * Process an ioctl request.
   2622  */
   2623 int
   2624 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2625 {
   2626 	struct gem_softc *sc = ifp->if_softc;
   2627 	int s, error = 0;
   2628 
   2629 	s = splnet();
   2630 
   2631 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2632 		error = 0;
   2633 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2634 			;
   2635 		else if (ifp->if_flags & IFF_RUNNING) {
   2636 			/*
   2637 			 * Multicast list has changed; set the hardware filter
   2638 			 * accordingly.
   2639 			 */
   2640 			gem_setladrf(sc);
   2641 		}
   2642 	}
   2643 
   2644 	/* Try to get things going again */
   2645 	if (ifp->if_flags & IFF_UP)
   2646 		gem_start(ifp);
   2647 	splx(s);
   2648 	return (error);
   2649 }
   2650 
   2651 static void
   2652 gem_inten(struct gem_softc *sc)
   2653 {
   2654 	bus_space_tag_t t = sc->sc_bustag;
   2655 	bus_space_handle_t h = sc->sc_h1;
   2656 	uint32_t v;
   2657 
   2658 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   2659 		v = GEM_INTR_PCS;
   2660 	else
   2661 		v = GEM_INTR_MIF;
   2662 	bus_space_write_4(t, h, GEM_INTMASK,
   2663 		      ~(GEM_INTR_TX_INTME |
   2664 			GEM_INTR_TX_EMPTY |
   2665 			GEM_INTR_TX_MAC |
   2666 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
   2667 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
   2668 			GEM_INTR_BERR | v));
   2669 }
   2670 
   2671 bool
   2672 gem_resume(device_t self, const pmf_qual_t *qual)
   2673 {
   2674 	struct gem_softc *sc = device_private(self);
   2675 
   2676 	gem_inten(sc);
   2677 
   2678 	return true;
   2679 }
   2680 
   2681 bool
   2682 gem_suspend(device_t self, const pmf_qual_t *qual)
   2683 {
   2684 	struct gem_softc *sc = device_private(self);
   2685 	bus_space_tag_t t = sc->sc_bustag;
   2686 	bus_space_handle_t h = sc->sc_h1;
   2687 
   2688 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
   2689 
   2690 	return true;
   2691 }
   2692 
   2693 bool
   2694 gem_shutdown(device_t self, int howto)
   2695 {
   2696 	struct gem_softc *sc = device_private(self);
   2697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2698 
   2699 	gem_stop(ifp, 1);
   2700 
   2701 	return true;
   2702 }
   2703 
   2704 /*
   2705  * Set up the logical address filter.
   2706  */
   2707 void
   2708 gem_setladrf(struct gem_softc *sc)
   2709 {
   2710 	struct ethercom *ec = &sc->sc_ethercom;
   2711 	struct ifnet *ifp = &ec->ec_if;
   2712 	struct ether_multi *enm;
   2713 	struct ether_multistep step;
   2714 	bus_space_tag_t t = sc->sc_bustag;
   2715 	bus_space_handle_t h = sc->sc_h1;
   2716 	uint32_t crc;
   2717 	uint32_t hash[16];
   2718 	uint32_t v;
   2719 	int i;
   2720 
   2721 	/* Get current RX configuration */
   2722 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2723 
   2724 	/*
   2725 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2726 	 * and hash filter.  Depending on the case, the right bit will be
   2727 	 * enabled.
   2728 	 */
   2729 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
   2730 	    GEM_MAC_RX_PROMISC_GRP);
   2731 
   2732 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2733 		/* Turn on promiscuous mode */
   2734 		v |= GEM_MAC_RX_PROMISCUOUS;
   2735 		ifp->if_flags |= IFF_ALLMULTI;
   2736 		goto chipit;
   2737 	}
   2738 
   2739 	/*
   2740 	 * Set up multicast address filter by passing all multicast addresses
   2741 	 * through a crc generator, and then using the high order 8 bits as an
   2742 	 * index into the 256 bit logical address filter.  The high order 4
   2743 	 * bits selects the word, while the other 4 bits select the bit within
   2744 	 * the word (where bit 0 is the MSB).
   2745 	 */
   2746 
   2747 	/* Clear hash table */
   2748 	memset(hash, 0, sizeof(hash));
   2749 
   2750 	ETHER_LOCK(ec);
   2751 	ETHER_FIRST_MULTI(step, ec, enm);
   2752 	while (enm != NULL) {
   2753 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2754 			/*
   2755 			 * We must listen to a range of multicast addresses.
   2756 			 * For now, just accept all multicasts, rather than
   2757 			 * trying to set only those filter bits needed to match
   2758 			 * the range.  (At this time, the only use of address
   2759 			 * ranges is for IP multicast routing, for which the
   2760 			 * range is big enough to require all bits set.)
   2761 			 * XXX should use the address filters for this
   2762 			 */
   2763 			ifp->if_flags |= IFF_ALLMULTI;
   2764 			v |= GEM_MAC_RX_PROMISC_GRP;
   2765 			ETHER_UNLOCK(ec);
   2766 			goto chipit;
   2767 		}
   2768 
   2769 		/* Get the LE CRC32 of the address */
   2770 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2771 
   2772 		/* Just want the 8 most significant bits. */
   2773 		crc >>= 24;
   2774 
   2775 		/* Set the corresponding bit in the filter. */
   2776 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2777 
   2778 		ETHER_NEXT_MULTI(step, enm);
   2779 	}
   2780 	ETHER_UNLOCK(ec);
   2781 
   2782 	v |= GEM_MAC_RX_HASH_FILTER;
   2783 	ifp->if_flags &= ~IFF_ALLMULTI;
   2784 
   2785 	/* Now load the hash table into the chip (if we are using it) */
   2786 	for (i = 0; i < 16; i++) {
   2787 		bus_space_write_4(t, h,
   2788 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2789 		    hash[i]);
   2790 	}
   2791 
   2792 chipit:
   2793 	sc->sc_if_flags = ifp->if_flags;
   2794 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2795 }
   2796