Home | History | Annotate | Line # | Download | only in i915
      1 /*	$NetBSD: i915_vgpu.c,v 1.6 2021/12/19 11:37:41 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     23  * SOFTWARE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: i915_vgpu.c,v 1.6 2021/12/19 11:37:41 riastradh Exp $");
     28 
     29 #include "i915_vgpu.h"
     30 
     31 #include <linux/nbsd-namespace.h>
     32 
     33 /**
     34  * DOC: Intel GVT-g guest support
     35  *
     36  * Intel GVT-g is a graphics virtualization technology which shares the
     37  * GPU among multiple virtual machines on a time-sharing basis. Each
     38  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
     39  * features as the underlying physical GPU (pGPU), so i915 driver can run
     40  * seamlessly in a virtual machine. This file provides vGPU specific
     41  * optimizations when running in a virtual machine, to reduce the complexity
     42  * of vGPU emulation and to improve the overall performance.
     43  *
     44  * A primary function introduced here is so-called "address space ballooning"
     45  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
     46  * so each VM can directly access a portion of the memory without hypervisor's
     47  * intervention, e.g. filling textures or queuing commands. However with the
     48  * partitioning an unmodified i915 driver would assume a smaller graphics
     49  * memory starting from address ZERO, then requires vGPU emulation module to
     50  * translate the graphics address between 'guest view' and 'host view', for
     51  * all registers and command opcodes which contain a graphics memory address.
     52  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
     53  * by telling the exact partitioning knowledge to each guest i915 driver, which
     54  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
     55  * emulation module only needs to scan and validate graphics addresses without
     56  * complexity of address translation.
     57  *
     58  */
     59 
     60 /**
     61  * i915_detect_vgpu - detect virtual GPU
     62  * @dev_priv: i915 device private
     63  *
     64  * This function is called at the initialization stage, to detect whether
     65  * running on a vGPU.
     66  */
     67 void i915_detect_vgpu(struct drm_i915_private *dev_priv)
     68 {
     69 	struct pci_dev *pdev = dev_priv->drm.pdev;
     70 	u64 magic;
     71 	u16 version_major;
     72 #ifdef __NetBSD__
     73 	bus_space_tag_t bst;
     74 	bus_space_handle_t bsh;
     75 	bus_size_t off = VGT_PVINFO_PAGE;
     76 	bus_size_t size = VGT_PVINFO_SIZE;
     77 #else
     78 	void __iomem *shared_area;
     79 #endif
     80 
     81 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
     82 
     83 	/*
     84 	 * This is called before we setup the main MMIO BAR mappings used via
     85 	 * the uncore structure, so we need to access the BAR directly. Since
     86 	 * we do not support VGT on older gens, return early so we don't have
     87 	 * to consider differently numbered or sized MMIO bars
     88 	 */
     89 	if (INTEL_GEN(dev_priv) < 6)
     90 		return;
     91 
     92 #ifdef __NetBSD__
     93 	bst = pdev->pd_pa.pa_memt;
     94 	if (off > pdev->pd_resources[0].size ||
     95 	    size > pdev->pd_resources[0].size - off ||
     96 	    bus_space_map(bst, pdev->pd_resources[0].addr + off, size,
     97 		pdev->pd_resources[0].flags, &bsh)) {
     98 		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
     99 		return;
    100 	}
    101 #  ifdef _LP64
    102 	magic = bus_space_read_8(bst, bsh, (bus_size_t)vgtif_offset(magic));
    103 #  else
    104 	magic = bus_space_read_4(bst, bsh, (bus_size_t)vgtif_offset(magic));
    105 	magic |= (uint64_t)bus_space_read_4(bst, bsh,
    106 	    (bus_size_t)vgtif_offset(magic) + 4)
    107 	    << 32;
    108 #  endif
    109 #else
    110 	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
    111 	if (!shared_area) {
    112 		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
    113 		return;
    114 	}
    115 	magic = readq(shared_area + vgtif_offset(magic));
    116 #endif
    117 
    118 	if (magic != VGT_MAGIC)
    119 		goto out;
    120 
    121 #ifdef __NetBSD__
    122 	version_major = bus_space_read_2(bst, bsh,
    123 	    (bus_size_t)vgtif_offset(version_major));
    124 #else
    125 	version_major = readw(shared_area + vgtif_offset(version_major));
    126 #endif
    127 	if (version_major < VGT_VERSION_MAJOR) {
    128 		DRM_INFO("VGT interface version mismatch!\n");
    129 		goto out;
    130 	}
    131 
    132 #ifdef __NetBSD__
    133 	dev_priv->vgpu.caps = bus_space_read_4(bst, bsh,
    134 	    (bus_size_t)vgtif_offset(vgt_caps));
    135 #else
    136 	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
    137 #endif
    138 
    139 	dev_priv->vgpu.active = true;
    140 	mutex_init(&dev_priv->vgpu.lock);
    141 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
    142 
    143 out:
    144 #ifdef __NetBSD__
    145 	bus_space_unmap(bst, bsh, size);
    146 #else
    147 	pci_iounmap(pdev, shared_area);
    148 #endif
    149 }
    150 
    151 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
    152 {
    153 	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
    154 }
    155 
    156 struct _balloon_info_ {
    157 	/*
    158 	 * There are up to 2 regions per mappable/unmappable graphic
    159 	 * memory that might be ballooned. Here, index 0/1 is for mappable
    160 	 * graphic memory, 2/3 for unmappable graphic memory.
    161 	 */
    162 	struct drm_mm_node space[4];
    163 };
    164 
    165 static struct _balloon_info_ bl_info;
    166 
    167 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
    168 				struct drm_mm_node *node)
    169 {
    170 	if (!drm_mm_node_allocated(node))
    171 		return;
    172 
    173 	DRM_DEBUG_DRIVER("deballoon space: range [0x%"PRIx64" - 0x%"PRIx64"] %"PRIu64" KiB.\n",
    174 			 node->start,
    175 			 node->start + node->size,
    176 			 node->size / 1024);
    177 
    178 	ggtt->vm.reserved -= node->size;
    179 	drm_mm_remove_node(node);
    180 }
    181 
    182 /**
    183  * intel_vgt_deballoon - deballoon reserved graphics address trunks
    184  * @ggtt: the global GGTT from which we reserved earlier
    185  *
    186  * This function is called to deallocate the ballooned-out graphic memory, when
    187  * driver is unloaded or when ballooning fails.
    188  */
    189 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
    190 {
    191 	int i;
    192 
    193 	if (!intel_vgpu_active(ggtt->vm.i915))
    194 		return;
    195 
    196 	DRM_DEBUG("VGT deballoon.\n");
    197 
    198 	for (i = 0; i < 4; i++)
    199 		vgt_deballoon_space(ggtt, &bl_info.space[i]);
    200 }
    201 
    202 static int vgt_balloon_space(struct i915_ggtt *ggtt,
    203 			     struct drm_mm_node *node,
    204 			     unsigned long start, unsigned long end)
    205 {
    206 	unsigned long size = end - start;
    207 	int ret;
    208 
    209 	if (start >= end)
    210 		return -EINVAL;
    211 
    212 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
    213 		 start, end, size / 1024);
    214 	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
    215 				   size, start, I915_COLOR_UNEVICTABLE,
    216 				   0);
    217 	if (!ret)
    218 		ggtt->vm.reserved += size;
    219 
    220 	return ret;
    221 }
    222 
    223 /**
    224  * intel_vgt_balloon - balloon out reserved graphics address trunks
    225  * @ggtt: the global GGTT from which to reserve
    226  *
    227  * This function is called at the initialization stage, to balloon out the
    228  * graphic address space allocated to other vGPUs, by marking these spaces as
    229  * reserved. The ballooning related knowledge(starting address and size of
    230  * the mappable/unmappable graphic memory) is described in the vgt_if structure
    231  * in a reserved mmio range.
    232  *
    233  * To give an example, the drawing below depicts one typical scenario after
    234  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
    235  * out each for the mappable and the non-mappable part. From the vGPU1 point of
    236  * view, the total size is the same as the physical one, with the start address
    237  * of its graphic space being zero. Yet there are some portions ballooned out(
    238  * the shadow part, which are marked as reserved by drm allocator). From the
    239  * host point of view, the graphic address space is partitioned by multiple
    240  * vGPUs in different VMs. ::
    241  *
    242  *                         vGPU1 view         Host view
    243  *              0 ------> +-----------+     +-----------+
    244  *                ^       |###########|     |   vGPU3   |
    245  *                |       |###########|     +-----------+
    246  *                |       |###########|     |   vGPU2   |
    247  *                |       +-----------+     +-----------+
    248  *         mappable GM    | available | ==> |   vGPU1   |
    249  *                |       +-----------+     +-----------+
    250  *                |       |###########|     |           |
    251  *                v       |###########|     |   Host    |
    252  *                +=======+===========+     +===========+
    253  *                ^       |###########|     |   vGPU3   |
    254  *                |       |###########|     +-----------+
    255  *                |       |###########|     |   vGPU2   |
    256  *                |       +-----------+     +-----------+
    257  *       unmappable GM    | available | ==> |   vGPU1   |
    258  *                |       +-----------+     +-----------+
    259  *                |       |###########|     |           |
    260  *                |       |###########|     |   Host    |
    261  *                v       |###########|     |           |
    262  *  total GM size ------> +-----------+     +-----------+
    263  *
    264  * Returns:
    265  * zero on success, non-zero if configuration invalid or ballooning failed
    266  */
    267 int intel_vgt_balloon(struct i915_ggtt *ggtt)
    268 {
    269 	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
    270 	unsigned long ggtt_end = ggtt->vm.total;
    271 
    272 	unsigned long mappable_base, mappable_size, mappable_end;
    273 	unsigned long unmappable_base, unmappable_size, unmappable_end;
    274 	int ret;
    275 
    276 	if (!intel_vgpu_active(ggtt->vm.i915))
    277 		return 0;
    278 
    279 	mappable_base =
    280 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
    281 	mappable_size =
    282 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
    283 	unmappable_base =
    284 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
    285 	unmappable_size =
    286 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
    287 
    288 	mappable_end = mappable_base + mappable_size;
    289 	unmappable_end = unmappable_base + unmappable_size;
    290 
    291 	DRM_INFO("VGT ballooning configuration:\n");
    292 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
    293 		 mappable_base, mappable_size / 1024);
    294 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
    295 		 unmappable_base, unmappable_size / 1024);
    296 
    297 	if (mappable_end > ggtt->mappable_end ||
    298 	    unmappable_base < ggtt->mappable_end ||
    299 	    unmappable_end > ggtt_end) {
    300 		DRM_ERROR("Invalid ballooning configuration!\n");
    301 		return -EINVAL;
    302 	}
    303 
    304 	/* Unmappable graphic memory ballooning */
    305 	if (unmappable_base > ggtt->mappable_end) {
    306 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
    307 					ggtt->mappable_end, unmappable_base);
    308 
    309 		if (ret)
    310 			goto err;
    311 	}
    312 
    313 	if (unmappable_end < ggtt_end) {
    314 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
    315 					unmappable_end, ggtt_end);
    316 		if (ret)
    317 			goto err_upon_mappable;
    318 	}
    319 
    320 	/* Mappable graphic memory ballooning */
    321 	if (mappable_base) {
    322 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
    323 					0, mappable_base);
    324 
    325 		if (ret)
    326 			goto err_upon_unmappable;
    327 	}
    328 
    329 	if (mappable_end < ggtt->mappable_end) {
    330 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
    331 					mappable_end, ggtt->mappable_end);
    332 
    333 		if (ret)
    334 			goto err_below_mappable;
    335 	}
    336 
    337 	DRM_INFO("VGT balloon successfully\n");
    338 	return 0;
    339 
    340 err_below_mappable:
    341 	vgt_deballoon_space(ggtt, &bl_info.space[0]);
    342 err_upon_unmappable:
    343 	vgt_deballoon_space(ggtt, &bl_info.space[3]);
    344 err_upon_mappable:
    345 	vgt_deballoon_space(ggtt, &bl_info.space[2]);
    346 err:
    347 	DRM_ERROR("VGT balloon fail\n");
    348 	return ret;
    349 }
    350