1 /* $NetBSD: i915_vgpu.c,v 1.6 2021/12/19 11:37:41 riastradh Exp $ */ 2 3 /* 4 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: i915_vgpu.c,v 1.6 2021/12/19 11:37:41 riastradh Exp $"); 28 29 #include "i915_vgpu.h" 30 31 #include <linux/nbsd-namespace.h> 32 33 /** 34 * DOC: Intel GVT-g guest support 35 * 36 * Intel GVT-g is a graphics virtualization technology which shares the 37 * GPU among multiple virtual machines on a time-sharing basis. Each 38 * virtual machine is presented a virtual GPU (vGPU), which has equivalent 39 * features as the underlying physical GPU (pGPU), so i915 driver can run 40 * seamlessly in a virtual machine. This file provides vGPU specific 41 * optimizations when running in a virtual machine, to reduce the complexity 42 * of vGPU emulation and to improve the overall performance. 43 * 44 * A primary function introduced here is so-called "address space ballooning" 45 * technique. Intel GVT-g partitions global graphics memory among multiple VMs, 46 * so each VM can directly access a portion of the memory without hypervisor's 47 * intervention, e.g. filling textures or queuing commands. However with the 48 * partitioning an unmodified i915 driver would assume a smaller graphics 49 * memory starting from address ZERO, then requires vGPU emulation module to 50 * translate the graphics address between 'guest view' and 'host view', for 51 * all registers and command opcodes which contain a graphics memory address. 52 * To reduce the complexity, Intel GVT-g introduces "address space ballooning", 53 * by telling the exact partitioning knowledge to each guest i915 driver, which 54 * then reserves and prevents non-allocated portions from allocation. Thus vGPU 55 * emulation module only needs to scan and validate graphics addresses without 56 * complexity of address translation. 57 * 58 */ 59 60 /** 61 * i915_detect_vgpu - detect virtual GPU 62 * @dev_priv: i915 device private 63 * 64 * This function is called at the initialization stage, to detect whether 65 * running on a vGPU. 66 */ 67 void i915_detect_vgpu(struct drm_i915_private *dev_priv) 68 { 69 struct pci_dev *pdev = dev_priv->drm.pdev; 70 u64 magic; 71 u16 version_major; 72 #ifdef __NetBSD__ 73 bus_space_tag_t bst; 74 bus_space_handle_t bsh; 75 bus_size_t off = VGT_PVINFO_PAGE; 76 bus_size_t size = VGT_PVINFO_SIZE; 77 #else 78 void __iomem *shared_area; 79 #endif 80 81 BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE); 82 83 /* 84 * This is called before we setup the main MMIO BAR mappings used via 85 * the uncore structure, so we need to access the BAR directly. Since 86 * we do not support VGT on older gens, return early so we don't have 87 * to consider differently numbered or sized MMIO bars 88 */ 89 if (INTEL_GEN(dev_priv) < 6) 90 return; 91 92 #ifdef __NetBSD__ 93 bst = pdev->pd_pa.pa_memt; 94 if (off > pdev->pd_resources[0].size || 95 size > pdev->pd_resources[0].size - off || 96 bus_space_map(bst, pdev->pd_resources[0].addr + off, size, 97 pdev->pd_resources[0].flags, &bsh)) { 98 DRM_ERROR("failed to map MMIO bar to check for VGT\n"); 99 return; 100 } 101 # ifdef _LP64 102 magic = bus_space_read_8(bst, bsh, (bus_size_t)vgtif_offset(magic)); 103 # else 104 magic = bus_space_read_4(bst, bsh, (bus_size_t)vgtif_offset(magic)); 105 magic |= (uint64_t)bus_space_read_4(bst, bsh, 106 (bus_size_t)vgtif_offset(magic) + 4) 107 << 32; 108 # endif 109 #else 110 shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE); 111 if (!shared_area) { 112 DRM_ERROR("failed to map MMIO bar to check for VGT\n"); 113 return; 114 } 115 magic = readq(shared_area + vgtif_offset(magic)); 116 #endif 117 118 if (magic != VGT_MAGIC) 119 goto out; 120 121 #ifdef __NetBSD__ 122 version_major = bus_space_read_2(bst, bsh, 123 (bus_size_t)vgtif_offset(version_major)); 124 #else 125 version_major = readw(shared_area + vgtif_offset(version_major)); 126 #endif 127 if (version_major < VGT_VERSION_MAJOR) { 128 DRM_INFO("VGT interface version mismatch!\n"); 129 goto out; 130 } 131 132 #ifdef __NetBSD__ 133 dev_priv->vgpu.caps = bus_space_read_4(bst, bsh, 134 (bus_size_t)vgtif_offset(vgt_caps)); 135 #else 136 dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps)); 137 #endif 138 139 dev_priv->vgpu.active = true; 140 mutex_init(&dev_priv->vgpu.lock); 141 DRM_INFO("Virtual GPU for Intel GVT-g detected.\n"); 142 143 out: 144 #ifdef __NetBSD__ 145 bus_space_unmap(bst, bsh, size); 146 #else 147 pci_iounmap(pdev, shared_area); 148 #endif 149 } 150 151 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv) 152 { 153 return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT; 154 } 155 156 struct _balloon_info_ { 157 /* 158 * There are up to 2 regions per mappable/unmappable graphic 159 * memory that might be ballooned. Here, index 0/1 is for mappable 160 * graphic memory, 2/3 for unmappable graphic memory. 161 */ 162 struct drm_mm_node space[4]; 163 }; 164 165 static struct _balloon_info_ bl_info; 166 167 static void vgt_deballoon_space(struct i915_ggtt *ggtt, 168 struct drm_mm_node *node) 169 { 170 if (!drm_mm_node_allocated(node)) 171 return; 172 173 DRM_DEBUG_DRIVER("deballoon space: range [0x%"PRIx64" - 0x%"PRIx64"] %"PRIu64" KiB.\n", 174 node->start, 175 node->start + node->size, 176 node->size / 1024); 177 178 ggtt->vm.reserved -= node->size; 179 drm_mm_remove_node(node); 180 } 181 182 /** 183 * intel_vgt_deballoon - deballoon reserved graphics address trunks 184 * @ggtt: the global GGTT from which we reserved earlier 185 * 186 * This function is called to deallocate the ballooned-out graphic memory, when 187 * driver is unloaded or when ballooning fails. 188 */ 189 void intel_vgt_deballoon(struct i915_ggtt *ggtt) 190 { 191 int i; 192 193 if (!intel_vgpu_active(ggtt->vm.i915)) 194 return; 195 196 DRM_DEBUG("VGT deballoon.\n"); 197 198 for (i = 0; i < 4; i++) 199 vgt_deballoon_space(ggtt, &bl_info.space[i]); 200 } 201 202 static int vgt_balloon_space(struct i915_ggtt *ggtt, 203 struct drm_mm_node *node, 204 unsigned long start, unsigned long end) 205 { 206 unsigned long size = end - start; 207 int ret; 208 209 if (start >= end) 210 return -EINVAL; 211 212 DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n", 213 start, end, size / 1024); 214 ret = i915_gem_gtt_reserve(&ggtt->vm, node, 215 size, start, I915_COLOR_UNEVICTABLE, 216 0); 217 if (!ret) 218 ggtt->vm.reserved += size; 219 220 return ret; 221 } 222 223 /** 224 * intel_vgt_balloon - balloon out reserved graphics address trunks 225 * @ggtt: the global GGTT from which to reserve 226 * 227 * This function is called at the initialization stage, to balloon out the 228 * graphic address space allocated to other vGPUs, by marking these spaces as 229 * reserved. The ballooning related knowledge(starting address and size of 230 * the mappable/unmappable graphic memory) is described in the vgt_if structure 231 * in a reserved mmio range. 232 * 233 * To give an example, the drawing below depicts one typical scenario after 234 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned 235 * out each for the mappable and the non-mappable part. From the vGPU1 point of 236 * view, the total size is the same as the physical one, with the start address 237 * of its graphic space being zero. Yet there are some portions ballooned out( 238 * the shadow part, which are marked as reserved by drm allocator). From the 239 * host point of view, the graphic address space is partitioned by multiple 240 * vGPUs in different VMs. :: 241 * 242 * vGPU1 view Host view 243 * 0 ------> +-----------+ +-----------+ 244 * ^ |###########| | vGPU3 | 245 * | |###########| +-----------+ 246 * | |###########| | vGPU2 | 247 * | +-----------+ +-----------+ 248 * mappable GM | available | ==> | vGPU1 | 249 * | +-----------+ +-----------+ 250 * | |###########| | | 251 * v |###########| | Host | 252 * +=======+===========+ +===========+ 253 * ^ |###########| | vGPU3 | 254 * | |###########| +-----------+ 255 * | |###########| | vGPU2 | 256 * | +-----------+ +-----------+ 257 * unmappable GM | available | ==> | vGPU1 | 258 * | +-----------+ +-----------+ 259 * | |###########| | | 260 * | |###########| | Host | 261 * v |###########| | | 262 * total GM size ------> +-----------+ +-----------+ 263 * 264 * Returns: 265 * zero on success, non-zero if configuration invalid or ballooning failed 266 */ 267 int intel_vgt_balloon(struct i915_ggtt *ggtt) 268 { 269 struct intel_uncore *uncore = &ggtt->vm.i915->uncore; 270 unsigned long ggtt_end = ggtt->vm.total; 271 272 unsigned long mappable_base, mappable_size, mappable_end; 273 unsigned long unmappable_base, unmappable_size, unmappable_end; 274 int ret; 275 276 if (!intel_vgpu_active(ggtt->vm.i915)) 277 return 0; 278 279 mappable_base = 280 intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base)); 281 mappable_size = 282 intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size)); 283 unmappable_base = 284 intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base)); 285 unmappable_size = 286 intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size)); 287 288 mappable_end = mappable_base + mappable_size; 289 unmappable_end = unmappable_base + unmappable_size; 290 291 DRM_INFO("VGT ballooning configuration:\n"); 292 DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n", 293 mappable_base, mappable_size / 1024); 294 DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n", 295 unmappable_base, unmappable_size / 1024); 296 297 if (mappable_end > ggtt->mappable_end || 298 unmappable_base < ggtt->mappable_end || 299 unmappable_end > ggtt_end) { 300 DRM_ERROR("Invalid ballooning configuration!\n"); 301 return -EINVAL; 302 } 303 304 /* Unmappable graphic memory ballooning */ 305 if (unmappable_base > ggtt->mappable_end) { 306 ret = vgt_balloon_space(ggtt, &bl_info.space[2], 307 ggtt->mappable_end, unmappable_base); 308 309 if (ret) 310 goto err; 311 } 312 313 if (unmappable_end < ggtt_end) { 314 ret = vgt_balloon_space(ggtt, &bl_info.space[3], 315 unmappable_end, ggtt_end); 316 if (ret) 317 goto err_upon_mappable; 318 } 319 320 /* Mappable graphic memory ballooning */ 321 if (mappable_base) { 322 ret = vgt_balloon_space(ggtt, &bl_info.space[0], 323 0, mappable_base); 324 325 if (ret) 326 goto err_upon_unmappable; 327 } 328 329 if (mappable_end < ggtt->mappable_end) { 330 ret = vgt_balloon_space(ggtt, &bl_info.space[1], 331 mappable_end, ggtt->mappable_end); 332 333 if (ret) 334 goto err_below_mappable; 335 } 336 337 DRM_INFO("VGT balloon successfully\n"); 338 return 0; 339 340 err_below_mappable: 341 vgt_deballoon_space(ggtt, &bl_info.space[0]); 342 err_upon_unmappable: 343 vgt_deballoon_space(ggtt, &bl_info.space[3]); 344 err_upon_mappable: 345 vgt_deballoon_space(ggtt, &bl_info.space[2]); 346 err: 347 DRM_ERROR("VGT balloon fail\n"); 348 return ret; 349 } 350