1 /* $NetBSD: if.c,v 1.535 2025/06/12 10:23:43 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.535 2025/06/12 10:23:43 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 #include <sys/hook.h> 126 127 #include <net/if.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net80211/ieee80211.h> 132 #include <net80211/ieee80211_ioctl.h> 133 #include <net/if_types.h> 134 #include <net/route.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static struct workqueue *if_slowtimo_wq __read_mostly; 200 201 static kmutex_t if_clone_mtx; 202 203 struct ifnet *lo0ifp; 204 int ifqmaxlen = IFQ_MAXLEN; 205 206 struct psref_class *ifa_psref_class __read_mostly; 207 208 static int if_delroute_matcher(struct rtentry *, void *); 209 210 static bool if_is_unit(const char *); 211 static struct if_clone *if_clone_lookup(const char *, int *); 212 213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 214 static int if_cloners_count; 215 216 /* Packet filtering hook for interfaces. */ 217 pfil_head_t * if_pfil __read_mostly; 218 219 static kauth_listener_t if_listener; 220 221 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 222 static void sysctl_sndq_setup(struct sysctllog **, const char *, 223 struct ifaltq *); 224 static void if_slowtimo_intr(void *); 225 static void if_slowtimo_work(struct work *, void *); 226 static int sysctl_if_watchdog(SYSCTLFN_PROTO); 227 static void sysctl_watchdog_setup(struct ifnet *); 228 static void if_attachdomain1(struct ifnet *); 229 static int ifconf(u_long, void *); 230 static int if_transmit(struct ifnet *, struct mbuf *); 231 static int if_clone_create(const char *); 232 static int if_clone_destroy(const char *); 233 static void if_link_state_change_work(struct work *, void *); 234 static void if_up_locked(struct ifnet *); 235 static void _if_down(struct ifnet *); 236 static void if_down_deactivated(struct ifnet *); 237 238 struct if_percpuq { 239 struct ifnet *ipq_ifp; 240 void *ipq_si; 241 struct percpu *ipq_ifqs; /* struct ifqueue */ 242 }; 243 244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 245 246 static void if_percpuq_drops(void *, void *, struct cpu_info *); 247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 248 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 249 struct if_percpuq *); 250 251 struct if_deferred_start { 252 struct ifnet *ids_ifp; 253 void (*ids_if_start)(struct ifnet *); 254 void *ids_si; 255 }; 256 257 static void if_deferred_start_softint(void *); 258 static void if_deferred_start_common(struct ifnet *); 259 static void if_deferred_start_destroy(struct ifnet *); 260 261 struct if_slowtimo_data { 262 kmutex_t isd_lock; 263 struct callout isd_ch; 264 struct work isd_work; 265 struct ifnet *isd_ifp; 266 bool isd_queued; 267 bool isd_dying; 268 bool isd_trigger; 269 }; 270 271 /* 272 * Hook for if_vlan - needed by if_agr 273 */ 274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 275 276 static void if_sysctl_setup(struct sysctllog **); 277 278 static int 279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 280 void *arg0, void *arg1, void *arg2, void *arg3) 281 { 282 int result; 283 enum kauth_network_req req; 284 285 result = KAUTH_RESULT_DEFER; 286 req = (enum kauth_network_req)(uintptr_t)arg1; 287 288 if (action != KAUTH_NETWORK_INTERFACE) 289 return result; 290 291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 293 result = KAUTH_RESULT_ALLOW; 294 295 return result; 296 } 297 298 /* 299 * Network interface utility routines. 300 * 301 * Routines with ifa_ifwith* names take sockaddr *'s as 302 * parameters. 303 */ 304 void 305 ifinit(void) 306 { 307 308 #if (defined(INET) || defined(INET6)) 309 encapinit(); 310 #endif 311 312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 313 if_listener_cb, NULL); 314 315 /* interfaces are available, inform socket code */ 316 ifioctl = doifioctl; 317 } 318 319 /* 320 * XXX Initialization before configure(). 321 * XXX hack to get pfil_add_hook working in autoconf. 322 */ 323 void 324 ifinit1(void) 325 { 326 int error __diagused; 327 328 #ifdef NET_MPSAFE 329 printf("NET_MPSAFE enabled\n"); 330 #endif 331 332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&ifnet_list); 335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 336 ifnet_psz = pserialize_create(); 337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 341 WQ_MPSAFE); 342 KASSERT(error == 0); 343 PSLIST_INIT(&ifnet_pslist); 344 345 error = workqueue_create(&if_slowtimo_wq, "ifwdog", 346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE); 347 KASSERTMSG(error == 0, "error=%d", error); 348 349 if_indexlim = 8; 350 351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 352 KASSERT(if_pfil != NULL); 353 354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 355 etherinit(); 356 #endif 357 } 358 359 /* XXX must be after domaininit() */ 360 void 361 ifinit_post(void) 362 { 363 364 if_sysctl_setup(NULL); 365 } 366 367 ifnet_t * 368 if_alloc(u_char type) 369 { 370 371 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 372 } 373 374 void 375 if_free(ifnet_t *ifp) 376 { 377 378 kmem_free(ifp, sizeof(ifnet_t)); 379 } 380 381 void 382 if_initname(struct ifnet *ifp, const char *name, int unit) 383 { 384 385 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 386 "%s%d", name, unit); 387 } 388 389 /* 390 * Null routines used while an interface is going away. These routines 391 * just return an error. 392 */ 393 394 int 395 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 396 const struct sockaddr *so, const struct rtentry *rt) 397 { 398 399 return ENXIO; 400 } 401 402 void 403 if_nullinput(struct ifnet *ifp, struct mbuf *m) 404 { 405 406 /* Nothing. */ 407 } 408 409 void 410 if_nullstart(struct ifnet *ifp) 411 { 412 413 /* Nothing. */ 414 } 415 416 int 417 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 418 { 419 420 m_freem(m); 421 return ENXIO; 422 } 423 424 int 425 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 426 { 427 428 return ENXIO; 429 } 430 431 int 432 if_nullinit(struct ifnet *ifp) 433 { 434 435 return ENXIO; 436 } 437 438 void 439 if_nullstop(struct ifnet *ifp, int disable) 440 { 441 442 /* Nothing. */ 443 } 444 445 void 446 if_nullslowtimo(struct ifnet *ifp) 447 { 448 449 /* Nothing. */ 450 } 451 452 void 453 if_nulldrain(struct ifnet *ifp) 454 { 455 456 /* Nothing. */ 457 } 458 459 void 460 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 461 { 462 struct ifaddr *ifa; 463 struct sockaddr_dl *sdl; 464 465 ifp->if_addrlen = addrlen; 466 if_alloc_sadl(ifp); 467 ifa = ifp->if_dl; 468 sdl = satosdl(ifa->ifa_addr); 469 470 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 471 if (factory) { 472 KASSERT(ifp->if_hwdl == NULL); 473 ifp->if_hwdl = ifp->if_dl; 474 ifaref(ifp->if_hwdl); 475 } 476 /* TBD routing socket */ 477 } 478 479 struct ifaddr * 480 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 481 { 482 unsigned socksize, ifasize; 483 int addrlen, namelen; 484 struct sockaddr_dl *mask, *sdl; 485 struct ifaddr *ifa; 486 487 namelen = strlen(ifp->if_xname); 488 addrlen = ifp->if_addrlen; 489 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), 490 sizeof(long)); 491 ifasize = sizeof(*ifa) + 2 * socksize; 492 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 493 494 sdl = (struct sockaddr_dl *)(ifa + 1); 495 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 496 497 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 498 ifp->if_xname, namelen, NULL, addrlen); 499 mask->sdl_family = AF_LINK; 500 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 501 memset(&mask->sdl_data[0], 0xff, namelen); 502 ifa->ifa_rtrequest = link_rtrequest; 503 ifa->ifa_addr = (struct sockaddr *)sdl; 504 ifa->ifa_netmask = (struct sockaddr *)mask; 505 ifa_psref_init(ifa); 506 507 *sdlp = sdl; 508 509 return ifa; 510 } 511 512 static void 513 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 514 { 515 const struct sockaddr_dl *sdl; 516 517 ifp->if_dl = ifa; 518 ifaref(ifa); 519 sdl = satosdl(ifa->ifa_addr); 520 ifp->if_sadl = sdl; 521 } 522 523 /* 524 * Allocate the link level name for the specified interface. This 525 * is an attachment helper. It must be called after ifp->if_addrlen 526 * is initialized, which may not be the case when if_attach() is 527 * called. 528 */ 529 void 530 if_alloc_sadl(struct ifnet *ifp) 531 { 532 struct ifaddr *ifa; 533 const struct sockaddr_dl *sdl; 534 535 /* 536 * If the interface already has a link name, release it 537 * now. This is useful for interfaces that can change 538 * link types, and thus switch link names often. 539 */ 540 if (ifp->if_sadl != NULL) 541 if_free_sadl(ifp, 0); 542 543 ifa = if_dl_create(ifp, &sdl); 544 545 ifa_insert(ifp, ifa); 546 if_sadl_setrefs(ifp, ifa); 547 } 548 549 static void 550 if_deactivate_sadl(struct ifnet *ifp) 551 { 552 struct ifaddr *ifa; 553 554 KASSERT(ifp->if_dl != NULL); 555 556 ifa = ifp->if_dl; 557 558 ifp->if_sadl = NULL; 559 560 ifp->if_dl = NULL; 561 ifafree(ifa); 562 } 563 564 static void 565 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 566 { 567 struct ifaddr *old; 568 569 KASSERT(ifp->if_dl != NULL); 570 571 old = ifp->if_dl; 572 573 ifaref(ifa); 574 /* XXX Update if_dl and if_sadl atomically */ 575 ifp->if_dl = ifa; 576 ifp->if_sadl = satosdl(ifa->ifa_addr); 577 578 ifafree(old); 579 } 580 581 void 582 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 583 const struct sockaddr_dl *sdl) 584 { 585 struct ifaddr *ifa; 586 const int bound = curlwp_bind(); 587 588 KASSERT(ifa_held(ifa0)); 589 590 const int s = splsoftnet(); 591 592 if_replace_sadl(ifp, ifa0); 593 594 int ss = pserialize_read_enter(); 595 IFADDR_READER_FOREACH(ifa, ifp) { 596 struct psref psref; 597 ifa_acquire(ifa, &psref); 598 pserialize_read_exit(ss); 599 600 rtinit(ifa, RTM_LLINFO_UPD, 0); 601 602 ss = pserialize_read_enter(); 603 ifa_release(ifa, &psref); 604 } 605 pserialize_read_exit(ss); 606 607 splx(s); 608 curlwp_bindx(bound); 609 } 610 611 /* 612 * Free the link level name for the specified interface. This is 613 * a detach helper. This is called from if_detach(). 614 */ 615 void 616 if_free_sadl(struct ifnet *ifp, int factory) 617 { 618 struct ifaddr *ifa; 619 620 if (factory && ifp->if_hwdl != NULL) { 621 ifa = ifp->if_hwdl; 622 ifp->if_hwdl = NULL; 623 ifafree(ifa); 624 } 625 626 ifa = ifp->if_dl; 627 if (ifa == NULL) { 628 KASSERT(ifp->if_sadl == NULL); 629 return; 630 } 631 632 KASSERT(ifp->if_sadl != NULL); 633 634 const int s = splsoftnet(); 635 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 636 ifa_remove(ifp, ifa); 637 if_deactivate_sadl(ifp); 638 splx(s); 639 } 640 641 static void 642 if_getindex(ifnet_t *ifp) 643 { 644 bool hitlimit = false; 645 char xnamebuf[HOOKNAMSIZ]; 646 647 ifp->if_index_gen = index_gen++; 648 snprintf(xnamebuf, sizeof(xnamebuf), "%s-lshk", ifp->if_xname); 649 ifp->if_linkstate_hooks = simplehook_create(IPL_NET, 650 xnamebuf); 651 652 ifp->if_index = if_index; 653 if (ifindex2ifnet == NULL) { 654 if_index++; 655 goto skip; 656 } 657 while (if_byindex(ifp->if_index)) { 658 /* 659 * If we hit USHRT_MAX, we skip back to 0 since 660 * there are a number of places where the value 661 * of if_index or if_index itself is compared 662 * to or stored in an unsigned short. By 663 * jumping back, we won't botch those assignments 664 * or comparisons. 665 */ 666 if (++if_index == 0) { 667 if_index = 1; 668 } else if (if_index == USHRT_MAX) { 669 /* 670 * However, if we have to jump back to 671 * zero *twice* without finding an empty 672 * slot in ifindex2ifnet[], then there 673 * there are too many (>65535) interfaces. 674 */ 675 if (hitlimit) 676 panic("too many interfaces"); 677 hitlimit = true; 678 if_index = 1; 679 } 680 ifp->if_index = if_index; 681 } 682 skip: 683 /* 684 * ifindex2ifnet is indexed by if_index. Since if_index will 685 * grow dynamically, it should grow too. 686 */ 687 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 688 size_t m, n, oldlim; 689 void *q; 690 691 oldlim = if_indexlim; 692 while (ifp->if_index >= if_indexlim) 693 if_indexlim <<= 1; 694 695 /* grow ifindex2ifnet */ 696 m = oldlim * sizeof(struct ifnet *); 697 n = if_indexlim * sizeof(struct ifnet *); 698 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 699 if (ifindex2ifnet != NULL) { 700 memcpy(q, ifindex2ifnet, m); 701 free(ifindex2ifnet, M_IFADDR); 702 } 703 ifindex2ifnet = (struct ifnet **)q; 704 } 705 ifindex2ifnet[ifp->if_index] = ifp; 706 } 707 708 /* 709 * Initialize an interface and assign an index for it. 710 * 711 * It must be called prior to a device specific attach routine 712 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 713 * and be followed by if_register: 714 * 715 * if_initialize(ifp); 716 * ether_ifattach(ifp, enaddr); 717 * if_register(ifp); 718 */ 719 void 720 if_initialize(ifnet_t *ifp) 721 { 722 723 KASSERT(if_indexlim > 0); 724 TAILQ_INIT(&ifp->if_addrlist); 725 726 /* 727 * Link level name is allocated later by a separate call to 728 * if_alloc_sadl(). 729 */ 730 731 if (ifp->if_snd.ifq_maxlen == 0) 732 ifp->if_snd.ifq_maxlen = ifqmaxlen; 733 734 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 735 736 ifp->if_link_state = LINK_STATE_UNKNOWN; 737 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 738 ifp->if_link_scheduled = false; 739 740 ifp->if_capenable = 0; 741 ifp->if_csum_flags_tx = 0; 742 ifp->if_csum_flags_rx = 0; 743 744 #ifdef ALTQ 745 ifp->if_snd.altq_type = 0; 746 ifp->if_snd.altq_disc = NULL; 747 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 748 ifp->if_snd.altq_tbr = NULL; 749 ifp->if_snd.altq_ifp = ifp; 750 #endif 751 752 IFQ_LOCK_INIT(&ifp->if_snd); 753 754 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 755 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 756 757 IF_AFDATA_LOCK_INIT(ifp); 758 759 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 760 PSLIST_INIT(&ifp->if_addr_pslist); 761 psref_target_init(&ifp->if_psref, ifnet_psref_class); 762 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 763 LIST_INIT(&ifp->if_multiaddrs); 764 if_stats_init(ifp); 765 766 IFNET_GLOBAL_LOCK(); 767 if_getindex(ifp); 768 IFNET_GLOBAL_UNLOCK(); 769 } 770 771 /* 772 * Register an interface to the list of "active" interfaces. 773 */ 774 void 775 if_register(ifnet_t *ifp) 776 { 777 /* 778 * If the driver has not supplied its own if_ioctl or if_stop, 779 * then supply the default. 780 */ 781 if (ifp->if_ioctl == NULL) 782 ifp->if_ioctl = ifioctl_common; 783 if (ifp->if_stop == NULL) 784 ifp->if_stop = if_nullstop; 785 786 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 787 788 if (!STAILQ_EMPTY(&domains)) 789 if_attachdomain1(ifp); 790 791 /* Announce the interface. */ 792 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 793 794 if (ifp->if_slowtimo != NULL) { 795 struct if_slowtimo_data *isd; 796 797 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP); 798 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK); 799 callout_init(&isd->isd_ch, CALLOUT_MPSAFE); 800 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp); 801 isd->isd_ifp = ifp; 802 803 ifp->if_slowtimo_data = isd; 804 805 if_slowtimo_intr(ifp); 806 807 sysctl_watchdog_setup(ifp); 808 } 809 810 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 811 ifp->if_transmit = if_transmit; 812 813 IFNET_GLOBAL_LOCK(); 814 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 815 IFNET_WRITER_INSERT_TAIL(ifp); 816 IFNET_GLOBAL_UNLOCK(); 817 } 818 819 /* 820 * The if_percpuq framework 821 * 822 * It allows network device drivers to execute the network stack 823 * in softint (so called softint-based if_input). It utilizes 824 * softint and percpu ifqueue. It doesn't distribute any packets 825 * between CPUs, unlike pktqueue(9). 826 * 827 * Currently we support two options for device drivers to apply the framework: 828 * - Use it implicitly with less changes 829 * - If you use if_attach in driver's _attach function and if_input in 830 * driver's Rx interrupt handler, a packet is queued and a softint handles 831 * the packet implicitly 832 * - Use it explicitly in each driver (recommended) 833 * - You can use if_percpuq_* directly in your driver 834 * - In this case, you need to allocate struct if_percpuq in driver's softc 835 * - See wm(4) as a reference implementation 836 */ 837 838 static void 839 if_percpuq_softint(void *arg) 840 { 841 struct if_percpuq *ipq = arg; 842 struct ifnet *ifp = ipq->ipq_ifp; 843 struct mbuf *m; 844 845 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 846 if_statinc(ifp, if_ipackets); 847 bpf_mtap(ifp, m, BPF_D_IN); 848 849 ifp->_if_input(ifp, m); 850 } 851 } 852 853 static void 854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 855 { 856 struct ifqueue *const ifq = p; 857 858 memset(ifq, 0, sizeof(*ifq)); 859 ifq->ifq_maxlen = IFQ_MAXLEN; 860 } 861 862 struct if_percpuq * 863 if_percpuq_create(struct ifnet *ifp) 864 { 865 struct if_percpuq *ipq; 866 u_int flags = SOFTINT_NET; 867 868 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 869 870 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 871 ipq->ipq_ifp = ifp; 872 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 873 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 874 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 875 876 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 877 878 return ipq; 879 } 880 881 static struct mbuf * 882 if_percpuq_dequeue(struct if_percpuq *ipq) 883 { 884 struct mbuf *m; 885 struct ifqueue *ifq; 886 887 const int s = splnet(); 888 ifq = percpu_getref(ipq->ipq_ifqs); 889 IF_DEQUEUE(ifq, m); 890 percpu_putref(ipq->ipq_ifqs); 891 splx(s); 892 893 return m; 894 } 895 896 static void 897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 898 { 899 struct ifqueue *const ifq = p; 900 901 IF_PURGE(ifq); 902 } 903 904 void 905 if_percpuq_destroy(struct if_percpuq *ipq) 906 { 907 908 /* if_detach may already destroy it */ 909 if (ipq == NULL) 910 return; 911 912 softint_disestablish(ipq->ipq_si); 913 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 914 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 915 kmem_free(ipq, sizeof(*ipq)); 916 } 917 918 void 919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 920 { 921 struct ifqueue *ifq; 922 923 KASSERT(ipq != NULL); 924 925 const int s = splnet(); 926 ifq = percpu_getref(ipq->ipq_ifqs); 927 if (IF_QFULL(ifq)) { 928 IF_DROP(ifq); 929 percpu_putref(ipq->ipq_ifqs); 930 if_statinc(ipq->ipq_ifp, if_iqdrops); 931 m_freem(m); 932 goto out; 933 } 934 IF_ENQUEUE(ifq, m); 935 percpu_putref(ipq->ipq_ifqs); 936 937 softint_schedule(ipq->ipq_si); 938 out: 939 splx(s); 940 } 941 942 static void 943 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 944 { 945 struct ifqueue *const ifq = p; 946 uint64_t *sum = arg; 947 948 *sum += ifq->ifq_drops; 949 } 950 951 static int 952 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 953 { 954 struct sysctlnode node; 955 struct if_percpuq *ipq; 956 uint64_t sum = 0; 957 int error; 958 959 node = *rnode; 960 ipq = node.sysctl_data; 961 962 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 963 964 node.sysctl_data = ∑ 965 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 966 if (error != 0 || newp == NULL) 967 return error; 968 969 return 0; 970 } 971 972 static void 973 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 974 struct if_percpuq *ipq) 975 { 976 const struct sysctlnode *cnode, *rnode; 977 978 if (sysctl_createv(clog, 0, NULL, &rnode, 979 CTLFLAG_PERMANENT, 980 CTLTYPE_NODE, "interfaces", 981 SYSCTL_DESCR("Per-interface controls"), 982 NULL, 0, NULL, 0, 983 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 984 goto bad; 985 986 if (sysctl_createv(clog, 0, &rnode, &rnode, 987 CTLFLAG_PERMANENT, 988 CTLTYPE_NODE, ifname, 989 SYSCTL_DESCR("Interface controls"), 990 NULL, 0, NULL, 0, 991 CTL_CREATE, CTL_EOL) != 0) 992 goto bad; 993 994 if (sysctl_createv(clog, 0, &rnode, &rnode, 995 CTLFLAG_PERMANENT, 996 CTLTYPE_NODE, "rcvq", 997 SYSCTL_DESCR("Interface input queue controls"), 998 NULL, 0, NULL, 0, 999 CTL_CREATE, CTL_EOL) != 0) 1000 goto bad; 1001 1002 #ifdef NOTYET 1003 /* XXX Should show each per-CPU queue length? */ 1004 if (sysctl_createv(clog, 0, &rnode, &rnode, 1005 CTLFLAG_PERMANENT, 1006 CTLTYPE_INT, "len", 1007 SYSCTL_DESCR("Current input queue length"), 1008 sysctl_percpuq_len, 0, NULL, 0, 1009 CTL_CREATE, CTL_EOL) != 0) 1010 goto bad; 1011 1012 if (sysctl_createv(clog, 0, &rnode, &cnode, 1013 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1014 CTLTYPE_INT, "maxlen", 1015 SYSCTL_DESCR("Maximum allowed input queue length"), 1016 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1017 CTL_CREATE, CTL_EOL) != 0) 1018 goto bad; 1019 #endif 1020 1021 if (sysctl_createv(clog, 0, &rnode, &cnode, 1022 CTLFLAG_PERMANENT, 1023 CTLTYPE_QUAD, "drops", 1024 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1025 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1026 CTL_CREATE, CTL_EOL) != 0) 1027 goto bad; 1028 1029 return; 1030 bad: 1031 printf("%s: could not attach sysctl nodes\n", ifname); 1032 return; 1033 } 1034 1035 /* 1036 * The deferred if_start framework 1037 * 1038 * The common APIs to defer if_start to softint when if_start is requested 1039 * from a device driver running in hardware interrupt context. 1040 */ 1041 /* 1042 * Call ifp->if_start (or equivalent) in a dedicated softint for 1043 * deferred if_start. 1044 */ 1045 static void 1046 if_deferred_start_softint(void *arg) 1047 { 1048 struct if_deferred_start *ids = arg; 1049 struct ifnet *ifp = ids->ids_ifp; 1050 1051 ids->ids_if_start(ifp); 1052 } 1053 1054 /* 1055 * The default callback function for deferred if_start. 1056 */ 1057 static void 1058 if_deferred_start_common(struct ifnet *ifp) 1059 { 1060 const int s = splnet(); 1061 if_start_lock(ifp); 1062 splx(s); 1063 } 1064 1065 static inline bool 1066 if_snd_is_used(struct ifnet *ifp) 1067 { 1068 1069 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1070 ifp->if_transmit == if_transmit || 1071 ifp->if_transmit == NULL || 1072 ifp->if_transmit == if_nulltransmit; 1073 } 1074 1075 /* 1076 * Schedule deferred if_start. 1077 */ 1078 void 1079 if_schedule_deferred_start(struct ifnet *ifp) 1080 { 1081 1082 KASSERT(ifp->if_deferred_start != NULL); 1083 1084 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1085 return; 1086 1087 softint_schedule(ifp->if_deferred_start->ids_si); 1088 } 1089 1090 /* 1091 * Create an instance of deferred if_start. A driver should call the function 1092 * only if the driver needs deferred if_start. Drivers can setup their own 1093 * deferred if_start function via 2nd argument. 1094 */ 1095 void 1096 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1097 { 1098 struct if_deferred_start *ids; 1099 u_int flags = SOFTINT_NET; 1100 1101 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1102 1103 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1104 ids->ids_ifp = ifp; 1105 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1106 if (func != NULL) 1107 ids->ids_if_start = func; 1108 else 1109 ids->ids_if_start = if_deferred_start_common; 1110 1111 ifp->if_deferred_start = ids; 1112 } 1113 1114 static void 1115 if_deferred_start_destroy(struct ifnet *ifp) 1116 { 1117 1118 if (ifp->if_deferred_start == NULL) 1119 return; 1120 1121 softint_disestablish(ifp->if_deferred_start->ids_si); 1122 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1123 ifp->if_deferred_start = NULL; 1124 } 1125 1126 /* 1127 * The common interface input routine that is called by device drivers, 1128 * which should be used only when the driver's rx handler already runs 1129 * in softint. 1130 */ 1131 void 1132 if_input(struct ifnet *ifp, struct mbuf *m) 1133 { 1134 1135 KASSERT(ifp->if_percpuq == NULL); 1136 KASSERT(!cpu_intr_p()); 1137 1138 if_statinc(ifp, if_ipackets); 1139 bpf_mtap(ifp, m, BPF_D_IN); 1140 1141 ifp->_if_input(ifp, m); 1142 } 1143 1144 /* 1145 * DEPRECATED. Use if_initialize and if_register instead. 1146 * See the above comment of if_initialize. 1147 * 1148 * Note that it implicitly enables if_percpuq to make drivers easy to 1149 * migrate softint-based if_input without much changes. If you don't 1150 * want to enable it, use if_initialize instead. 1151 */ 1152 void 1153 if_attach(ifnet_t *ifp) 1154 { 1155 1156 if_initialize(ifp); 1157 ifp->if_percpuq = if_percpuq_create(ifp); 1158 if_register(ifp); 1159 } 1160 1161 void 1162 if_attachdomain(void) 1163 { 1164 struct ifnet *ifp; 1165 const int bound = curlwp_bind(); 1166 1167 int s = pserialize_read_enter(); 1168 IFNET_READER_FOREACH(ifp) { 1169 struct psref psref; 1170 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1171 pserialize_read_exit(s); 1172 if_attachdomain1(ifp); 1173 s = pserialize_read_enter(); 1174 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1175 } 1176 pserialize_read_exit(s); 1177 curlwp_bindx(bound); 1178 } 1179 1180 static void 1181 if_attachdomain1(struct ifnet *ifp) 1182 { 1183 struct domain *dp; 1184 const int s = splsoftnet(); 1185 1186 /* address family dependent data region */ 1187 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1188 DOMAIN_FOREACH(dp) { 1189 if (dp->dom_ifattach != NULL) 1190 ifp->if_afdata[dp->dom_family] = 1191 (*dp->dom_ifattach)(ifp); 1192 } 1193 1194 splx(s); 1195 } 1196 1197 /* 1198 * Deactivate an interface. This points all of the procedure 1199 * handles at error stubs. May be called from interrupt context. 1200 */ 1201 void 1202 if_deactivate(struct ifnet *ifp) 1203 { 1204 const int s = splsoftnet(); 1205 1206 ifp->if_output = if_nulloutput; 1207 ifp->_if_input = if_nullinput; 1208 ifp->if_start = if_nullstart; 1209 ifp->if_transmit = if_nulltransmit; 1210 ifp->if_ioctl = if_nullioctl; 1211 ifp->if_init = if_nullinit; 1212 ifp->if_stop = if_nullstop; 1213 if (ifp->if_slowtimo) 1214 ifp->if_slowtimo = if_nullslowtimo; 1215 ifp->if_drain = if_nulldrain; 1216 1217 /* No more packets may be enqueued. */ 1218 ifp->if_snd.ifq_maxlen = 0; 1219 1220 splx(s); 1221 } 1222 1223 bool 1224 if_is_deactivated(const struct ifnet *ifp) 1225 { 1226 1227 return ifp->if_output == if_nulloutput; 1228 } 1229 1230 void 1231 if_purgeaddrs(struct ifnet *ifp, int family, 1232 void (*purgeaddr)(struct ifaddr *)) 1233 { 1234 struct ifaddr *ifa, *nifa; 1235 int s; 1236 1237 s = pserialize_read_enter(); 1238 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1239 nifa = IFADDR_READER_NEXT(ifa); 1240 if (ifa->ifa_addr->sa_family != family) 1241 continue; 1242 pserialize_read_exit(s); 1243 1244 (*purgeaddr)(ifa); 1245 1246 s = pserialize_read_enter(); 1247 } 1248 pserialize_read_exit(s); 1249 } 1250 1251 #ifdef IFAREF_DEBUG 1252 static struct ifaddr **ifa_list; 1253 static int ifa_list_size; 1254 1255 /* Depends on only one if_attach runs at once */ 1256 static void 1257 if_build_ifa_list(struct ifnet *ifp) 1258 { 1259 struct ifaddr *ifa; 1260 int i; 1261 1262 KASSERT(ifa_list == NULL); 1263 KASSERT(ifa_list_size == 0); 1264 1265 IFADDR_READER_FOREACH(ifa, ifp) 1266 ifa_list_size++; 1267 1268 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1269 i = 0; 1270 IFADDR_READER_FOREACH(ifa, ifp) { 1271 ifa_list[i++] = ifa; 1272 ifaref(ifa); 1273 } 1274 } 1275 1276 static void 1277 if_check_and_free_ifa_list(struct ifnet *ifp) 1278 { 1279 int i; 1280 struct ifaddr *ifa; 1281 1282 if (ifa_list == NULL) 1283 return; 1284 1285 for (i = 0; i < ifa_list_size; i++) { 1286 char buf[64]; 1287 1288 ifa = ifa_list[i]; 1289 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1290 if (ifa->ifa_refcnt > 1) { 1291 log(LOG_WARNING, 1292 "ifa(%s) still referenced (refcnt=%d)\n", 1293 buf, ifa->ifa_refcnt - 1); 1294 } else 1295 log(LOG_DEBUG, 1296 "ifa(%s) not referenced (refcnt=%d)\n", 1297 buf, ifa->ifa_refcnt - 1); 1298 ifafree(ifa); 1299 } 1300 1301 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1302 ifa_list = NULL; 1303 ifa_list_size = 0; 1304 } 1305 #endif 1306 1307 /* 1308 * Detach an interface from the list of "active" interfaces, 1309 * freeing any resources as we go along. 1310 * 1311 * NOTE: This routine must be called with a valid thread context, 1312 * as it may block. 1313 */ 1314 void 1315 if_detach(struct ifnet *ifp) 1316 { 1317 struct socket so; 1318 struct ifaddr *ifa; 1319 #ifdef IFAREF_DEBUG 1320 struct ifaddr *last_ifa = NULL; 1321 #endif 1322 struct domain *dp; 1323 const struct protosw *pr; 1324 int i, family, purged; 1325 1326 #ifdef IFAREF_DEBUG 1327 if_build_ifa_list(ifp); 1328 #endif 1329 /* 1330 * XXX It's kind of lame that we have to have the 1331 * XXX socket structure... 1332 */ 1333 memset(&so, 0, sizeof(so)); 1334 1335 const int s = splnet(); 1336 1337 sysctl_teardown(&ifp->if_sysctl_log); 1338 1339 IFNET_LOCK(ifp); 1340 1341 /* 1342 * Unset all queued link states and pretend a 1343 * link state change is scheduled. 1344 * This stops any more link state changes occurring for this 1345 * interface while it's being detached so it's safe 1346 * to drain the workqueue. 1347 */ 1348 IF_LINK_STATE_CHANGE_LOCK(ifp); 1349 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1350 ifp->if_link_scheduled = true; 1351 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1352 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1353 1354 if_deactivate(ifp); 1355 IFNET_UNLOCK(ifp); 1356 1357 /* 1358 * Unlink from the list and wait for all readers to leave 1359 * from pserialize read sections. Note that we can't do 1360 * psref_target_destroy here. See below. 1361 */ 1362 IFNET_GLOBAL_LOCK(); 1363 ifindex2ifnet[ifp->if_index] = NULL; 1364 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1365 IFNET_WRITER_REMOVE(ifp); 1366 pserialize_perform(ifnet_psz); 1367 IFNET_GLOBAL_UNLOCK(); 1368 1369 if (ifp->if_slowtimo != NULL) { 1370 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 1371 1372 mutex_enter(&isd->isd_lock); 1373 isd->isd_dying = true; 1374 mutex_exit(&isd->isd_lock); 1375 callout_halt(&isd->isd_ch, NULL); 1376 workqueue_wait(if_slowtimo_wq, &isd->isd_work); 1377 callout_destroy(&isd->isd_ch); 1378 mutex_destroy(&isd->isd_lock); 1379 kmem_free(isd, sizeof(*isd)); 1380 1381 ifp->if_slowtimo_data = NULL; /* paraonia */ 1382 ifp->if_slowtimo = NULL; /* paranoia */ 1383 } 1384 if_deferred_start_destroy(ifp); 1385 1386 /* 1387 * Do an if_down() to give protocols a chance to do something. 1388 */ 1389 if_down_deactivated(ifp); 1390 1391 #ifdef ALTQ 1392 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1393 altq_disable(&ifp->if_snd); 1394 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1395 altq_detach(&ifp->if_snd); 1396 #endif 1397 1398 #if NCARP > 0 1399 /* Remove the interface from any carp group it is a part of. */ 1400 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1401 carp_ifdetach(ifp); 1402 #endif 1403 1404 /* 1405 * Ensure that all packets on protocol input pktqueues have been 1406 * processed, or, at least, removed from the queues. 1407 * 1408 * A cross-call will ensure that the interrupts have completed. 1409 * FIXME: not quite.. 1410 */ 1411 pktq_ifdetach(); 1412 xc_barrier(0); 1413 1414 /* 1415 * Rip all the addresses off the interface. This should make 1416 * all of the routes go away. 1417 * 1418 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1419 * from the list, including our "cursor", ifa. For safety, 1420 * and to honor the TAILQ abstraction, I just restart the 1421 * loop after each removal. Note that the loop will exit 1422 * when all of the remaining ifaddrs belong to the AF_LINK 1423 * family. I am counting on the historical fact that at 1424 * least one pr_usrreq in each address domain removes at 1425 * least one ifaddr. 1426 */ 1427 again: 1428 /* 1429 * At this point, no other one tries to remove ifa in the list, 1430 * so we don't need to take a lock or psref. Avoid using 1431 * IFADDR_READER_FOREACH to pass over an inspection of contract 1432 * violations of pserialize. 1433 */ 1434 IFADDR_WRITER_FOREACH(ifa, ifp) { 1435 family = ifa->ifa_addr->sa_family; 1436 #ifdef IFAREF_DEBUG 1437 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1438 ifa, family, ifa->ifa_refcnt); 1439 if (last_ifa != NULL && ifa == last_ifa) 1440 panic("if_detach: loop detected"); 1441 last_ifa = ifa; 1442 #endif 1443 if (family == AF_LINK) 1444 continue; 1445 dp = pffinddomain(family); 1446 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1447 /* 1448 * XXX These PURGEIF calls are redundant with the 1449 * purge-all-families calls below, but are left in for 1450 * now both to make a smaller change, and to avoid 1451 * unplanned interactions with clearing of 1452 * ifp->if_addrlist. 1453 */ 1454 purged = 0; 1455 for (pr = dp->dom_protosw; 1456 pr < dp->dom_protoswNPROTOSW; pr++) { 1457 so.so_proto = pr; 1458 if (pr->pr_usrreqs) { 1459 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1460 purged = 1; 1461 } 1462 } 1463 if (purged == 0) { 1464 /* 1465 * XXX What's really the best thing to do 1466 * XXX here? --thorpej (at) NetBSD.org 1467 */ 1468 printf("if_detach: WARNING: AF %d not purged\n", 1469 family); 1470 ifa_remove(ifp, ifa); 1471 } 1472 goto again; 1473 } 1474 1475 if_free_sadl(ifp, 1); 1476 1477 restart: 1478 IFADDR_WRITER_FOREACH(ifa, ifp) { 1479 family = ifa->ifa_addr->sa_family; 1480 KASSERT(family == AF_LINK); 1481 ifa_remove(ifp, ifa); 1482 goto restart; 1483 } 1484 1485 /* Delete stray routes from the routing table. */ 1486 for (i = 0; i <= AF_MAX; i++) 1487 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false); 1488 1489 DOMAIN_FOREACH(dp) { 1490 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1491 { 1492 void *p = ifp->if_afdata[dp->dom_family]; 1493 if (p) { 1494 ifp->if_afdata[dp->dom_family] = NULL; 1495 (*dp->dom_ifdetach)(ifp, p); 1496 } 1497 } 1498 1499 /* 1500 * One would expect multicast memberships (INET and 1501 * INET6) on UDP sockets to be purged by the PURGEIF 1502 * calls above, but if all addresses were removed from 1503 * the interface prior to destruction, the calls will 1504 * not be made (e.g. ppp, for which pppd(8) generally 1505 * removes addresses before destroying the interface). 1506 * Because there is no invariant that multicast 1507 * memberships only exist for interfaces with IPv4 1508 * addresses, we must call PURGEIF regardless of 1509 * addresses. (Protocols which might store ifnet 1510 * pointers are marked with PR_PURGEIF.) 1511 */ 1512 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) 1513 { 1514 so.so_proto = pr; 1515 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1516 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1517 } 1518 } 1519 1520 /* 1521 * Must be done after the above pr_purgeif because if_psref may be 1522 * still used in pr_purgeif. 1523 */ 1524 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1525 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1526 1527 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1528 (void)pfil_head_destroy(ifp->if_pfil); 1529 1530 /* Announce that the interface is gone. */ 1531 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1532 1533 IF_AFDATA_LOCK_DESTROY(ifp); 1534 1535 if (ifp->if_percpuq != NULL) { 1536 if_percpuq_destroy(ifp->if_percpuq); 1537 ifp->if_percpuq = NULL; 1538 } 1539 1540 mutex_obj_free(ifp->if_ioctl_lock); 1541 ifp->if_ioctl_lock = NULL; 1542 mutex_obj_free(ifp->if_snd.ifq_lock); 1543 if_stats_fini(ifp); 1544 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks)); 1545 simplehook_destroy(ifp->if_linkstate_hooks); 1546 1547 splx(s); 1548 1549 #ifdef IFAREF_DEBUG 1550 if_check_and_free_ifa_list(ifp); 1551 #endif 1552 } 1553 1554 /* 1555 * Callback for a radix tree walk to delete all references to an 1556 * ifnet. 1557 */ 1558 static int 1559 if_delroute_matcher(struct rtentry *rt, void *v) 1560 { 1561 struct ifnet *ifp = (struct ifnet *)v; 1562 1563 if (rt->rt_ifp == ifp) 1564 return 1; 1565 else 1566 return 0; 1567 } 1568 1569 /* 1570 * Create a clone network interface. 1571 */ 1572 static int 1573 if_clone_create(const char *name) 1574 { 1575 struct if_clone *ifc; 1576 struct ifnet *ifp; 1577 struct psref psref; 1578 int unit; 1579 1580 KASSERT(mutex_owned(&if_clone_mtx)); 1581 1582 ifc = if_clone_lookup(name, &unit); 1583 if (ifc == NULL) 1584 return EINVAL; 1585 1586 ifp = if_get(name, &psref); 1587 if (ifp != NULL) { 1588 if_put(ifp, &psref); 1589 return EEXIST; 1590 } 1591 1592 return (*ifc->ifc_create)(ifc, unit); 1593 } 1594 1595 /* 1596 * Destroy a clone network interface. 1597 */ 1598 static int 1599 if_clone_destroy(const char *name) 1600 { 1601 struct if_clone *ifc; 1602 struct ifnet *ifp; 1603 struct psref psref; 1604 int error; 1605 int (*if_ioctlfn)(struct ifnet *, u_long, void *); 1606 1607 KASSERT(mutex_owned(&if_clone_mtx)); 1608 1609 ifc = if_clone_lookup(name, NULL); 1610 if (ifc == NULL) 1611 return EINVAL; 1612 1613 if (ifc->ifc_destroy == NULL) 1614 return EOPNOTSUPP; 1615 1616 ifp = if_get(name, &psref); 1617 if (ifp == NULL) 1618 return ENXIO; 1619 1620 /* We have to disable ioctls here */ 1621 IFNET_LOCK(ifp); 1622 if_ioctlfn = ifp->if_ioctl; 1623 ifp->if_ioctl = if_nullioctl; 1624 IFNET_UNLOCK(ifp); 1625 1626 /* 1627 * We cannot call ifc_destroy with holding ifp. 1628 * Releasing ifp here is safe thanks to if_clone_mtx. 1629 */ 1630 if_put(ifp, &psref); 1631 1632 error = (*ifc->ifc_destroy)(ifp); 1633 1634 if (error != 0) { 1635 /* We have to restore if_ioctl on error */ 1636 IFNET_LOCK(ifp); 1637 ifp->if_ioctl = if_ioctlfn; 1638 IFNET_UNLOCK(ifp); 1639 } 1640 1641 return error; 1642 } 1643 1644 static bool 1645 if_is_unit(const char *name) 1646 { 1647 1648 while (*name != '\0') { 1649 if (*name < '0' || *name > '9') 1650 return false; 1651 name++; 1652 } 1653 1654 return true; 1655 } 1656 1657 /* 1658 * Look up a network interface cloner. 1659 */ 1660 static struct if_clone * 1661 if_clone_lookup(const char *name, int *unitp) 1662 { 1663 struct if_clone *ifc; 1664 const char *cp; 1665 char *dp, ifname[IFNAMSIZ + 3]; 1666 int unit; 1667 1668 KASSERT(mutex_owned(&if_clone_mtx)); 1669 1670 strcpy(ifname, "if_"); 1671 /* separate interface name from unit */ 1672 /* TODO: search unit number from backward */ 1673 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1674 *cp && !if_is_unit(cp);) 1675 *dp++ = *cp++; 1676 1677 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1678 return NULL; /* No name or unit number */ 1679 *dp++ = '\0'; 1680 1681 again: 1682 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1683 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1684 break; 1685 } 1686 1687 if (ifc == NULL) { 1688 int error; 1689 if (*ifname == '\0') 1690 return NULL; 1691 mutex_exit(&if_clone_mtx); 1692 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1693 mutex_enter(&if_clone_mtx); 1694 if (error) 1695 return NULL; 1696 *ifname = '\0'; 1697 goto again; 1698 } 1699 1700 unit = 0; 1701 while (cp - name < IFNAMSIZ && *cp) { 1702 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1703 /* Bogus unit number. */ 1704 return NULL; 1705 } 1706 unit = (unit * 10) + (*cp++ - '0'); 1707 } 1708 1709 if (unitp != NULL) 1710 *unitp = unit; 1711 return ifc; 1712 } 1713 1714 /* 1715 * Register a network interface cloner. 1716 */ 1717 void 1718 if_clone_attach(struct if_clone *ifc) 1719 { 1720 1721 mutex_enter(&if_clone_mtx); 1722 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1723 if_cloners_count++; 1724 mutex_exit(&if_clone_mtx); 1725 } 1726 1727 /* 1728 * Unregister a network interface cloner. 1729 */ 1730 void 1731 if_clone_detach(struct if_clone *ifc) 1732 { 1733 1734 mutex_enter(&if_clone_mtx); 1735 LIST_REMOVE(ifc, ifc_list); 1736 if_cloners_count--; 1737 mutex_exit(&if_clone_mtx); 1738 } 1739 1740 /* 1741 * Provide list of interface cloners to userspace. 1742 */ 1743 int 1744 if_clone_list(int buf_count, char *buffer, int *total) 1745 { 1746 char outbuf[IFNAMSIZ], *dst; 1747 struct if_clone *ifc; 1748 int count, error = 0; 1749 1750 mutex_enter(&if_clone_mtx); 1751 *total = if_cloners_count; 1752 if ((dst = buffer) == NULL) { 1753 /* Just asking how many there are. */ 1754 goto out; 1755 } 1756 1757 if (buf_count < 0) { 1758 error = EINVAL; 1759 goto out; 1760 } 1761 1762 count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count; 1763 1764 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1765 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1766 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1767 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1768 error = ENAMETOOLONG; 1769 goto out; 1770 } 1771 error = copyout(outbuf, dst, sizeof(outbuf)); 1772 if (error != 0) 1773 break; 1774 } 1775 1776 out: 1777 mutex_exit(&if_clone_mtx); 1778 return error; 1779 } 1780 1781 void 1782 ifa_psref_init(struct ifaddr *ifa) 1783 { 1784 1785 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1786 } 1787 1788 void 1789 ifaref(struct ifaddr *ifa) 1790 { 1791 1792 atomic_inc_uint(&ifa->ifa_refcnt); 1793 } 1794 1795 void 1796 ifafree(struct ifaddr *ifa) 1797 { 1798 KASSERT(ifa != NULL); 1799 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1800 1801 membar_release(); 1802 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0) 1803 return; 1804 membar_acquire(); 1805 free(ifa, M_IFADDR); 1806 } 1807 1808 bool 1809 ifa_is_destroying(struct ifaddr *ifa) 1810 { 1811 1812 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1813 } 1814 1815 void 1816 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1817 { 1818 1819 ifa->ifa_ifp = ifp; 1820 1821 /* 1822 * Check MP-safety for IFEF_MPSAFE drivers. 1823 * Check !IFF_RUNNING for initialization routines that normally don't 1824 * take IFNET_LOCK but it's safe because there is no competitor. 1825 * XXX there are false positive cases because IFF_RUNNING can be off on 1826 * if_stop. 1827 */ 1828 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1829 IFNET_LOCKED(ifp)); 1830 1831 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1832 IFADDR_ENTRY_INIT(ifa); 1833 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1834 1835 ifaref(ifa); 1836 } 1837 1838 void 1839 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1840 { 1841 1842 KASSERT(ifa->ifa_ifp == ifp); 1843 /* 1844 * Check MP-safety for IFEF_MPSAFE drivers. 1845 * if_is_deactivated indicates ifa_remove is called from if_detach 1846 * where it is safe even if IFNET_LOCK isn't held. 1847 */ 1848 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || 1849 IFNET_LOCKED(ifp)); 1850 1851 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1852 IFADDR_WRITER_REMOVE(ifa); 1853 #ifdef NET_MPSAFE 1854 IFNET_GLOBAL_LOCK(); 1855 pserialize_perform(ifnet_psz); 1856 IFNET_GLOBAL_UNLOCK(); 1857 #endif 1858 1859 #ifdef NET_MPSAFE 1860 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1861 #endif 1862 IFADDR_ENTRY_DESTROY(ifa); 1863 ifafree(ifa); 1864 } 1865 1866 void 1867 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1868 { 1869 1870 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1871 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1872 } 1873 1874 void 1875 ifa_release(struct ifaddr *ifa, struct psref *psref) 1876 { 1877 1878 if (ifa == NULL) 1879 return; 1880 1881 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1882 } 1883 1884 bool 1885 ifa_held(struct ifaddr *ifa) 1886 { 1887 1888 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1889 } 1890 1891 static inline int 1892 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1893 { 1894 1895 return sockaddr_cmp(sa1, sa2) == 0; 1896 } 1897 1898 /* 1899 * Locate an interface based on a complete address. 1900 */ 1901 /*ARGSUSED*/ 1902 struct ifaddr * 1903 ifa_ifwithaddr(const struct sockaddr *addr) 1904 { 1905 struct ifnet *ifp; 1906 struct ifaddr *ifa; 1907 1908 IFNET_READER_FOREACH(ifp) { 1909 if (if_is_deactivated(ifp)) 1910 continue; 1911 IFADDR_READER_FOREACH(ifa, ifp) { 1912 if (ifa->ifa_addr->sa_family != addr->sa_family) 1913 continue; 1914 if (equal(addr, ifa->ifa_addr)) 1915 return ifa; 1916 if ((ifp->if_flags & IFF_BROADCAST) && 1917 ifa->ifa_broadaddr && 1918 /* IP6 doesn't have broadcast */ 1919 ifa->ifa_broadaddr->sa_len != 0 && 1920 equal(ifa->ifa_broadaddr, addr)) 1921 return ifa; 1922 } 1923 } 1924 return NULL; 1925 } 1926 1927 struct ifaddr * 1928 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1929 { 1930 struct ifaddr *ifa; 1931 int s = pserialize_read_enter(); 1932 1933 ifa = ifa_ifwithaddr(addr); 1934 if (ifa != NULL) 1935 ifa_acquire(ifa, psref); 1936 pserialize_read_exit(s); 1937 1938 return ifa; 1939 } 1940 1941 /* 1942 * Locate the point to point interface with a given destination address. 1943 */ 1944 /*ARGSUSED*/ 1945 struct ifaddr * 1946 ifa_ifwithdstaddr(const struct sockaddr *addr) 1947 { 1948 struct ifnet *ifp; 1949 struct ifaddr *ifa; 1950 1951 IFNET_READER_FOREACH(ifp) { 1952 if (if_is_deactivated(ifp)) 1953 continue; 1954 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1955 continue; 1956 IFADDR_READER_FOREACH(ifa, ifp) { 1957 if (ifa->ifa_addr->sa_family != addr->sa_family || 1958 ifa->ifa_dstaddr == NULL) 1959 continue; 1960 if (equal(addr, ifa->ifa_dstaddr)) 1961 return ifa; 1962 } 1963 } 1964 1965 return NULL; 1966 } 1967 1968 struct ifaddr * 1969 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1970 { 1971 struct ifaddr *ifa; 1972 int s; 1973 1974 s = pserialize_read_enter(); 1975 ifa = ifa_ifwithdstaddr(addr); 1976 if (ifa != NULL) 1977 ifa_acquire(ifa, psref); 1978 pserialize_read_exit(s); 1979 1980 return ifa; 1981 } 1982 1983 /* 1984 * Find an interface on a specific network. If many, choice 1985 * is most specific found. 1986 */ 1987 struct ifaddr * 1988 ifa_ifwithnet(const struct sockaddr *addr) 1989 { 1990 struct ifnet *ifp; 1991 struct ifaddr *ifa, *ifa_maybe = NULL; 1992 const struct sockaddr_dl *sdl; 1993 u_int af = addr->sa_family; 1994 const char *addr_data = addr->sa_data, *cplim; 1995 1996 if (af == AF_LINK) { 1997 sdl = satocsdl(addr); 1998 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1999 ifindex2ifnet[sdl->sdl_index] && 2000 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2001 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2002 } 2003 } 2004 #ifdef NETATALK 2005 if (af == AF_APPLETALK) { 2006 const struct sockaddr_at *sat, *sat2; 2007 sat = (const struct sockaddr_at *)addr; 2008 IFNET_READER_FOREACH(ifp) { 2009 if (if_is_deactivated(ifp)) 2010 continue; 2011 ifa = at_ifawithnet((const struct sockaddr_at *)addr, 2012 ifp); 2013 if (ifa == NULL) 2014 continue; 2015 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2016 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2017 return ifa; /* exact match */ 2018 if (ifa_maybe == NULL) { 2019 /* else keep the if with the right range */ 2020 ifa_maybe = ifa; 2021 } 2022 } 2023 return ifa_maybe; 2024 } 2025 #endif 2026 IFNET_READER_FOREACH(ifp) { 2027 if (if_is_deactivated(ifp)) 2028 continue; 2029 IFADDR_READER_FOREACH(ifa, ifp) { 2030 const char *cp, *cp2, *cp3; 2031 2032 if (ifa->ifa_addr->sa_family != af || 2033 ifa->ifa_netmask == NULL) 2034 next: continue; 2035 cp = addr_data; 2036 cp2 = ifa->ifa_addr->sa_data; 2037 cp3 = ifa->ifa_netmask->sa_data; 2038 cplim = (const char *)ifa->ifa_netmask + 2039 ifa->ifa_netmask->sa_len; 2040 while (cp3 < cplim) { 2041 if ((*cp++ ^ *cp2++) & *cp3++) { 2042 /* want to continue for() loop */ 2043 goto next; 2044 } 2045 } 2046 if (ifa_maybe == NULL || 2047 rt_refines(ifa->ifa_netmask, 2048 ifa_maybe->ifa_netmask)) 2049 ifa_maybe = ifa; 2050 } 2051 } 2052 return ifa_maybe; 2053 } 2054 2055 struct ifaddr * 2056 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2057 { 2058 struct ifaddr *ifa; 2059 int s; 2060 2061 s = pserialize_read_enter(); 2062 ifa = ifa_ifwithnet(addr); 2063 if (ifa != NULL) 2064 ifa_acquire(ifa, psref); 2065 pserialize_read_exit(s); 2066 2067 return ifa; 2068 } 2069 2070 /* 2071 * Find the interface of the address. 2072 */ 2073 struct ifaddr * 2074 ifa_ifwithladdr(const struct sockaddr *addr) 2075 { 2076 struct ifaddr *ia; 2077 2078 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2079 (ia = ifa_ifwithnet(addr))) 2080 return ia; 2081 return NULL; 2082 } 2083 2084 struct ifaddr * 2085 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2086 { 2087 struct ifaddr *ifa; 2088 int s; 2089 2090 s = pserialize_read_enter(); 2091 ifa = ifa_ifwithladdr(addr); 2092 if (ifa != NULL) 2093 ifa_acquire(ifa, psref); 2094 pserialize_read_exit(s); 2095 2096 return ifa; 2097 } 2098 2099 struct ifaddr * 2100 if_first_addr(const struct ifnet *ifp, const int af) 2101 { 2102 struct ifaddr *ifa = NULL; 2103 2104 IFADDR_READER_FOREACH(ifa, ifp) { 2105 if (ifa->ifa_addr->sa_family == af) 2106 break; 2107 } 2108 return ifa; 2109 } 2110 2111 struct ifaddr * 2112 if_first_addr_psref(const struct ifnet *ifp, const int af, struct psref *psref) 2113 { 2114 struct ifaddr *ifa; 2115 int s; 2116 2117 s = pserialize_read_enter(); 2118 ifa = if_first_addr(ifp, af); 2119 if (ifa != NULL) 2120 ifa_acquire(ifa, psref); 2121 pserialize_read_exit(s); 2122 2123 return ifa; 2124 } 2125 2126 /* 2127 * Find an interface address specific to an interface best matching 2128 * a given address. 2129 */ 2130 struct ifaddr * 2131 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2132 { 2133 struct ifaddr *ifa; 2134 const char *cp, *cp2, *cp3; 2135 const char *cplim; 2136 struct ifaddr *ifa_maybe = 0; 2137 u_int af = addr->sa_family; 2138 2139 if (if_is_deactivated(ifp)) 2140 return NULL; 2141 2142 if (af >= AF_MAX) 2143 return NULL; 2144 2145 IFADDR_READER_FOREACH(ifa, ifp) { 2146 if (ifa->ifa_addr->sa_family != af) 2147 continue; 2148 ifa_maybe = ifa; 2149 if (ifa->ifa_netmask == NULL) { 2150 if (equal(addr, ifa->ifa_addr) || 2151 (ifa->ifa_dstaddr && 2152 equal(addr, ifa->ifa_dstaddr))) 2153 return ifa; 2154 continue; 2155 } 2156 cp = addr->sa_data; 2157 cp2 = ifa->ifa_addr->sa_data; 2158 cp3 = ifa->ifa_netmask->sa_data; 2159 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2160 for (; cp3 < cplim; cp3++) { 2161 if ((*cp++ ^ *cp2++) & *cp3) 2162 break; 2163 } 2164 if (cp3 == cplim) 2165 return ifa; 2166 } 2167 return ifa_maybe; 2168 } 2169 2170 struct ifaddr * 2171 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2172 struct psref *psref) 2173 { 2174 struct ifaddr *ifa; 2175 int s; 2176 2177 s = pserialize_read_enter(); 2178 ifa = ifaof_ifpforaddr(addr, ifp); 2179 if (ifa != NULL) 2180 ifa_acquire(ifa, psref); 2181 pserialize_read_exit(s); 2182 2183 return ifa; 2184 } 2185 2186 /* 2187 * Default action when installing a route with a Link Level gateway. 2188 * Lookup an appropriate real ifa to point to. 2189 * This should be moved to /sys/net/link.c eventually. 2190 */ 2191 void 2192 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2193 { 2194 struct ifaddr *ifa; 2195 const struct sockaddr *dst; 2196 struct ifnet *ifp; 2197 struct psref psref; 2198 2199 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2200 return; 2201 ifp = rt->rt_ifa->ifa_ifp; 2202 dst = rt_getkey(rt); 2203 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2204 rt_replace_ifa(rt, ifa); 2205 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2206 ifa->ifa_rtrequest(cmd, rt, info); 2207 ifa_release(ifa, &psref); 2208 } 2209 } 2210 2211 /* 2212 * bitmask macros to manage a densely packed link_state change queue. 2213 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2214 * LINK_STATE_UP(2) we need 2 bits for each state change. 2215 * As a state change to store is 0, treat all bits set as an unset item. 2216 */ 2217 #define LQ_ITEM_BITS 2 2218 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2219 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2220 #define LINK_STATE_UNSET LQ_ITEM_MASK 2221 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2222 #define LQ_STORE(q, i, v) \ 2223 do { \ 2224 (q) &= ~LQ_MASK((i)); \ 2225 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2226 } while (0 /* CONSTCOND */) 2227 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2228 #define LQ_POP(q, v) \ 2229 do { \ 2230 (v) = LQ_ITEM((q), 0); \ 2231 (q) >>= LQ_ITEM_BITS; \ 2232 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2233 } while (0 /* CONSTCOND */) 2234 #define LQ_PUSH(q, v) \ 2235 do { \ 2236 (q) >>= LQ_ITEM_BITS; \ 2237 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2238 } while (0 /* CONSTCOND */) 2239 #define LQ_FIND_UNSET(q, i) \ 2240 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2241 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2242 break; \ 2243 } 2244 2245 /* 2246 * Handle a change in the interface link state and 2247 * queue notifications. 2248 */ 2249 void 2250 if_link_state_change(struct ifnet *ifp, int link_state) 2251 { 2252 int idx; 2253 2254 /* Ensure change is to a valid state */ 2255 switch (link_state) { 2256 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2257 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2258 case LINK_STATE_UP: 2259 break; 2260 default: 2261 #ifdef DEBUG 2262 printf("%s: invalid link state %d\n", 2263 ifp->if_xname, link_state); 2264 #endif 2265 return; 2266 } 2267 2268 IF_LINK_STATE_CHANGE_LOCK(ifp); 2269 2270 /* Find the last unset event in the queue. */ 2271 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2272 2273 if (idx == 0) { 2274 /* 2275 * There is no queue of link state changes. 2276 * As we have the lock we can safely compare against the 2277 * current link state and return if the same. 2278 * Otherwise, if scheduled is true then the interface is being 2279 * detached and the queue is being drained so we need 2280 * to avoid queuing more work. 2281 */ 2282 if (ifp->if_link_state == link_state || 2283 ifp->if_link_scheduled) 2284 goto out; 2285 } else { 2286 /* Ensure link_state doesn't match the last queued state. */ 2287 if (LQ_ITEM(ifp->if_link_queue, idx - 1) 2288 == (uint8_t)link_state) 2289 goto out; 2290 } 2291 2292 /* Handle queue overflow. */ 2293 if (idx == LQ_MAX(ifp->if_link_queue)) { 2294 uint8_t lost; 2295 2296 /* 2297 * The DOWN state must be protected from being pushed off 2298 * the queue to ensure that userland will always be 2299 * in a sane state. 2300 * Because DOWN is protected, there is no need to protect 2301 * UNKNOWN. 2302 * It should be invalid to change from any other state to 2303 * UNKNOWN anyway ... 2304 */ 2305 lost = LQ_ITEM(ifp->if_link_queue, 0); 2306 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2307 if (lost == LINK_STATE_DOWN) { 2308 lost = LQ_ITEM(ifp->if_link_queue, 0); 2309 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2310 } 2311 printf("%s: lost link state change %s\n", 2312 ifp->if_xname, 2313 lost == LINK_STATE_UP ? "UP" : 2314 lost == LINK_STATE_DOWN ? "DOWN" : 2315 "UNKNOWN"); 2316 } else 2317 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2318 2319 if (ifp->if_link_scheduled) 2320 goto out; 2321 2322 ifp->if_link_scheduled = true; 2323 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2324 2325 out: 2326 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2327 } 2328 2329 /* 2330 * Handle interface link state change notifications. 2331 */ 2332 static void 2333 if_link_state_change_process(struct ifnet *ifp, int link_state) 2334 { 2335 struct domain *dp; 2336 const int s = splnet(); 2337 bool notify; 2338 2339 KASSERT(!cpu_intr_p()); 2340 2341 IF_LINK_STATE_CHANGE_LOCK(ifp); 2342 2343 /* Ensure the change is still valid. */ 2344 if (ifp->if_link_state == link_state) { 2345 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2346 splx(s); 2347 return; 2348 } 2349 2350 #ifdef DEBUG 2351 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2352 link_state == LINK_STATE_UP ? "UP" : 2353 link_state == LINK_STATE_DOWN ? "DOWN" : 2354 "UNKNOWN", 2355 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2356 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2357 "UNKNOWN"); 2358 #endif 2359 2360 /* 2361 * When going from UNKNOWN to UP, we need to mark existing 2362 * addresses as tentative and restart DAD as we may have 2363 * erroneously not found a duplicate. 2364 * 2365 * This needs to happen before rt_ifmsg to avoid a race where 2366 * listeners would have an address and expect it to work right 2367 * away. 2368 */ 2369 notify = (link_state == LINK_STATE_UP && 2370 ifp->if_link_state == LINK_STATE_UNKNOWN); 2371 ifp->if_link_state = link_state; 2372 /* The following routines may sleep so release the spin mutex */ 2373 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2374 2375 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2376 if (notify) { 2377 DOMAIN_FOREACH(dp) { 2378 if (dp->dom_if_link_state_change != NULL) 2379 dp->dom_if_link_state_change(ifp, 2380 LINK_STATE_DOWN); 2381 } 2382 } 2383 2384 /* Notify that the link state has changed. */ 2385 rt_ifmsg(ifp); 2386 2387 simplehook_dohooks(ifp->if_linkstate_hooks); 2388 2389 DOMAIN_FOREACH(dp) { 2390 if (dp->dom_if_link_state_change != NULL) 2391 dp->dom_if_link_state_change(ifp, link_state); 2392 } 2393 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2394 splx(s); 2395 } 2396 2397 /* 2398 * Process the interface link state change queue. 2399 */ 2400 static void 2401 if_link_state_change_work(struct work *work, void *arg) 2402 { 2403 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2404 uint8_t state; 2405 2406 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2407 const int s = splnet(); 2408 2409 /* 2410 * Pop a link state change from the queue and process it. 2411 * If there is nothing to process then if_detach() has been called. 2412 * We keep if_link_scheduled = true so the queue can safely drain 2413 * without more work being queued. 2414 */ 2415 IF_LINK_STATE_CHANGE_LOCK(ifp); 2416 LQ_POP(ifp->if_link_queue, state); 2417 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2418 if (state == LINK_STATE_UNSET) 2419 goto out; 2420 2421 IFNET_LOCK(ifp); 2422 if_link_state_change_process(ifp, state); 2423 IFNET_UNLOCK(ifp); 2424 2425 /* If there is a link state change to come, schedule it. */ 2426 IF_LINK_STATE_CHANGE_LOCK(ifp); 2427 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2428 ifp->if_link_scheduled = true; 2429 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, 2430 NULL); 2431 } else 2432 ifp->if_link_scheduled = false; 2433 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2434 2435 out: 2436 splx(s); 2437 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2438 } 2439 2440 void * 2441 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg) 2442 { 2443 khook_t *hk; 2444 2445 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg); 2446 2447 return (void *)hk; 2448 } 2449 2450 void 2451 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, 2452 kmutex_t *lock) 2453 { 2454 2455 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock); 2456 } 2457 2458 /* 2459 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2460 * and thus start Duplicate Address Detection without changing the 2461 * real link state. 2462 */ 2463 void 2464 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2465 { 2466 struct domain *dp; 2467 2468 const int s = splnet(); 2469 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2470 2471 DOMAIN_FOREACH(dp) { 2472 if (dp->dom_if_link_state_change != NULL) 2473 dp->dom_if_link_state_change(ifp, link_state); 2474 } 2475 2476 splx(s); 2477 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2478 } 2479 2480 /* 2481 * Default action when installing a local route on a point-to-point 2482 * interface. 2483 */ 2484 void 2485 p2p_rtrequest(int req, struct rtentry *rt, 2486 __unused const struct rt_addrinfo *info) 2487 { 2488 struct ifnet *ifp = rt->rt_ifp; 2489 struct ifaddr *ifa, *lo0ifa; 2490 int s = pserialize_read_enter(); 2491 2492 switch (req) { 2493 case RTM_ADD: 2494 if ((rt->rt_flags & RTF_LOCAL) == 0) 2495 break; 2496 2497 rt->rt_ifp = lo0ifp; 2498 2499 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2500 break; 2501 2502 IFADDR_READER_FOREACH(ifa, ifp) { 2503 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2504 break; 2505 } 2506 if (ifa == NULL) 2507 break; 2508 2509 /* 2510 * Ensure lo0 has an address of the same family. 2511 */ 2512 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2513 if (lo0ifa->ifa_addr->sa_family == 2514 ifa->ifa_addr->sa_family) 2515 break; 2516 } 2517 if (lo0ifa == NULL) 2518 break; 2519 2520 /* 2521 * Make sure to set rt->rt_ifa to the interface 2522 * address we are using, otherwise we will have trouble 2523 * with source address selection. 2524 */ 2525 if (ifa != rt->rt_ifa) 2526 rt_replace_ifa(rt, ifa); 2527 break; 2528 case RTM_DELETE: 2529 default: 2530 break; 2531 } 2532 pserialize_read_exit(s); 2533 } 2534 2535 static void 2536 _if_down(struct ifnet *ifp) 2537 { 2538 struct ifaddr *ifa; 2539 struct domain *dp; 2540 struct psref psref; 2541 2542 ifp->if_flags &= ~IFF_UP; 2543 nanotime(&ifp->if_lastchange); 2544 2545 const int bound = curlwp_bind(); 2546 int s = pserialize_read_enter(); 2547 IFADDR_READER_FOREACH(ifa, ifp) { 2548 ifa_acquire(ifa, &psref); 2549 pserialize_read_exit(s); 2550 2551 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2552 2553 s = pserialize_read_enter(); 2554 ifa_release(ifa, &psref); 2555 } 2556 pserialize_read_exit(s); 2557 curlwp_bindx(bound); 2558 2559 IFQ_PURGE(&ifp->if_snd); 2560 #if NCARP > 0 2561 if (ifp->if_carp) 2562 carp_carpdev_state(ifp); 2563 #endif 2564 rt_ifmsg(ifp); 2565 DOMAIN_FOREACH(dp) { 2566 if (dp->dom_if_down) 2567 dp->dom_if_down(ifp); 2568 } 2569 } 2570 2571 static void 2572 if_down_deactivated(struct ifnet *ifp) 2573 { 2574 2575 KASSERT(if_is_deactivated(ifp)); 2576 _if_down(ifp); 2577 } 2578 2579 void 2580 if_down_locked(struct ifnet *ifp) 2581 { 2582 2583 KASSERT(IFNET_LOCKED(ifp)); 2584 _if_down(ifp); 2585 } 2586 2587 /* 2588 * Mark an interface down and notify protocols of 2589 * the transition. 2590 * NOTE: must be called at splsoftnet or equivalent. 2591 */ 2592 void 2593 if_down(struct ifnet *ifp) 2594 { 2595 2596 IFNET_LOCK(ifp); 2597 if_down_locked(ifp); 2598 IFNET_UNLOCK(ifp); 2599 } 2600 2601 /* 2602 * Must be called with holding if_ioctl_lock. 2603 */ 2604 static void 2605 if_up_locked(struct ifnet *ifp) 2606 { 2607 #ifdef notyet 2608 struct ifaddr *ifa; 2609 #endif 2610 struct domain *dp; 2611 2612 KASSERT(IFNET_LOCKED(ifp)); 2613 2614 KASSERT(!if_is_deactivated(ifp)); 2615 ifp->if_flags |= IFF_UP; 2616 nanotime(&ifp->if_lastchange); 2617 #ifdef notyet 2618 /* this has no effect on IP, and will kill all ISO connections XXX */ 2619 IFADDR_READER_FOREACH(ifa, ifp) 2620 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2621 #endif 2622 #if NCARP > 0 2623 if (ifp->if_carp) 2624 carp_carpdev_state(ifp); 2625 #endif 2626 rt_ifmsg(ifp); 2627 DOMAIN_FOREACH(dp) { 2628 if (dp->dom_if_up) 2629 dp->dom_if_up(ifp); 2630 } 2631 } 2632 2633 /* 2634 * Handle interface slowtimo timer routine. Called 2635 * from softclock, we decrement timer (if set) and 2636 * call the appropriate interface routine on expiration. 2637 */ 2638 static bool 2639 if_slowtimo_countdown(struct ifnet *ifp) 2640 { 2641 bool fire = false; 2642 const int s = splnet(); 2643 2644 KERNEL_LOCK(1, NULL); 2645 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2646 fire = true; 2647 KERNEL_UNLOCK_ONE(NULL); 2648 splx(s); 2649 2650 return fire; 2651 } 2652 2653 static void 2654 if_slowtimo_intr(void *arg) 2655 { 2656 struct ifnet *ifp = arg; 2657 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2658 2659 mutex_enter(&isd->isd_lock); 2660 if (!isd->isd_dying) { 2661 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) { 2662 if (!isd->isd_queued) { 2663 isd->isd_queued = true; 2664 workqueue_enqueue(if_slowtimo_wq, 2665 &isd->isd_work, NULL); 2666 } 2667 } else 2668 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2669 } 2670 mutex_exit(&isd->isd_lock); 2671 } 2672 2673 static void 2674 if_slowtimo_work(struct work *work, void *arg) 2675 { 2676 struct if_slowtimo_data *isd = 2677 container_of(work, struct if_slowtimo_data, isd_work); 2678 struct ifnet *ifp = isd->isd_ifp; 2679 const int s = splnet(); 2680 2681 KERNEL_LOCK(1, NULL); 2682 (*ifp->if_slowtimo)(ifp); 2683 KERNEL_UNLOCK_ONE(NULL); 2684 splx(s); 2685 2686 mutex_enter(&isd->isd_lock); 2687 if (isd->isd_trigger) { 2688 isd->isd_trigger = false; 2689 printf("%s: watchdog triggered\n", ifp->if_xname); 2690 } 2691 isd->isd_queued = false; 2692 if (!isd->isd_dying) 2693 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2694 mutex_exit(&isd->isd_lock); 2695 } 2696 2697 static int 2698 sysctl_if_watchdog(SYSCTLFN_ARGS) 2699 { 2700 struct sysctlnode node = *rnode; 2701 struct ifnet *ifp = node.sysctl_data; 2702 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2703 int arg = 0; 2704 int error; 2705 2706 node.sysctl_data = &arg; 2707 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2708 if (error || newp == NULL) 2709 return error; 2710 if (arg) { 2711 mutex_enter(&isd->isd_lock); 2712 KASSERT(!isd->isd_dying); 2713 isd->isd_trigger = true; 2714 callout_schedule(&isd->isd_ch, 0); 2715 mutex_exit(&isd->isd_lock); 2716 } 2717 2718 return 0; 2719 } 2720 2721 static void 2722 sysctl_watchdog_setup(struct ifnet *ifp) 2723 { 2724 struct sysctllog **clog = &ifp->if_sysctl_log; 2725 const struct sysctlnode *rnode; 2726 2727 if (sysctl_createv(clog, 0, NULL, &rnode, 2728 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", 2729 SYSCTL_DESCR("Per-interface controls"), 2730 NULL, 0, NULL, 0, 2731 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2732 goto bad; 2733 if (sysctl_createv(clog, 0, &rnode, &rnode, 2734 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname, 2735 SYSCTL_DESCR("Interface controls"), 2736 NULL, 0, NULL, 0, 2737 CTL_CREATE, CTL_EOL) != 0) 2738 goto bad; 2739 if (sysctl_createv(clog, 0, &rnode, &rnode, 2740 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog", 2741 SYSCTL_DESCR("Interface watchdog controls"), 2742 NULL, 0, NULL, 0, 2743 CTL_CREATE, CTL_EOL) != 0) 2744 goto bad; 2745 if (sysctl_createv(clog, 0, &rnode, NULL, 2746 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger", 2747 SYSCTL_DESCR("Trigger watchdog timeout"), 2748 sysctl_if_watchdog, 0, (int *)ifp, 0, 2749 CTL_CREATE, CTL_EOL) != 0) 2750 goto bad; 2751 2752 return; 2753 2754 bad: 2755 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname); 2756 } 2757 2758 /* 2759 * Mark an interface up and notify protocols of 2760 * the transition. 2761 * NOTE: must be called at splsoftnet or equivalent. 2762 */ 2763 void 2764 if_up(struct ifnet *ifp) 2765 { 2766 2767 IFNET_LOCK(ifp); 2768 if_up_locked(ifp); 2769 IFNET_UNLOCK(ifp); 2770 } 2771 2772 /* 2773 * Set/clear promiscuous mode on interface ifp based on the truth value 2774 * of pswitch. The calls are reference counted so that only the first 2775 * "on" request actually has an effect, as does the final "off" request. 2776 * Results are undefined if the "off" and "on" requests are not matched. 2777 */ 2778 int 2779 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2780 { 2781 int pcount, ret = 0; 2782 u_short nflags; 2783 2784 KASSERT(IFNET_LOCKED(ifp)); 2785 2786 pcount = ifp->if_pcount; 2787 if (pswitch) { 2788 /* 2789 * Allow the device to be "placed" into promiscuous 2790 * mode even if it is not configured up. It will 2791 * consult IFF_PROMISC when it is brought up. 2792 */ 2793 if (ifp->if_pcount++ != 0) 2794 goto out; 2795 nflags = ifp->if_flags | IFF_PROMISC; 2796 } else { 2797 if (--ifp->if_pcount > 0) 2798 goto out; 2799 nflags = ifp->if_flags & ~IFF_PROMISC; 2800 } 2801 ret = if_flags_set(ifp, nflags); 2802 /* Restore interface state if not successful. */ 2803 if (ret != 0) 2804 ifp->if_pcount = pcount; 2805 2806 out: 2807 return ret; 2808 } 2809 2810 int 2811 ifpromisc(struct ifnet *ifp, int pswitch) 2812 { 2813 int e; 2814 2815 IFNET_LOCK(ifp); 2816 e = ifpromisc_locked(ifp, pswitch); 2817 IFNET_UNLOCK(ifp); 2818 2819 return e; 2820 } 2821 2822 /* 2823 * if_ioctl(ifp, cmd, data) 2824 * 2825 * Apply an ioctl command to the interface. Returns 0 on success, 2826 * nonzero errno(3) number on failure. 2827 * 2828 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it 2829 * is the driver's responsibility to take any internal locks. 2830 * (Kernel logic should generally invoke these only through 2831 * if_mcast_op.) 2832 * 2833 * For all other ioctls, caller must hold ifp->if_ioctl_lock, 2834 * a.k.a. IFNET_LOCK. May sleep. 2835 */ 2836 int 2837 if_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2838 { 2839 2840 switch (cmd) { 2841 case SIOCADDMULTI: 2842 case SIOCDELMULTI: 2843 break; 2844 default: 2845 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2846 } 2847 2848 return (*ifp->if_ioctl)(ifp, cmd, data); 2849 } 2850 2851 /* 2852 * if_init(ifp) 2853 * 2854 * Prepare the hardware underlying ifp to process packets 2855 * according to its current configuration. Returns 0 on success, 2856 * nonzero errno(3) number on failure. 2857 * 2858 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2859 * IFNET_LOCK. 2860 */ 2861 int 2862 if_init(struct ifnet *ifp) 2863 { 2864 2865 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2866 2867 return (*ifp->if_init)(ifp); 2868 } 2869 2870 /* 2871 * if_stop(ifp, disable) 2872 * 2873 * Stop the hardware underlying ifp from processing packets. 2874 * 2875 * If disable is true, ... XXX(?) 2876 * 2877 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2878 * IFNET_LOCK. 2879 */ 2880 void 2881 if_stop(struct ifnet *ifp, int disable) 2882 { 2883 2884 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2885 2886 (*ifp->if_stop)(ifp, disable); 2887 } 2888 2889 /* 2890 * Map interface name to 2891 * interface structure pointer. 2892 */ 2893 struct ifnet * 2894 ifunit(const char *name) 2895 { 2896 struct ifnet *ifp; 2897 const char *cp = name; 2898 u_int unit = 0; 2899 u_int i; 2900 2901 /* 2902 * If the entire name is a number, treat it as an ifindex. 2903 */ 2904 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2905 unit = unit * 10 + (*cp - '0'); 2906 2907 /* 2908 * If the number took all of the name, then it's a valid ifindex. 2909 */ 2910 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2911 return if_byindex(unit); 2912 2913 ifp = NULL; 2914 const int s = pserialize_read_enter(); 2915 IFNET_READER_FOREACH(ifp) { 2916 if (if_is_deactivated(ifp)) 2917 continue; 2918 if (strcmp(ifp->if_xname, name) == 0) 2919 goto out; 2920 } 2921 out: 2922 pserialize_read_exit(s); 2923 return ifp; 2924 } 2925 2926 /* 2927 * Get a reference of an ifnet object by an interface name. 2928 * The returned reference is protected by psref(9). The caller 2929 * must release a returned reference by if_put after use. 2930 */ 2931 struct ifnet * 2932 if_get(const char *name, struct psref *psref) 2933 { 2934 struct ifnet *ifp; 2935 const char *cp = name; 2936 u_int unit = 0; 2937 u_int i; 2938 2939 /* 2940 * If the entire name is a number, treat it as an ifindex. 2941 */ 2942 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2943 unit = unit * 10 + (*cp - '0'); 2944 2945 /* 2946 * If the number took all of the name, then it's a valid ifindex. 2947 */ 2948 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2949 return if_get_byindex(unit, psref); 2950 2951 ifp = NULL; 2952 const int s = pserialize_read_enter(); 2953 IFNET_READER_FOREACH(ifp) { 2954 if (if_is_deactivated(ifp)) 2955 continue; 2956 if (strcmp(ifp->if_xname, name) == 0) { 2957 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2958 psref_acquire(psref, &ifp->if_psref, 2959 ifnet_psref_class); 2960 goto out; 2961 } 2962 } 2963 out: 2964 pserialize_read_exit(s); 2965 return ifp; 2966 } 2967 2968 /* 2969 * Release a reference of an ifnet object given by if_get, if_get_byindex 2970 * or if_get_bylla. 2971 */ 2972 void 2973 if_put(const struct ifnet *ifp, struct psref *psref) 2974 { 2975 2976 if (ifp == NULL) 2977 return; 2978 2979 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2980 } 2981 2982 /* 2983 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2984 * should be used. 2985 */ 2986 ifnet_t * 2987 _if_byindex(u_int idx) 2988 { 2989 2990 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2991 } 2992 2993 /* 2994 * Return ifp having idx. Return NULL if not found or the found ifp is 2995 * already deactivated. 2996 */ 2997 ifnet_t * 2998 if_byindex(u_int idx) 2999 { 3000 ifnet_t *ifp; 3001 3002 ifp = _if_byindex(idx); 3003 if (ifp != NULL && if_is_deactivated(ifp)) 3004 ifp = NULL; 3005 return ifp; 3006 } 3007 3008 /* 3009 * Get a reference of an ifnet object by an interface index. 3010 * The returned reference is protected by psref(9). The caller 3011 * must release a returned reference by if_put after use. 3012 */ 3013 ifnet_t * 3014 if_get_byindex(u_int idx, struct psref *psref) 3015 { 3016 ifnet_t *ifp; 3017 3018 const int s = pserialize_read_enter(); 3019 ifp = if_byindex(idx); 3020 if (__predict_true(ifp != NULL)) { 3021 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 3022 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3023 } 3024 pserialize_read_exit(s); 3025 3026 return ifp; 3027 } 3028 3029 ifnet_t * 3030 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 3031 { 3032 ifnet_t *ifp; 3033 3034 const int s = pserialize_read_enter(); 3035 IFNET_READER_FOREACH(ifp) { 3036 if (if_is_deactivated(ifp)) 3037 continue; 3038 if (ifp->if_addrlen != lla_len) 3039 continue; 3040 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 3041 psref_acquire(psref, &ifp->if_psref, 3042 ifnet_psref_class); 3043 break; 3044 } 3045 } 3046 pserialize_read_exit(s); 3047 3048 return ifp; 3049 } 3050 3051 /* 3052 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 3053 * for example using pserialize or the ifp is already held or some other 3054 * object is held which guarantes the ifp to not be freed indirectly. 3055 */ 3056 void 3057 if_acquire(struct ifnet *ifp, struct psref *psref) 3058 { 3059 3060 KASSERT(ifp->if_index != 0); 3061 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3062 } 3063 3064 bool 3065 if_held(struct ifnet *ifp) 3066 { 3067 3068 return psref_held(&ifp->if_psref, ifnet_psref_class); 3069 } 3070 3071 /* 3072 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over 3073 * IPv4. Check the tunnel nesting count. 3074 * Return > 0, if tunnel nesting count is more than limit. 3075 * Return 0, if tunnel nesting count is equal or less than limit. 3076 */ 3077 int 3078 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 3079 { 3080 struct m_tag *mtag; 3081 int *count; 3082 3083 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 3084 if (mtag != NULL) { 3085 count = (int *)(mtag + 1); 3086 if (++(*count) > limit) { 3087 log(LOG_NOTICE, 3088 "%s: recursively called too many times(%d)\n", 3089 ifp->if_xname, *count); 3090 return EIO; 3091 } 3092 } else { 3093 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 3094 M_NOWAIT); 3095 if (mtag != NULL) { 3096 m_tag_prepend(m, mtag); 3097 count = (int *)(mtag + 1); 3098 *count = 0; 3099 } else { 3100 log(LOG_DEBUG, "%s: m_tag_get() failed, " 3101 "recursion calls are not prevented.\n", 3102 ifp->if_xname); 3103 } 3104 } 3105 3106 return 0; 3107 } 3108 3109 static void 3110 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3111 { 3112 struct tunnel_ro *tro = p; 3113 3114 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 3115 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 3116 } 3117 3118 static void 3119 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3120 { 3121 struct tunnel_ro *tro = p; 3122 3123 rtcache_free(tro->tr_ro); 3124 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 3125 3126 mutex_obj_free(tro->tr_lock); 3127 } 3128 3129 percpu_t * 3130 if_tunnel_alloc_ro_percpu(void) 3131 { 3132 3133 return percpu_create(sizeof(struct tunnel_ro), 3134 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 3135 } 3136 3137 void 3138 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3139 { 3140 3141 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3142 } 3143 3144 3145 static void 3146 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, 3147 struct cpu_info *ci __unused) 3148 { 3149 struct tunnel_ro *tro = p; 3150 3151 mutex_enter(tro->tr_lock); 3152 rtcache_free(tro->tr_ro); 3153 mutex_exit(tro->tr_lock); 3154 } 3155 3156 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3157 { 3158 3159 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3160 } 3161 3162 void 3163 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3164 { 3165 3166 /* Collect the volatile stats first; this zeros *ifi. */ 3167 if_stats_to_if_data(ifp, ifi, zero_stats); 3168 3169 ifi->ifi_type = ifp->if_type; 3170 ifi->ifi_addrlen = ifp->if_addrlen; 3171 ifi->ifi_hdrlen = ifp->if_hdrlen; 3172 ifi->ifi_link_state = ifp->if_link_state; 3173 ifi->ifi_mtu = ifp->if_mtu; 3174 ifi->ifi_metric = ifp->if_metric; 3175 ifi->ifi_baudrate = ifp->if_baudrate; 3176 ifi->ifi_lastchange = ifp->if_lastchange; 3177 } 3178 3179 /* common */ 3180 int 3181 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3182 { 3183 struct ifreq *ifr; 3184 struct ifcapreq *ifcr; 3185 struct ifdatareq *ifdr; 3186 unsigned short flags; 3187 char *descr; 3188 int error; 3189 3190 switch (cmd) { 3191 case SIOCSIFCAP: 3192 ifcr = data; 3193 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3194 return EINVAL; 3195 3196 if (ifcr->ifcr_capenable == ifp->if_capenable) 3197 return 0; 3198 3199 ifp->if_capenable = ifcr->ifcr_capenable; 3200 3201 /* Pre-compute the checksum flags mask. */ 3202 ifp->if_csum_flags_tx = 0; 3203 ifp->if_csum_flags_rx = 0; 3204 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3205 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3206 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3207 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3208 3209 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3210 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3211 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3212 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3213 3214 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3215 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3216 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3217 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3218 3219 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3220 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3221 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3222 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3223 3224 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3225 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3226 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3227 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3228 3229 if (ifp->if_capenable & IFCAP_TSOv4) 3230 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3231 if (ifp->if_capenable & IFCAP_TSOv6) 3232 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3233 3234 #if NBRIDGE > 0 3235 if (ifp->if_bridge != NULL) 3236 bridge_calc_csum_flags(ifp->if_bridge); 3237 #endif 3238 3239 if (ifp->if_flags & IFF_UP) 3240 return ENETRESET; 3241 return 0; 3242 case SIOCSIFFLAGS: 3243 ifr = data; 3244 /* 3245 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3246 * and if_down aren't MP-safe yet, so we must hold the lock. 3247 */ 3248 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3249 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3250 const int s = splsoftnet(); 3251 if_down_locked(ifp); 3252 splx(s); 3253 } 3254 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3255 const int s = splsoftnet(); 3256 if_up_locked(ifp); 3257 splx(s); 3258 } 3259 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3260 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3261 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3262 if (ifp->if_flags != flags) { 3263 ifp->if_flags = flags; 3264 /* Notify that the flags have changed. */ 3265 rt_ifmsg(ifp); 3266 } 3267 break; 3268 case SIOCGIFFLAGS: 3269 ifr = data; 3270 ifr->ifr_flags = ifp->if_flags; 3271 break; 3272 3273 case SIOCGIFMETRIC: 3274 ifr = data; 3275 ifr->ifr_metric = ifp->if_metric; 3276 break; 3277 3278 case SIOCGIFMTU: 3279 ifr = data; 3280 ifr->ifr_mtu = ifp->if_mtu; 3281 break; 3282 3283 case SIOCGIFDLT: 3284 ifr = data; 3285 ifr->ifr_dlt = ifp->if_dlt; 3286 break; 3287 3288 case SIOCGIFCAP: 3289 ifcr = data; 3290 ifcr->ifcr_capabilities = ifp->if_capabilities; 3291 ifcr->ifcr_capenable = ifp->if_capenable; 3292 break; 3293 3294 case SIOCSIFMETRIC: 3295 ifr = data; 3296 ifp->if_metric = ifr->ifr_metric; 3297 break; 3298 3299 case SIOCGIFDATA: 3300 ifdr = data; 3301 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3302 break; 3303 3304 case SIOCGIFINDEX: 3305 ifr = data; 3306 ifr->ifr_index = ifp->if_index; 3307 break; 3308 3309 case SIOCZIFDATA: 3310 ifdr = data; 3311 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3312 getnanotime(&ifp->if_lastchange); 3313 break; 3314 case SIOCSIFMTU: 3315 ifr = data; 3316 if (ifp->if_mtu == ifr->ifr_mtu) 3317 break; 3318 ifp->if_mtu = ifr->ifr_mtu; 3319 return ENETRESET; 3320 case SIOCSIFDESCR: 3321 error = kauth_authorize_network(kauth_cred_get(), 3322 KAUTH_NETWORK_INTERFACE, 3323 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3324 NULL); 3325 if (error) 3326 return error; 3327 3328 ifr = data; 3329 3330 if (ifr->ifr_buflen > IFDESCRSIZE) 3331 return ENAMETOOLONG; 3332 3333 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3334 /* unset description */ 3335 descr = NULL; 3336 } else { 3337 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3338 /* 3339 * copy (IFDESCRSIZE - 1) bytes to ensure 3340 * terminating nul 3341 */ 3342 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3343 if (error) { 3344 kmem_free(descr, IFDESCRSIZE); 3345 return error; 3346 } 3347 } 3348 3349 if (ifp->if_description != NULL) 3350 kmem_free(ifp->if_description, IFDESCRSIZE); 3351 3352 ifp->if_description = descr; 3353 break; 3354 3355 case SIOCGIFDESCR: 3356 ifr = data; 3357 descr = ifp->if_description; 3358 3359 if (descr == NULL) 3360 return ENOMSG; 3361 3362 if (ifr->ifr_buflen < IFDESCRSIZE) 3363 return EINVAL; 3364 3365 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3366 if (error) 3367 return error; 3368 break; 3369 3370 default: 3371 return ENOTTY; 3372 } 3373 return 0; 3374 } 3375 3376 int 3377 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3378 { 3379 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3380 struct ifaddr *ifa; 3381 const struct sockaddr *any, *sa; 3382 union { 3383 struct sockaddr sa; 3384 struct sockaddr_storage ss; 3385 } u, v; 3386 int s, error = 0; 3387 3388 switch (cmd) { 3389 case SIOCSIFADDRPREF: 3390 error = kauth_authorize_network(kauth_cred_get(), 3391 KAUTH_NETWORK_INTERFACE, 3392 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3393 NULL); 3394 if (error) 3395 return error; 3396 break; 3397 case SIOCGIFADDRPREF: 3398 break; 3399 default: 3400 return EOPNOTSUPP; 3401 } 3402 3403 /* sanity checks */ 3404 if (data == NULL || ifp == NULL) { 3405 panic("invalid argument to %s", __func__); 3406 /*NOTREACHED*/ 3407 } 3408 3409 /* address must be specified on ADD and DELETE */ 3410 sa = sstocsa(&ifap->ifap_addr); 3411 if (sa->sa_family != sofamily(so)) 3412 return EINVAL; 3413 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3414 return EINVAL; 3415 3416 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3417 3418 s = pserialize_read_enter(); 3419 IFADDR_READER_FOREACH(ifa, ifp) { 3420 if (ifa->ifa_addr->sa_family != sa->sa_family) 3421 continue; 3422 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3423 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3424 break; 3425 } 3426 if (ifa == NULL) { 3427 error = EADDRNOTAVAIL; 3428 goto out; 3429 } 3430 3431 switch (cmd) { 3432 case SIOCSIFADDRPREF: 3433 ifa->ifa_preference = ifap->ifap_preference; 3434 goto out; 3435 case SIOCGIFADDRPREF: 3436 /* fill in the if_laddrreq structure */ 3437 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3438 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3439 ifap->ifap_preference = ifa->ifa_preference; 3440 goto out; 3441 default: 3442 error = EOPNOTSUPP; 3443 } 3444 out: 3445 pserialize_read_exit(s); 3446 return error; 3447 } 3448 3449 /* 3450 * Interface ioctls. 3451 */ 3452 static int 3453 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3454 { 3455 struct ifnet *ifp; 3456 struct ifreq *ifr; 3457 int error = 0; 3458 u_long ocmd = cmd; 3459 u_short oif_flags; 3460 struct ifreq ifrb; 3461 struct oifreq *oifr = NULL; 3462 int r; 3463 struct psref psref; 3464 bool do_if43_post = false; 3465 bool do_ifm80_post = false; 3466 3467 switch (cmd) { 3468 case SIOCGIFCONF: 3469 return ifconf(cmd, data); 3470 case SIOCINITIFADDR: 3471 return EPERM; 3472 default: 3473 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3474 error); 3475 if (error != ENOSYS) 3476 return error; 3477 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3478 enosys(), error); 3479 if (error != ENOSYS) 3480 return error; 3481 error = 0; 3482 break; 3483 } 3484 3485 ifr = data; 3486 /* Pre-conversion */ 3487 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3488 if (cmd != ocmd) { 3489 oifr = data; 3490 data = ifr = &ifrb; 3491 IFREQO2N_43(oifr, ifr); 3492 do_if43_post = true; 3493 } 3494 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3495 enosys(), error); 3496 3497 switch (cmd) { 3498 case SIOCIFCREATE: 3499 case SIOCIFDESTROY: { 3500 const int bound = curlwp_bind(); 3501 if (l != NULL) { 3502 ifp = if_get(ifr->ifr_name, &psref); 3503 error = kauth_authorize_network(l->l_cred, 3504 KAUTH_NETWORK_INTERFACE, 3505 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3506 KAUTH_ARG(cmd), NULL); 3507 if (ifp != NULL) 3508 if_put(ifp, &psref); 3509 if (error != 0) { 3510 curlwp_bindx(bound); 3511 return error; 3512 } 3513 } 3514 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3515 mutex_enter(&if_clone_mtx); 3516 r = (cmd == SIOCIFCREATE) ? 3517 if_clone_create(ifr->ifr_name) : 3518 if_clone_destroy(ifr->ifr_name); 3519 mutex_exit(&if_clone_mtx); 3520 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3521 curlwp_bindx(bound); 3522 return r; 3523 } 3524 case SIOCIFGCLONERS: { 3525 struct if_clonereq *req = (struct if_clonereq *)data; 3526 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3527 &req->ifcr_total); 3528 } 3529 } 3530 3531 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name)) 3532 return EINVAL; 3533 3534 const int bound = curlwp_bind(); 3535 ifp = if_get(ifr->ifr_name, &psref); 3536 if (ifp == NULL) { 3537 curlwp_bindx(bound); 3538 return ENXIO; 3539 } 3540 3541 switch (cmd) { 3542 case SIOCALIFADDR: 3543 case SIOCDLIFADDR: 3544 case SIOCSIFADDRPREF: 3545 case SIOCSIFFLAGS: 3546 case SIOCSIFCAP: 3547 case SIOCSIFMETRIC: 3548 case SIOCZIFDATA: 3549 case SIOCSIFMTU: 3550 case SIOCSIFPHYADDR: 3551 case SIOCDIFPHYADDR: 3552 #ifdef INET6 3553 case SIOCSIFPHYADDR_IN6: 3554 #endif 3555 case SIOCSLIFPHYADDR: 3556 case SIOCADDMULTI: 3557 case SIOCDELMULTI: 3558 case SIOCSETHERCAP: 3559 case SIOCSIFMEDIA: 3560 case SIOCSDRVSPEC: 3561 case SIOCG80211: 3562 case SIOCS80211: 3563 case SIOCS80211NWID: 3564 case SIOCS80211NWKEY: 3565 case SIOCS80211POWER: 3566 case SIOCS80211BSSID: 3567 case SIOCS80211CHANNEL: 3568 case SIOCSLINKSTR: 3569 if (l != NULL) { 3570 error = kauth_authorize_network(l->l_cred, 3571 KAUTH_NETWORK_INTERFACE, 3572 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3573 KAUTH_ARG(cmd), NULL); 3574 if (error != 0) 3575 goto out; 3576 } 3577 } 3578 3579 oif_flags = ifp->if_flags; 3580 3581 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3582 IFNET_LOCK(ifp); 3583 3584 error = if_ioctl(ifp, cmd, data); 3585 if (error != ENOTTY) 3586 ; 3587 else if (so->so_proto == NULL) 3588 error = EOPNOTSUPP; 3589 else { 3590 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3591 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3592 (so, ocmd, cmd, data, l), enosys(), error); 3593 if (error == ENOSYS) 3594 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3595 cmd, data, ifp); 3596 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3597 } 3598 3599 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3600 if ((ifp->if_flags & IFF_UP) != 0) { 3601 const int s = splsoftnet(); 3602 if_up_locked(ifp); 3603 splx(s); 3604 } 3605 } 3606 3607 /* Post-conversion */ 3608 if (do_ifm80_post && (error == 0)) 3609 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3610 enosys(), error); 3611 if (do_if43_post) 3612 IFREQN2O_43(oifr, ifr); 3613 3614 IFNET_UNLOCK(ifp); 3615 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3616 out: 3617 if_put(ifp, &psref); 3618 curlwp_bindx(bound); 3619 return error; 3620 } 3621 3622 /* 3623 * Return interface configuration 3624 * of system. List may be used 3625 * in later ioctl's (above) to get 3626 * other information. 3627 * 3628 * Each record is a struct ifreq. Before the addition of 3629 * sockaddr_storage, the API rule was that sockaddr flavors that did 3630 * not fit would extend beyond the struct ifreq, with the next struct 3631 * ifreq starting sa_len beyond the struct sockaddr. Because the 3632 * union in struct ifreq includes struct sockaddr_storage, every kind 3633 * of sockaddr must fit. Thus, there are no longer any overlength 3634 * records. 3635 * 3636 * Records are added to the user buffer if they fit, and ifc_len is 3637 * adjusted to the length that was written. Thus, the user is only 3638 * assured of getting the complete list if ifc_len on return is at 3639 * least sizeof(struct ifreq) less than it was on entry. 3640 * 3641 * If the user buffer pointer is NULL, this routine copies no data and 3642 * returns the amount of space that would be needed. 3643 * 3644 * Invariants: 3645 * ifrp points to the next part of the user's buffer to be used. If 3646 * ifrp != NULL, space holds the number of bytes remaining that we may 3647 * write at ifrp. Otherwise, space holds the number of bytes that 3648 * would have been written had there been adequate space. 3649 */ 3650 /*ARGSUSED*/ 3651 static int 3652 ifconf(u_long cmd, void *data) 3653 { 3654 struct ifconf *ifc = (struct ifconf *)data; 3655 struct ifnet *ifp; 3656 struct ifaddr *ifa; 3657 struct ifreq ifr, *ifrp = NULL; 3658 int space = 0, error = 0; 3659 const int sz = (int)sizeof(struct ifreq); 3660 const bool docopy = ifc->ifc_req != NULL; 3661 struct psref psref; 3662 3663 if (docopy) { 3664 if (ifc->ifc_len < 0) 3665 return EINVAL; 3666 3667 space = ifc->ifc_len; 3668 ifrp = ifc->ifc_req; 3669 } 3670 memset(&ifr, 0, sizeof(ifr)); 3671 3672 const int bound = curlwp_bind(); 3673 int s = pserialize_read_enter(); 3674 IFNET_READER_FOREACH(ifp) { 3675 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3676 pserialize_read_exit(s); 3677 3678 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3679 sizeof(ifr.ifr_name)); 3680 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3681 error = ENAMETOOLONG; 3682 goto release_exit; 3683 } 3684 if (IFADDR_READER_EMPTY(ifp)) { 3685 /* Interface with no addresses - send zero sockaddr. */ 3686 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3687 if (!docopy) { 3688 space += sz; 3689 goto next; 3690 } 3691 if (space >= sz) { 3692 error = copyout(&ifr, ifrp, sz); 3693 if (error != 0) 3694 goto release_exit; 3695 ifrp++; 3696 space -= sz; 3697 } 3698 } 3699 3700 s = pserialize_read_enter(); 3701 IFADDR_READER_FOREACH(ifa, ifp) { 3702 struct sockaddr *sa = ifa->ifa_addr; 3703 /* all sockaddrs must fit in sockaddr_storage */ 3704 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3705 3706 if (!docopy) { 3707 space += sz; 3708 continue; 3709 } 3710 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3711 pserialize_read_exit(s); 3712 3713 if (space >= sz) { 3714 error = copyout(&ifr, ifrp, sz); 3715 if (error != 0) 3716 goto release_exit; 3717 ifrp++; space -= sz; 3718 } 3719 s = pserialize_read_enter(); 3720 } 3721 pserialize_read_exit(s); 3722 3723 next: 3724 s = pserialize_read_enter(); 3725 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3726 } 3727 pserialize_read_exit(s); 3728 curlwp_bindx(bound); 3729 3730 if (docopy) { 3731 KASSERT(0 <= space && space <= ifc->ifc_len); 3732 ifc->ifc_len -= space; 3733 } else { 3734 KASSERT(space >= 0); 3735 ifc->ifc_len = space; 3736 } 3737 return 0; 3738 3739 release_exit: 3740 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3741 curlwp_bindx(bound); 3742 return error; 3743 } 3744 3745 int 3746 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3747 { 3748 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3749 struct ifreq ifrb; 3750 struct oifreq *oifr = NULL; 3751 u_long ocmd = cmd; 3752 int hook; 3753 3754 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3755 if (hook != ENOSYS) { 3756 if (cmd != ocmd) { 3757 oifr = (struct oifreq *)(void *)ifr; 3758 ifr = &ifrb; 3759 IFREQO2N_43(oifr, ifr); 3760 len = sizeof(oifr->ifr_addr); 3761 } 3762 } 3763 3764 if (len < sa->sa_len) 3765 return EFBIG; 3766 3767 memset(&ifr->ifr_addr, 0, len); 3768 sockaddr_copy(&ifr->ifr_addr, len, sa); 3769 3770 if (cmd != ocmd) 3771 IFREQN2O_43(oifr, ifr); 3772 return 0; 3773 } 3774 3775 /* 3776 * wrapper function for the drivers which doesn't have if_transmit(). 3777 */ 3778 static int 3779 if_transmit(struct ifnet *ifp, struct mbuf *m) 3780 { 3781 int error; 3782 size_t pktlen = m->m_pkthdr.len; 3783 bool mcast = (m->m_flags & M_MCAST) != 0; 3784 3785 const int s = splnet(); 3786 3787 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3788 if (error != 0) { 3789 /* mbuf is already freed */ 3790 goto out; 3791 } 3792 3793 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3794 if_statadd_ref(ifp, nsr, if_obytes, pktlen); 3795 if (mcast) 3796 if_statinc_ref(ifp, nsr, if_omcasts); 3797 IF_STAT_PUTREF(ifp); 3798 3799 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3800 if_start_lock(ifp); 3801 out: 3802 splx(s); 3803 3804 return error; 3805 } 3806 3807 int 3808 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3809 { 3810 int error; 3811 3812 kmsan_check_mbuf(m); 3813 3814 #ifdef ALTQ 3815 KERNEL_LOCK(1, NULL); 3816 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3817 error = if_transmit(ifp, m); 3818 KERNEL_UNLOCK_ONE(NULL); 3819 } else { 3820 KERNEL_UNLOCK_ONE(NULL); 3821 error = (*ifp->if_transmit)(ifp, m); 3822 /* mbuf is already freed */ 3823 } 3824 #else /* !ALTQ */ 3825 error = (*ifp->if_transmit)(ifp, m); 3826 /* mbuf is already freed */ 3827 #endif /* !ALTQ */ 3828 3829 return error; 3830 } 3831 3832 /* 3833 * Queue message on interface, and start output if interface 3834 * not yet active. 3835 */ 3836 int 3837 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3838 { 3839 3840 return if_transmit_lock(ifp, m); 3841 } 3842 3843 /* 3844 * Queue message on interface, possibly using a second fast queue 3845 */ 3846 int 3847 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3848 { 3849 int error = 0; 3850 3851 if (ifq != NULL 3852 #ifdef ALTQ 3853 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3854 #endif 3855 ) { 3856 if (IF_QFULL(ifq)) { 3857 IF_DROP(&ifp->if_snd); 3858 m_freem(m); 3859 if (error == 0) 3860 error = ENOBUFS; 3861 } else 3862 IF_ENQUEUE(ifq, m); 3863 } else 3864 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3865 if (error != 0) { 3866 if_statinc(ifp, if_oerrors); 3867 return error; 3868 } 3869 return 0; 3870 } 3871 3872 int 3873 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3874 { 3875 int rc; 3876 3877 KASSERT(IFNET_LOCKED(ifp)); 3878 if (ifp->if_initaddr != NULL) 3879 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3880 else if (src || (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3881 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa); 3882 3883 return rc; 3884 } 3885 3886 int 3887 if_do_dad(struct ifnet *ifp) 3888 { 3889 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3890 return 0; 3891 3892 switch (ifp->if_type) { 3893 case IFT_FAITH: 3894 /* 3895 * These interfaces do not have the IFF_LOOPBACK flag, 3896 * but loop packets back. We do not have to do DAD on such 3897 * interfaces. We should even omit it, because loop-backed 3898 * responses would confuse the DAD procedure. 3899 */ 3900 return 0; 3901 default: 3902 /* 3903 * Our DAD routine requires the interface up and running. 3904 * However, some interfaces can be up before the RUNNING 3905 * status. Additionally, users may try to assign addresses 3906 * before the interface becomes up (or running). 3907 * We simply skip DAD in such a case as a work around. 3908 * XXX: we should rather mark "tentative" on such addresses, 3909 * and do DAD after the interface becomes ready. 3910 */ 3911 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3912 (IFF_UP | IFF_RUNNING)) 3913 return 0; 3914 3915 return 1; 3916 } 3917 } 3918 3919 /* 3920 * if_flags_set(ifp, flags) 3921 * 3922 * Ask ifp to change ifp->if_flags to flags, as if with the 3923 * SIOCSIFFLAGS ioctl command. 3924 * 3925 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 3926 * IFNET_LOCK. 3927 */ 3928 int 3929 if_flags_set(ifnet_t *ifp, const u_short flags) 3930 { 3931 int rc; 3932 3933 KASSERT(IFNET_LOCKED(ifp)); 3934 3935 if (ifp->if_setflags != NULL) 3936 rc = (*ifp->if_setflags)(ifp, flags); 3937 else { 3938 u_short cantflags, chgdflags; 3939 struct ifreq ifr; 3940 3941 chgdflags = ifp->if_flags ^ flags; 3942 cantflags = chgdflags & IFF_CANTCHANGE; 3943 3944 if (cantflags != 0) 3945 ifp->if_flags ^= cantflags; 3946 3947 /* 3948 * Traditionally, we do not call if_ioctl after 3949 * setting/clearing only IFF_PROMISC if the interface 3950 * isn't IFF_UP. Uphold that tradition. 3951 */ 3952 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3953 return 0; 3954 3955 memset(&ifr, 0, sizeof(ifr)); 3956 3957 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3958 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr); 3959 3960 if (rc != 0 && cantflags != 0) 3961 ifp->if_flags ^= cantflags; 3962 } 3963 3964 return rc; 3965 } 3966 3967 /* 3968 * if_mcast_op(ifp, cmd, sa) 3969 * 3970 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the 3971 * interface. Returns 0 on success, nonzero errno(3) number on 3972 * failure. 3973 * 3974 * May sleep. 3975 * 3976 * Use this, not if_ioctl, for the multicast commands. 3977 */ 3978 int 3979 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3980 { 3981 int rc; 3982 struct ifreq ifr; 3983 3984 switch (cmd) { 3985 case SIOCADDMULTI: 3986 case SIOCDELMULTI: 3987 break; 3988 default: 3989 panic("invalid ifnet multicast command: 0x%lx", cmd); 3990 } 3991 3992 ifreq_setaddr(cmd, &ifr, sa); 3993 rc = if_ioctl(ifp, cmd, &ifr); 3994 3995 return rc; 3996 } 3997 3998 static void 3999 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 4000 struct ifaltq *ifq) 4001 { 4002 const struct sysctlnode *cnode, *rnode; 4003 4004 if (sysctl_createv(clog, 0, NULL, &rnode, 4005 CTLFLAG_PERMANENT, 4006 CTLTYPE_NODE, "interfaces", 4007 SYSCTL_DESCR("Per-interface controls"), 4008 NULL, 0, NULL, 0, 4009 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 4010 goto bad; 4011 4012 if (sysctl_createv(clog, 0, &rnode, &rnode, 4013 CTLFLAG_PERMANENT, 4014 CTLTYPE_NODE, ifname, 4015 SYSCTL_DESCR("Interface controls"), 4016 NULL, 0, NULL, 0, 4017 CTL_CREATE, CTL_EOL) != 0) 4018 goto bad; 4019 4020 if (sysctl_createv(clog, 0, &rnode, &rnode, 4021 CTLFLAG_PERMANENT, 4022 CTLTYPE_NODE, "sndq", 4023 SYSCTL_DESCR("Interface output queue controls"), 4024 NULL, 0, NULL, 0, 4025 CTL_CREATE, CTL_EOL) != 0) 4026 goto bad; 4027 4028 if (sysctl_createv(clog, 0, &rnode, &cnode, 4029 CTLFLAG_PERMANENT, 4030 CTLTYPE_INT, "len", 4031 SYSCTL_DESCR("Current output queue length"), 4032 NULL, 0, &ifq->ifq_len, 0, 4033 CTL_CREATE, CTL_EOL) != 0) 4034 goto bad; 4035 4036 if (sysctl_createv(clog, 0, &rnode, &cnode, 4037 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 4038 CTLTYPE_INT, "maxlen", 4039 SYSCTL_DESCR("Maximum allowed output queue length"), 4040 NULL, 0, &ifq->ifq_maxlen, 0, 4041 CTL_CREATE, CTL_EOL) != 0) 4042 goto bad; 4043 4044 if (sysctl_createv(clog, 0, &rnode, &cnode, 4045 CTLFLAG_PERMANENT, 4046 CTLTYPE_QUAD, "drops", 4047 SYSCTL_DESCR("Packets dropped due to full output queue"), 4048 NULL, 0, &ifq->ifq_drops, 0, 4049 CTL_CREATE, CTL_EOL) != 0) 4050 goto bad; 4051 4052 return; 4053 bad: 4054 printf("%s: could not attach sysctl nodes\n", ifname); 4055 return; 4056 } 4057 4058 static int 4059 if_sdl_sysctl(SYSCTLFN_ARGS) 4060 { 4061 struct ifnet *ifp; 4062 const struct sockaddr_dl *sdl; 4063 struct psref psref; 4064 int error = 0; 4065 4066 if (namelen != 1) 4067 return EINVAL; 4068 4069 const int bound = curlwp_bind(); 4070 ifp = if_get_byindex(name[0], &psref); 4071 if (ifp == NULL) { 4072 error = ENODEV; 4073 goto out0; 4074 } 4075 4076 sdl = ifp->if_sadl; 4077 if (sdl == NULL) { 4078 *oldlenp = 0; 4079 goto out1; 4080 } 4081 4082 if (oldp == NULL) { 4083 *oldlenp = sdl->sdl_alen; 4084 goto out1; 4085 } 4086 4087 if (*oldlenp >= sdl->sdl_alen) 4088 *oldlenp = sdl->sdl_alen; 4089 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], 4090 oldp, *oldlenp); 4091 out1: 4092 if_put(ifp, &psref); 4093 out0: 4094 curlwp_bindx(bound); 4095 return error; 4096 } 4097 4098 static void 4099 if_sysctl_setup(struct sysctllog **clog) 4100 { 4101 const struct sysctlnode *rnode = NULL; 4102 4103 sysctl_createv(clog, 0, NULL, &rnode, 4104 CTLFLAG_PERMANENT, 4105 CTLTYPE_NODE, "sdl", 4106 SYSCTL_DESCR("Get active link-layer address"), 4107 if_sdl_sysctl, 0, NULL, 0, 4108 CTL_NET, CTL_CREATE, CTL_EOL); 4109 } 4110