Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_wpi.c,v 1.92 2021/12/05 07:08:08 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.92 2021/12/05 07:08:08 msaitoh Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 #include <sys/kthread.h>
     43 
     44 #include <sys/bus.h>
     45 #include <machine/endian.h>
     46 #include <sys/intr.h>
     47 
     48 #include <dev/pci/pcireg.h>
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <dev/sysmon/sysmonvar.h>
     53 
     54 #include <net/bpf.h>
     55 #include <net/if.h>
     56 #include <net/if_arp.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_ether.h>
     59 #include <net/if_media.h>
     60 #include <net/if_types.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <net80211/ieee80211_var.h>
     68 #include <net80211/ieee80211_amrr.h>
     69 #include <net80211/ieee80211_radiotap.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #include <dev/pci/if_wpireg.h>
     74 #include <dev/pci/if_wpivar.h>
     75 
     76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77 static once_t wpi_firmware_init;
     78 static kmutex_t wpi_firmware_mutex;
     79 static size_t wpi_firmware_users;
     80 static uint8_t *wpi_firmware_image;
     81 static size_t wpi_firmware_size;
     82 
     83 static int	wpi_match(device_t, cfdata_t, void *);
     84 static void	wpi_attach(device_t, device_t, void *);
     85 static int	wpi_detach(device_t , int);
     86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87 		    void **, bus_size_t, bus_size_t, int);
     88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89 static int	wpi_alloc_shared(struct wpi_softc *);
     90 static void	wpi_free_shared(struct wpi_softc *);
     91 static int	wpi_alloc_fwmem(struct wpi_softc *);
     92 static void	wpi_free_fwmem(struct wpi_softc *);
     93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95 static int	wpi_alloc_rpool(struct wpi_softc *);
     96 static void	wpi_free_rpool(struct wpi_softc *);
     97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101 		    int, int);
    102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105 static void	wpi_newassoc(struct ieee80211_node *, int);
    106 static int	wpi_media_change(struct ifnet *);
    107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108 static void	wpi_mem_lock(struct wpi_softc *);
    109 static void	wpi_mem_unlock(struct wpi_softc *);
    110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113 		    const uint32_t *, int);
    114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116 static int	wpi_cache_firmware(struct wpi_softc *);
    117 static void	wpi_release_firmware(void);
    118 static int	wpi_load_firmware(struct wpi_softc *);
    119 static void	wpi_calib_timeout(void *);
    120 static void	wpi_iter_func(void *, struct ieee80211_node *);
    121 static void	wpi_power_calibration(struct wpi_softc *, int);
    122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123 		    struct wpi_rx_data *);
    124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126 static void	wpi_notif_intr(struct wpi_softc *);
    127 static int	wpi_intr(void *);
    128 static void	wpi_softintr(void *);
    129 static void	wpi_read_eeprom(struct wpi_softc *);
    130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    132 static uint8_t	wpi_plcp_signal(int);
    133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    134 		    struct ieee80211_node *, int);
    135 static void	wpi_start(struct ifnet *);
    136 static void	wpi_watchdog(struct ifnet *);
    137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    139 static int	wpi_wme_update(struct ieee80211com *);
    140 static int	wpi_mrr_setup(struct wpi_softc *);
    141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    143 static int	wpi_set_txpower(struct wpi_softc *,
    144 		    struct ieee80211_channel *, int);
    145 static int	wpi_get_power_index(struct wpi_softc *,
    146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    148 static int	wpi_auth(struct wpi_softc *);
    149 static int	wpi_scan(struct wpi_softc *);
    150 static int	wpi_config(struct wpi_softc *);
    151 static void	wpi_stop_master(struct wpi_softc *);
    152 static int	wpi_power_up(struct wpi_softc *);
    153 static int	wpi_reset(struct wpi_softc *);
    154 static void	wpi_hw_config(struct wpi_softc *);
    155 static int	wpi_init(struct ifnet *);
    156 static void	wpi_stop(struct ifnet *, int);
    157 static bool	wpi_resume(device_t, const pmf_qual_t *);
    158 static int	wpi_getrfkill(struct wpi_softc *);
    159 static void	wpi_sysctlattach(struct wpi_softc *);
    160 static void	wpi_rsw_thread(void *);
    161 static void	wpi_rsw_suspend(struct wpi_softc *);
    162 static void	wpi_stop_intr(struct ifnet *, int);
    163 
    164 #ifdef WPI_DEBUG
    165 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    166 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    167 int wpi_debug = 1;
    168 #else
    169 #define DPRINTF(x)
    170 #define DPRINTFN(n, x)
    171 #endif
    172 
    173 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    174 	wpi_detach, NULL);
    175 
    176 static int
    177 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    178 {
    179 	struct pci_attach_args *pa = aux;
    180 
    181 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    182 		return 0;
    183 
    184 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    185 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    186 		return 1;
    187 
    188 	return 0;
    189 }
    190 
    191 /* Base Address Register */
    192 #define WPI_PCI_BAR0	0x10
    193 
    194 static int
    195 wpi_attach_once(void)
    196 {
    197 
    198 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    199 	return 0;
    200 }
    201 
    202 static void
    203 wpi_attach(device_t parent __unused, device_t self, void *aux)
    204 {
    205 	struct wpi_softc *sc = device_private(self);
    206 	struct ieee80211com *ic = &sc->sc_ic;
    207 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    208 	struct pci_attach_args *pa = aux;
    209 	const char *intrstr;
    210 	bus_space_tag_t memt;
    211 	bus_space_handle_t memh;
    212 	pcireg_t data;
    213 	int ac, error;
    214 	char intrbuf[PCI_INTRSTR_LEN];
    215 
    216 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    217 	sc->fw_used = false;
    218 
    219 	sc->sc_dev = self;
    220 	sc->sc_pct = pa->pa_pc;
    221 	sc->sc_pcitag = pa->pa_tag;
    222 
    223 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    224 	sc->sc_rsw.smpsw_name = device_xname(self);
    225 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    226 	error = sysmon_pswitch_register(&sc->sc_rsw);
    227 	if (error) {
    228 		aprint_error_dev(self,
    229 		    "unable to register radio switch with sysmon\n");
    230 		return;
    231 	}
    232 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    233 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    234 	sc->sc_rsw_suspend = false;
    235 	sc->sc_rsw_suspended = false;
    236 	if (kthread_create(PRI_NONE, 0, NULL,
    237 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    238 		aprint_error_dev(self, "couldn't create switch thread\n");
    239 	}
    240 
    241 	callout_init(&sc->calib_to, 0);
    242 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    243 
    244 	pci_aprint_devinfo(pa, NULL);
    245 
    246 	/* enable bus-mastering */
    247 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    248 	data |= PCI_COMMAND_MASTER_ENABLE;
    249 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    250 
    251 	/* map the register window */
    252 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    253 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    254 	if (error != 0) {
    255 		aprint_error_dev(self, "could not map memory space\n");
    256 		return;
    257 	}
    258 
    259 	sc->sc_st = memt;
    260 	sc->sc_sh = memh;
    261 	sc->sc_dmat = pa->pa_dmat;
    262 
    263 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
    264 	if (sc->sc_soft_ih == NULL) {
    265 		aprint_error_dev(self, "could not establish softint\n");
    266 		goto unmap;
    267 	}
    268 
    269 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
    270 		aprint_error_dev(self, "could not map interrupt\n");
    271 		goto failsi;
    272 	}
    273 
    274 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    275 	    sizeof(intrbuf));
    276 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    277 	    IPL_NET, wpi_intr, sc, device_xname(self));
    278 	if (sc->sc_ih == NULL) {
    279 		aprint_error_dev(self, "could not establish interrupt");
    280 		if (intrstr != NULL)
    281 			aprint_error(" at %s", intrstr);
    282 		aprint_error("\n");
    283 		goto failia;
    284 	}
    285 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    286 
    287 	/*
    288 	 * Put adapter into a known state.
    289 	 */
    290 	if ((error = wpi_reset(sc)) != 0) {
    291 		aprint_error_dev(self, "could not reset adapter\n");
    292 		goto failih;
    293 	}
    294 
    295 	/*
    296 	 * Allocate DMA memory for firmware transfers.
    297 	 */
    298 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    299 		aprint_error_dev(self, "could not allocate firmware memory\n");
    300 		goto failih;
    301 	}
    302 
    303 	/*
    304 	 * Allocate shared page and Tx/Rx rings.
    305 	 */
    306 	if ((error = wpi_alloc_shared(sc)) != 0) {
    307 		aprint_error_dev(self, "could not allocate shared area\n");
    308 		goto fail1;
    309 	}
    310 
    311 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    312 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    313 		goto fail2;
    314 	}
    315 
    316 	for (ac = 0; ac < 4; ac++) {
    317 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    318 		    ac);
    319 		if (error != 0) {
    320 			aprint_error_dev(self,
    321 			    "could not allocate Tx ring %d\n", ac);
    322 			goto fail3;
    323 		}
    324 	}
    325 
    326 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    327 	if (error != 0) {
    328 		aprint_error_dev(self, "could not allocate command ring\n");
    329 		goto fail3;
    330 	}
    331 
    332 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    333 	if (error != 0) {
    334 		aprint_error_dev(self, "could not allocate Rx ring\n");
    335 		goto fail4;
    336 	}
    337 
    338 	ic->ic_ifp = ifp;
    339 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    340 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    341 	ic->ic_state = IEEE80211_S_INIT;
    342 
    343 	/* set device capabilities */
    344 	ic->ic_caps =
    345 	    IEEE80211_C_WPA |		/* 802.11i */
    346 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    347 	    IEEE80211_C_TXPMGT |	/* tx power management */
    348 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    349 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    350 	    IEEE80211_C_WME;		/* 802.11e */
    351 
    352 	/* read supported channels and MAC address from EEPROM */
    353 	wpi_read_eeprom(sc);
    354 
    355 	/* set supported .11a, .11b and .11g rates */
    356 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    357 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    358 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    359 
    360 	/* IBSS channel undefined for now */
    361 	ic->ic_ibss_chan = &ic->ic_channels[0];
    362 
    363 	ifp->if_softc = sc;
    364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    365 	ifp->if_init = wpi_init;
    366 	ifp->if_stop = wpi_stop;
    367 	ifp->if_ioctl = wpi_ioctl;
    368 	ifp->if_start = wpi_start;
    369 	ifp->if_watchdog = wpi_watchdog;
    370 	IFQ_SET_READY(&ifp->if_snd);
    371 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    372 
    373 	if_initialize(ifp);
    374 	ieee80211_ifattach(ic);
    375 	/* Use common softint-based if_input */
    376 	ifp->if_percpuq = if_percpuq_create(ifp);
    377 	if_register(ifp);
    378 
    379 	/* override default methods */
    380 	ic->ic_node_alloc = wpi_node_alloc;
    381 	ic->ic_newassoc = wpi_newassoc;
    382 	ic->ic_wme.wme_update = wpi_wme_update;
    383 
    384 	/* override state transition machine */
    385 	sc->sc_newstate = ic->ic_newstate;
    386 	ic->ic_newstate = wpi_newstate;
    387 
    388 	/* XXX media locking needs revisiting */
    389 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
    390 	ieee80211_media_init_with_lock(ic,
    391 	    wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
    392 
    393 	sc->amrr.amrr_min_success_threshold =  1;
    394 	sc->amrr.amrr_max_success_threshold = 15;
    395 
    396 	wpi_sysctlattach(sc);
    397 
    398 	if (pmf_device_register(self, NULL, wpi_resume))
    399 		pmf_class_network_register(self, ifp);
    400 	else
    401 		aprint_error_dev(self, "couldn't establish power handler\n");
    402 
    403 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    404 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    405 	    &sc->sc_drvbpf);
    406 
    407 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    408 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    409 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    410 
    411 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    412 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    413 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    414 
    415 	ieee80211_announce(ic);
    416 
    417 	return;
    418 
    419 	/* free allocated memory if something failed during attachment */
    420 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    421 fail3:	while (--ac >= 0)
    422 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    423 	wpi_free_rpool(sc);
    424 fail2:	wpi_free_shared(sc);
    425 fail1:	wpi_free_fwmem(sc);
    426 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    427 	sc->sc_ih = NULL;
    428 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    429 	sc->sc_pihp = NULL;
    430 failsi:	softint_disestablish(sc->sc_soft_ih);
    431 	sc->sc_soft_ih = NULL;
    432 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    433 }
    434 
    435 static int
    436 wpi_detach(device_t self, int flags __unused)
    437 {
    438 	struct wpi_softc *sc = device_private(self);
    439 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    440 	int ac;
    441 
    442 	wpi_stop(ifp, 1);
    443 
    444 	if (ifp != NULL)
    445 		bpf_detach(ifp);
    446 	ieee80211_ifdetach(&sc->sc_ic);
    447 	if (ifp != NULL)
    448 		if_detach(ifp);
    449 
    450 	for (ac = 0; ac < 4; ac++)
    451 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    452 	wpi_free_tx_ring(sc, &sc->cmdq);
    453 	wpi_free_rx_ring(sc, &sc->rxq);
    454 	wpi_free_rpool(sc);
    455 	wpi_free_shared(sc);
    456 
    457 	if (sc->sc_ih != NULL) {
    458 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    459 		sc->sc_ih = NULL;
    460 	}
    461 	if (sc->sc_pihp != NULL) {
    462 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    463 		sc->sc_pihp = NULL;
    464 	}
    465 	if (sc->sc_soft_ih != NULL) {
    466 		softint_disestablish(sc->sc_soft_ih);
    467 		sc->sc_soft_ih = NULL;
    468 	}
    469 
    470 	mutex_enter(&sc->sc_rsw_mtx);
    471 	sc->sc_dying = 1;
    472 	cv_signal(&sc->sc_rsw_cv);
    473 	while (sc->sc_rsw_lwp != NULL)
    474 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    475 	mutex_exit(&sc->sc_rsw_mtx);
    476 	sysmon_pswitch_unregister(&sc->sc_rsw);
    477 
    478 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    479 
    480 	if (sc->fw_used) {
    481 		sc->fw_used = false;
    482 		wpi_release_firmware();
    483 	}
    484 	cv_destroy(&sc->sc_rsw_cv);
    485 	mutex_destroy(&sc->sc_rsw_mtx);
    486 	return 0;
    487 }
    488 
    489 static int
    490 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    491     bus_size_t size, bus_size_t alignment, int flags)
    492 {
    493 	int nsegs, error;
    494 
    495 	dma->tag = tag;
    496 	dma->size = size;
    497 
    498 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    499 	if (error != 0)
    500 		goto fail;
    501 
    502 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    503 	    flags);
    504 	if (error != 0)
    505 		goto fail;
    506 
    507 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    508 	if (error != 0)
    509 		goto fail;
    510 
    511 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    512 	if (error != 0)
    513 		goto fail;
    514 
    515 	memset(dma->vaddr, 0, size);
    516 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    517 
    518 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    519 	if (kvap != NULL)
    520 		*kvap = dma->vaddr;
    521 
    522 	return 0;
    523 
    524 fail:	wpi_dma_contig_free(dma);
    525 	return error;
    526 }
    527 
    528 static void
    529 wpi_dma_contig_free(struct wpi_dma_info *dma)
    530 {
    531 	if (dma->map != NULL) {
    532 		if (dma->vaddr != NULL) {
    533 			bus_dmamap_unload(dma->tag, dma->map);
    534 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    535 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    536 			dma->vaddr = NULL;
    537 		}
    538 		bus_dmamap_destroy(dma->tag, dma->map);
    539 		dma->map = NULL;
    540 	}
    541 }
    542 
    543 /*
    544  * Allocate a shared page between host and NIC.
    545  */
    546 static int
    547 wpi_alloc_shared(struct wpi_softc *sc)
    548 {
    549 	int error;
    550 
    551 	/* must be aligned on a 4K-page boundary */
    552 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    553 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    554 	    BUS_DMA_NOWAIT);
    555 	if (error != 0)
    556 		aprint_error_dev(sc->sc_dev,
    557 		    "could not allocate shared area DMA memory\n");
    558 
    559 	return error;
    560 }
    561 
    562 static void
    563 wpi_free_shared(struct wpi_softc *sc)
    564 {
    565 	wpi_dma_contig_free(&sc->shared_dma);
    566 }
    567 
    568 /*
    569  * Allocate DMA-safe memory for firmware transfer.
    570  */
    571 static int
    572 wpi_alloc_fwmem(struct wpi_softc *sc)
    573 {
    574 	int error;
    575 
    576 	/* allocate enough contiguous space to store text and data */
    577 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    578 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    579 	    BUS_DMA_NOWAIT);
    580 
    581 	if (error != 0)
    582 		aprint_error_dev(sc->sc_dev,
    583 		    "could not allocate firmware transfer area DMA memory\n");
    584 	return error;
    585 }
    586 
    587 static void
    588 wpi_free_fwmem(struct wpi_softc *sc)
    589 {
    590 	wpi_dma_contig_free(&sc->fw_dma);
    591 }
    592 
    593 static struct wpi_rbuf *
    594 wpi_alloc_rbuf(struct wpi_softc *sc)
    595 {
    596 	struct wpi_rbuf *rbuf;
    597 
    598 	mutex_enter(&sc->rxq.freelist_mtx);
    599 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    600 	if (rbuf != NULL) {
    601 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    602 	}
    603 	mutex_exit(&sc->rxq.freelist_mtx);
    604 
    605 	return rbuf;
    606 }
    607 
    608 /*
    609  * This is called automatically by the network stack when the mbuf to which our
    610  * Rx buffer is attached is freed.
    611  */
    612 static void
    613 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    614 {
    615 	struct wpi_rbuf *rbuf = arg;
    616 	struct wpi_softc *sc = rbuf->sc;
    617 
    618 	/* put the buffer back in the free list */
    619 
    620 	mutex_enter(&sc->rxq.freelist_mtx);
    621 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    622 	mutex_exit(&sc->rxq.freelist_mtx);
    623 
    624 	if (__predict_true(m != NULL))
    625 		pool_cache_put(mb_cache, m);
    626 }
    627 
    628 static int
    629 wpi_alloc_rpool(struct wpi_softc *sc)
    630 {
    631 	struct wpi_rx_ring *ring = &sc->rxq;
    632 	int i, error;
    633 
    634 	/* allocate a big chunk of DMA'able memory.. */
    635 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    636 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    637 	if (error != 0) {
    638 		aprint_normal_dev(sc->sc_dev,
    639 		    "could not allocate Rx buffers DMA memory\n");
    640 		return error;
    641 	}
    642 
    643 	/* ..and split it into 3KB chunks */
    644 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    645 	SLIST_INIT(&ring->freelist);
    646 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    647 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    648 
    649 		rbuf->sc = sc;	/* backpointer for callbacks */
    650 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    651 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    652 
    653 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    654 	}
    655 
    656 	return 0;
    657 }
    658 
    659 static void
    660 wpi_free_rpool(struct wpi_softc *sc)
    661 {
    662 	mutex_destroy(&sc->rxq.freelist_mtx);
    663 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    664 }
    665 
    666 static int
    667 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    668 {
    669 	bus_size_t size;
    670 	int i, error;
    671 
    672 	ring->cur = 0;
    673 
    674 	size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
    675 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    676 	    (void **)&ring->desc, size,
    677 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    678 	if (error != 0) {
    679 		aprint_error_dev(sc->sc_dev,
    680 		    "could not allocate rx ring DMA memory\n");
    681 		goto fail;
    682 	}
    683 
    684 	/*
    685 	 * Setup Rx buffers.
    686 	 */
    687 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    688 		struct wpi_rx_data *data = &ring->data[i];
    689 		struct wpi_rbuf *rbuf;
    690 
    691 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    692 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    693 		if (error) {
    694 			aprint_error_dev(sc->sc_dev,
    695 			    "could not allocate rx dma map\n");
    696 			goto fail;
    697 		}
    698 
    699 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    700 		if (data->m == NULL) {
    701 			aprint_error_dev(sc->sc_dev,
    702 			    "could not allocate rx mbuf\n");
    703 			error = ENOMEM;
    704 			goto fail;
    705 		}
    706 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    707 			m_freem(data->m);
    708 			data->m = NULL;
    709 			aprint_error_dev(sc->sc_dev,
    710 			    "could not allocate rx cluster\n");
    711 			error = ENOMEM;
    712 			goto fail;
    713 		}
    714 		/* attach Rx buffer to mbuf */
    715 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    716 		    rbuf);
    717 		data->m->m_flags |= M_EXT_RW;
    718 
    719 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    720 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    721 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    722 		if (error) {
    723 			aprint_error_dev(sc->sc_dev,
    724 			    "could not load mbuf: %d\n", error);
    725 			goto fail;
    726 		}
    727 
    728 		ring->desc[i] = htole32(rbuf->paddr);
    729 	}
    730 
    731 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    732 	    BUS_DMASYNC_PREWRITE);
    733 
    734 	return 0;
    735 
    736 fail:	wpi_free_rx_ring(sc, ring);
    737 	return error;
    738 }
    739 
    740 static void
    741 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    742 {
    743 	int ntries;
    744 
    745 	wpi_mem_lock(sc);
    746 
    747 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    748 	for (ntries = 0; ntries < 100; ntries++) {
    749 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    750 			break;
    751 		DELAY(10);
    752 	}
    753 #ifdef WPI_DEBUG
    754 	if (ntries == 100 && wpi_debug > 0)
    755 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    756 #endif
    757 	wpi_mem_unlock(sc);
    758 
    759 	ring->cur = 0;
    760 }
    761 
    762 static void
    763 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    764 {
    765 	int i;
    766 
    767 	wpi_dma_contig_free(&ring->desc_dma);
    768 
    769 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    770 		if (ring->data[i].m != NULL) {
    771 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    772 			m_freem(ring->data[i].m);
    773 		}
    774 		if (ring->data[i].map != NULL) {
    775 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    776 		}
    777 	}
    778 }
    779 
    780 static int
    781 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    782     int qid)
    783 {
    784 	int i, error;
    785 
    786 	ring->qid = qid;
    787 	ring->count = count;
    788 	ring->queued = 0;
    789 	ring->cur = 0;
    790 
    791 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    792 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    793 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    794 	if (error != 0) {
    795 		aprint_error_dev(sc->sc_dev,
    796 		    "could not allocate tx ring DMA memory\n");
    797 		goto fail;
    798 	}
    799 
    800 	/* update shared page with ring's base address */
    801 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    802 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    803 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    804 
    805 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    806 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    807 	    BUS_DMA_NOWAIT);
    808 	if (error != 0) {
    809 		aprint_error_dev(sc->sc_dev,
    810 		    "could not allocate tx cmd DMA memory\n");
    811 		goto fail;
    812 	}
    813 
    814 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    815 	    M_WAITOK | M_ZERO);
    816 
    817 	for (i = 0; i < count; i++) {
    818 		struct wpi_tx_data *data = &ring->data[i];
    819 
    820 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    821 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    822 		    &data->map);
    823 		if (error != 0) {
    824 			aprint_error_dev(sc->sc_dev,
    825 			    "could not create tx buf DMA map\n");
    826 			goto fail;
    827 		}
    828 	}
    829 
    830 	return 0;
    831 
    832 fail:	wpi_free_tx_ring(sc, ring);
    833 	return error;
    834 }
    835 
    836 static void
    837 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    838 {
    839 	int i, ntries;
    840 
    841 	wpi_mem_lock(sc);
    842 
    843 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    844 	for (ntries = 0; ntries < 100; ntries++) {
    845 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    846 			break;
    847 		DELAY(10);
    848 	}
    849 #ifdef WPI_DEBUG
    850 	if (ntries == 100 && wpi_debug > 0) {
    851 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    852 		    ring->qid);
    853 	}
    854 #endif
    855 	wpi_mem_unlock(sc);
    856 
    857 	for (i = 0; i < ring->count; i++) {
    858 		struct wpi_tx_data *data = &ring->data[i];
    859 
    860 		if (data->m != NULL) {
    861 			bus_dmamap_unload(sc->sc_dmat, data->map);
    862 			m_freem(data->m);
    863 			data->m = NULL;
    864 		}
    865 	}
    866 
    867 	ring->queued = 0;
    868 	ring->cur = 0;
    869 }
    870 
    871 static void
    872 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    873 {
    874 	int i;
    875 
    876 	wpi_dma_contig_free(&ring->desc_dma);
    877 	wpi_dma_contig_free(&ring->cmd_dma);
    878 
    879 	if (ring->data != NULL) {
    880 		for (i = 0; i < ring->count; i++) {
    881 			struct wpi_tx_data *data = &ring->data[i];
    882 
    883 			if (data->m != NULL) {
    884 				bus_dmamap_unload(sc->sc_dmat, data->map);
    885 				m_freem(data->m);
    886 			}
    887 		}
    888 		free(ring->data, M_DEVBUF);
    889 	}
    890 }
    891 
    892 /*ARGUSED*/
    893 static struct ieee80211_node *
    894 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    895 {
    896 	struct wpi_node *wn;
    897 
    898 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    899 
    900 	return (struct ieee80211_node *)wn;
    901 }
    902 
    903 static void
    904 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    905 {
    906 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    907 	int i;
    908 
    909 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    910 
    911 	/* set rate to some reasonable initial value */
    912 	for (i = ni->ni_rates.rs_nrates - 1;
    913 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    914 	     i--);
    915 	ni->ni_txrate = i;
    916 }
    917 
    918 static int
    919 wpi_media_change(struct ifnet *ifp)
    920 {
    921 	int error;
    922 
    923 	error = ieee80211_media_change(ifp);
    924 	if (error != ENETRESET)
    925 		return error;
    926 
    927 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    928 		wpi_init(ifp);
    929 
    930 	return 0;
    931 }
    932 
    933 static int
    934 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    935 {
    936 	struct ifnet *ifp = ic->ic_ifp;
    937 	struct wpi_softc *sc = ifp->if_softc;
    938 	struct ieee80211_node *ni;
    939 	enum ieee80211_state ostate = ic->ic_state;
    940 	int error;
    941 
    942 	callout_stop(&sc->calib_to);
    943 
    944 	switch (nstate) {
    945 	case IEEE80211_S_SCAN:
    946 
    947 		if (sc->is_scanning)
    948 			break;
    949 
    950 		sc->is_scanning = true;
    951 
    952 		if (ostate != IEEE80211_S_SCAN) {
    953 			/* make the link LED blink while we're scanning */
    954 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    955 		}
    956 
    957 		if ((error = wpi_scan(sc)) != 0) {
    958 			aprint_error_dev(sc->sc_dev,
    959 			    "could not initiate scan\n");
    960 			return error;
    961 		}
    962 		break;
    963 
    964 	case IEEE80211_S_ASSOC:
    965 		if (ic->ic_state != IEEE80211_S_RUN)
    966 			break;
    967 		/* FALLTHROUGH */
    968 	case IEEE80211_S_AUTH:
    969 		/* reset state to handle reassociations correctly */
    970 		sc->config.associd = 0;
    971 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    972 
    973 		if ((error = wpi_auth(sc)) != 0) {
    974 			aprint_error_dev(sc->sc_dev,
    975 			    "could not send authentication request\n");
    976 			return error;
    977 		}
    978 		break;
    979 
    980 	case IEEE80211_S_RUN:
    981 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    982 			/* link LED blinks while monitoring */
    983 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    984 			break;
    985 		}
    986 		ni = ic->ic_bss;
    987 
    988 		if (ic->ic_opmode != IEEE80211_M_STA) {
    989 			(void) wpi_auth(sc);    /* XXX */
    990 			wpi_setup_beacon(sc, ni);
    991 		}
    992 
    993 		wpi_enable_tsf(sc, ni);
    994 
    995 		/* update adapter's configuration */
    996 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    997 		/* short preamble/slot time are negotiated when associating */
    998 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    999 		    WPI_CONFIG_SHSLOT);
   1000 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1001 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
   1002 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1003 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
   1004 		sc->config.filter |= htole32(WPI_FILTER_BSS);
   1005 		if (ic->ic_opmode != IEEE80211_M_STA)
   1006 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
   1007 
   1008 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
   1009 
   1010 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
   1011 		    sc->config.flags));
   1012 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   1013 		    sizeof (struct wpi_config), 1);
   1014 		if (error != 0) {
   1015 			aprint_error_dev(sc->sc_dev,
   1016 			    "could not update configuration\n");
   1017 			return error;
   1018 		}
   1019 
   1020 		/* configuration has changed, set Tx power accordingly */
   1021 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
   1022 			aprint_error_dev(sc->sc_dev,
   1023 			    "could not set Tx power\n");
   1024 			return error;
   1025 		}
   1026 
   1027 		if (ic->ic_opmode == IEEE80211_M_STA) {
   1028 			/* fake a join to init the tx rate */
   1029 			wpi_newassoc(ni, 1);
   1030 		}
   1031 
   1032 		/* start periodic calibration timer */
   1033 		sc->calib_cnt = 0;
   1034 		callout_schedule(&sc->calib_to, hz/2);
   1035 
   1036 		/* link LED always on while associated */
   1037 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1038 		break;
   1039 
   1040 	case IEEE80211_S_INIT:
   1041 		sc->is_scanning = false;
   1042 		break;
   1043 	}
   1044 
   1045 	return sc->sc_newstate(ic, nstate, arg);
   1046 }
   1047 
   1048 /*
   1049  * Grab exclusive access to NIC memory.
   1050  */
   1051 static void
   1052 wpi_mem_lock(struct wpi_softc *sc)
   1053 {
   1054 	uint32_t tmp;
   1055 	int ntries;
   1056 
   1057 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1058 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1059 
   1060 	/* spin until we actually get the lock */
   1061 	for (ntries = 0; ntries < 1000; ntries++) {
   1062 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1063 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1064 			break;
   1065 		DELAY(10);
   1066 	}
   1067 	if (ntries == 1000)
   1068 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1069 }
   1070 
   1071 /*
   1072  * Release lock on NIC memory.
   1073  */
   1074 static void
   1075 wpi_mem_unlock(struct wpi_softc *sc)
   1076 {
   1077 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1078 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1079 }
   1080 
   1081 static uint32_t
   1082 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1083 {
   1084 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1085 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1086 }
   1087 
   1088 static void
   1089 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1090 {
   1091 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1092 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1093 }
   1094 
   1095 static void
   1096 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1097     const uint32_t *data, int wlen)
   1098 {
   1099 	for (; wlen > 0; wlen--, data++, addr += 4)
   1100 		wpi_mem_write(sc, addr, *data);
   1101 }
   1102 
   1103 /*
   1104  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1105  * instead of using the traditional bit-bang method.
   1106  */
   1107 static int
   1108 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1109 {
   1110 	uint8_t *out = data;
   1111 	uint32_t val;
   1112 	int ntries;
   1113 
   1114 	wpi_mem_lock(sc);
   1115 	for (; len > 0; len -= 2, addr++) {
   1116 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1117 
   1118 		for (ntries = 0; ntries < 10; ntries++) {
   1119 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1120 			    WPI_EEPROM_READY)
   1121 				break;
   1122 			DELAY(5);
   1123 		}
   1124 		if (ntries == 10) {
   1125 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1126 			return ETIMEDOUT;
   1127 		}
   1128 		*out++ = val >> 16;
   1129 		if (len > 1)
   1130 			*out++ = val >> 24;
   1131 	}
   1132 	wpi_mem_unlock(sc);
   1133 
   1134 	return 0;
   1135 }
   1136 
   1137 /*
   1138  * The firmware boot code is small and is intended to be copied directly into
   1139  * the NIC internal memory.
   1140  */
   1141 int
   1142 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1143 {
   1144 	int ntries;
   1145 
   1146 	size /= sizeof (uint32_t);
   1147 
   1148 	wpi_mem_lock(sc);
   1149 
   1150 	/* copy microcode image into NIC memory */
   1151 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1152 	    (const uint32_t *)ucode, size);
   1153 
   1154 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1155 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1156 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1157 
   1158 	/* run microcode */
   1159 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1160 
   1161 	/* wait for transfer to complete */
   1162 	for (ntries = 0; ntries < 1000; ntries++) {
   1163 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1164 			break;
   1165 		DELAY(10);
   1166 	}
   1167 	if (ntries == 1000) {
   1168 		wpi_mem_unlock(sc);
   1169 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1170 		return ETIMEDOUT;
   1171 	}
   1172 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1173 
   1174 	wpi_mem_unlock(sc);
   1175 
   1176 	return 0;
   1177 }
   1178 
   1179 static int
   1180 wpi_cache_firmware(struct wpi_softc *sc)
   1181 {
   1182 	const char *const fwname = wpi_firmware_name;
   1183 	firmware_handle_t fw;
   1184 	int error;
   1185 
   1186 	/* sc is used here only to report error messages.  */
   1187 
   1188 	mutex_enter(&wpi_firmware_mutex);
   1189 
   1190 	if (wpi_firmware_users == SIZE_MAX) {
   1191 		mutex_exit(&wpi_firmware_mutex);
   1192 		return ENFILE;	/* Too many of something in the system...  */
   1193 	}
   1194 	if (wpi_firmware_users++) {
   1195 		KASSERT(wpi_firmware_image != NULL);
   1196 		KASSERT(wpi_firmware_size > 0);
   1197 		mutex_exit(&wpi_firmware_mutex);
   1198 		return 0;	/* Already good to go.  */
   1199 	}
   1200 
   1201 	KASSERT(wpi_firmware_image == NULL);
   1202 	KASSERT(wpi_firmware_size == 0);
   1203 
   1204 	/* load firmware image from disk */
   1205 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1206 		aprint_error_dev(sc->sc_dev,
   1207 		    "could not open firmware file %s: %d\n", fwname, error);
   1208 		goto fail0;
   1209 	}
   1210 
   1211 	wpi_firmware_size = firmware_get_size(fw);
   1212 
   1213 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1214 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1215 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1216 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1217 		aprint_error_dev(sc->sc_dev,
   1218 		    "firmware file %s too large: %zu bytes\n",
   1219 		    fwname, wpi_firmware_size);
   1220 		error = EFBIG;
   1221 		goto fail1;
   1222 	}
   1223 
   1224 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1225 		aprint_error_dev(sc->sc_dev,
   1226 		    "firmware file %s too small: %zu bytes\n",
   1227 		    fwname, wpi_firmware_size);
   1228 		error = EINVAL;
   1229 		goto fail1;
   1230 	}
   1231 
   1232 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1233 	if (wpi_firmware_image == NULL) {
   1234 		aprint_error_dev(sc->sc_dev,
   1235 		    "not enough memory for firmware file %s\n", fwname);
   1236 		error = ENOMEM;
   1237 		goto fail1;
   1238 	}
   1239 
   1240 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1241 	if (error != 0) {
   1242 		aprint_error_dev(sc->sc_dev,
   1243 		    "error reading firmware file %s: %d\n", fwname, error);
   1244 		goto fail2;
   1245 	}
   1246 
   1247 	/* Success!  */
   1248 	firmware_close(fw);
   1249 	mutex_exit(&wpi_firmware_mutex);
   1250 	return 0;
   1251 
   1252 fail2:
   1253 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1254 	wpi_firmware_image = NULL;
   1255 fail1:
   1256 	wpi_firmware_size = 0;
   1257 	firmware_close(fw);
   1258 fail0:
   1259 	KASSERT(wpi_firmware_users == 1);
   1260 	wpi_firmware_users = 0;
   1261 	KASSERT(wpi_firmware_image == NULL);
   1262 	KASSERT(wpi_firmware_size == 0);
   1263 
   1264 	mutex_exit(&wpi_firmware_mutex);
   1265 	return error;
   1266 }
   1267 
   1268 static void
   1269 wpi_release_firmware(void)
   1270 {
   1271 
   1272 	mutex_enter(&wpi_firmware_mutex);
   1273 
   1274 	KASSERT(wpi_firmware_users > 0);
   1275 	KASSERT(wpi_firmware_image != NULL);
   1276 	KASSERT(wpi_firmware_size != 0);
   1277 
   1278 	if (--wpi_firmware_users == 0) {
   1279 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1280 		wpi_firmware_image = NULL;
   1281 		wpi_firmware_size = 0;
   1282 	}
   1283 
   1284 	mutex_exit(&wpi_firmware_mutex);
   1285 }
   1286 
   1287 static int
   1288 wpi_load_firmware(struct wpi_softc *sc)
   1289 {
   1290 	struct wpi_dma_info *dma = &sc->fw_dma;
   1291 	struct wpi_firmware_hdr hdr;
   1292 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1293 	const uint8_t *boot_text;
   1294 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1295 	uint32_t boot_textsz;
   1296 	size_t size;
   1297 	int error;
   1298 
   1299 	if (!sc->fw_used) {
   1300 		if ((error = wpi_cache_firmware(sc)) != 0)
   1301 			return error;
   1302 		sc->fw_used = true;
   1303 	}
   1304 
   1305 	KASSERT(sc->fw_used);
   1306 	KASSERT(wpi_firmware_image != NULL);
   1307 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1308 
   1309 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1310 
   1311 	main_textsz = le32toh(hdr.main_textsz);
   1312 	main_datasz = le32toh(hdr.main_datasz);
   1313 	init_textsz = le32toh(hdr.init_textsz);
   1314 	init_datasz = le32toh(hdr.init_datasz);
   1315 	boot_textsz = le32toh(hdr.boot_textsz);
   1316 
   1317 	/* sanity-check firmware segments sizes */
   1318 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1319 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1320 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1321 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1322 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1323 	    (boot_textsz & 3) != 0) {
   1324 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1325 		error = EINVAL;
   1326 		goto free_firmware;
   1327 	}
   1328 
   1329 	/* check that all firmware segments are present */
   1330 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1331 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1332 	if (wpi_firmware_size < size) {
   1333 		aprint_error_dev(sc->sc_dev,
   1334 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1335 		    wpi_firmware_size, size);
   1336 		error = EINVAL;
   1337 		goto free_firmware;
   1338 	}
   1339 
   1340 	/* get pointers to firmware segments */
   1341 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1342 	main_data = main_text + main_textsz;
   1343 	init_text = main_data + main_datasz;
   1344 	init_data = init_text + init_textsz;
   1345 	boot_text = init_data + init_datasz;
   1346 
   1347 	/* copy initialization images into pre-allocated DMA-safe memory */
   1348 	memcpy(dma->vaddr, init_data, init_datasz);
   1349 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1350 	    init_textsz);
   1351 
   1352 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1353 
   1354 	/* tell adapter where to find initialization images */
   1355 	wpi_mem_lock(sc);
   1356 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1357 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1358 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1359 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1360 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1361 	wpi_mem_unlock(sc);
   1362 
   1363 	/* load firmware boot code */
   1364 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1365 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1366 		return error;
   1367 	}
   1368 
   1369 	/* now press "execute" ;-) */
   1370 	WPI_WRITE(sc, WPI_RESET, 0);
   1371 
   1372 	/* wait at most one second for first alive notification */
   1373 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1374 		/* this isn't what was supposed to happen.. */
   1375 		aprint_error_dev(sc->sc_dev,
   1376 		    "timeout waiting for adapter to initialize\n");
   1377 	}
   1378 
   1379 	/* copy runtime images into pre-allocated DMA-safe memory */
   1380 	memcpy(dma->vaddr, main_data, main_datasz);
   1381 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1382 	    main_textsz);
   1383 
   1384 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1385 
   1386 	/* tell adapter where to find runtime images */
   1387 	wpi_mem_lock(sc);
   1388 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1389 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1390 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1391 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1392 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1393 	wpi_mem_unlock(sc);
   1394 
   1395 	/* wait at most one second for second alive notification */
   1396 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1397 		/* this isn't what was supposed to happen.. */
   1398 		aprint_error_dev(sc->sc_dev,
   1399 		    "timeout waiting for adapter to initialize\n");
   1400 	}
   1401 
   1402 	return error;
   1403 
   1404 free_firmware:
   1405 	sc->fw_used = false;
   1406 	wpi_release_firmware();
   1407 	return error;
   1408 }
   1409 
   1410 static void
   1411 wpi_calib_timeout(void *arg)
   1412 {
   1413 	struct wpi_softc *sc = arg;
   1414 	struct ieee80211com *ic = &sc->sc_ic;
   1415 	int temp, s;
   1416 
   1417 	/* automatic rate control triggered every 500ms */
   1418 	if (ic->ic_fixed_rate == -1) {
   1419 		s = splnet();
   1420 		if (ic->ic_opmode == IEEE80211_M_STA)
   1421 			wpi_iter_func(sc, ic->ic_bss);
   1422 		else
   1423 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1424 		splx(s);
   1425 	}
   1426 
   1427 	/* update sensor data */
   1428 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1429 
   1430 	/* automatic power calibration every 60s */
   1431 	if (++sc->calib_cnt >= 120) {
   1432 		wpi_power_calibration(sc, temp);
   1433 		sc->calib_cnt = 0;
   1434 	}
   1435 
   1436 	callout_schedule(&sc->calib_to, hz/2);
   1437 }
   1438 
   1439 static void
   1440 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1441 {
   1442 	struct wpi_softc *sc = arg;
   1443 	struct wpi_node *wn = (struct wpi_node *)ni;
   1444 
   1445 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1446 }
   1447 
   1448 /*
   1449  * This function is called periodically (every 60 seconds) to adjust output
   1450  * power to temperature changes.
   1451  */
   1452 void
   1453 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1454 {
   1455 	/* sanity-check read value */
   1456 	if (temp < -260 || temp > 25) {
   1457 		/* this can't be correct, ignore */
   1458 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1459 		return;
   1460 	}
   1461 
   1462 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1463 
   1464 	/* adjust Tx power if need be */
   1465 	if (abs(temp - sc->temp) <= 6)
   1466 		return;
   1467 
   1468 	sc->temp = temp;
   1469 
   1470 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1471 		/* just warn, too bad for the automatic calibration... */
   1472 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1473 	}
   1474 }
   1475 
   1476 static void
   1477 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1478     struct wpi_rx_data *data)
   1479 {
   1480 	struct ieee80211com *ic = &sc->sc_ic;
   1481 	struct ifnet *ifp = ic->ic_ifp;
   1482 	struct wpi_rx_ring *ring = &sc->rxq;
   1483 	struct wpi_rx_stat *stat;
   1484 	struct wpi_rx_head *head;
   1485 	struct wpi_rx_tail *tail;
   1486 	struct wpi_rbuf *rbuf;
   1487 	struct ieee80211_frame *wh;
   1488 	struct ieee80211_node *ni;
   1489 	struct mbuf *m, *mnew;
   1490 	int data_off, error, s;
   1491 
   1492 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1493 	    BUS_DMASYNC_POSTREAD);
   1494 	stat = (struct wpi_rx_stat *)(desc + 1);
   1495 
   1496 	if (stat->len > WPI_STAT_MAXLEN) {
   1497 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1498 		if_statinc(ifp, if_ierrors);
   1499 		return;
   1500 	}
   1501 
   1502 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1503 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1504 
   1505 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1506 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1507 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1508 	    le64toh(tail->tstamp)));
   1509 
   1510 	/*
   1511 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1512 	 * to radiotap in monitor mode).
   1513 	 */
   1514 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1515 		DPRINTF(("rx tail flags error %x\n",
   1516 		    le32toh(tail->flags)));
   1517 		if_statinc(ifp, if_ierrors);
   1518 		return;
   1519 	}
   1520 
   1521 	/* Compute where are the useful datas */
   1522 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1523 
   1524 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1525 	if (mnew == NULL) {
   1526 		if_statinc(ifp, if_ierrors);
   1527 		return;
   1528 	}
   1529 
   1530 	rbuf = wpi_alloc_rbuf(sc);
   1531 	if (rbuf == NULL) {
   1532 		m_freem(mnew);
   1533 		if_statinc(ifp, if_ierrors);
   1534 		return;
   1535 	}
   1536 
   1537 	/* attach Rx buffer to mbuf */
   1538 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1539 		rbuf);
   1540 	mnew->m_flags |= M_EXT_RW;
   1541 
   1542 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1543 
   1544 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1545 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1546 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1547 	if (error) {
   1548 		device_printf(sc->sc_dev,
   1549 		    "couldn't load rx mbuf: %d\n", error);
   1550 		m_freem(mnew);
   1551 		if_statinc(ifp, if_ierrors);
   1552 
   1553 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1554 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1555 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1556 		if (error)
   1557 			panic("%s: bus_dmamap_load failed: %d\n",
   1558 			    device_xname(sc->sc_dev), error);
   1559 		return;
   1560 	}
   1561 
   1562 	/* new mbuf loaded successfully */
   1563 	m = data->m;
   1564 	data->m = mnew;
   1565 
   1566 	/* update Rx descriptor */
   1567 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1568 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1569 	    ring->desc_dma.size,
   1570 	    BUS_DMASYNC_PREWRITE);
   1571 
   1572 	m->m_data = (char*)m->m_data + data_off;
   1573 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1574 
   1575 	/* finalize mbuf */
   1576 	m_set_rcvif(m, ifp);
   1577 
   1578 	s = splnet();
   1579 
   1580 	if (sc->sc_drvbpf != NULL) {
   1581 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1582 
   1583 		tap->wr_flags = 0;
   1584 		tap->wr_chan_freq =
   1585 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1586 		tap->wr_chan_flags =
   1587 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1588 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1589 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1590 		tap->wr_tsft = tail->tstamp;
   1591 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1592 		switch (head->rate) {
   1593 		/* CCK rates */
   1594 		case  10: tap->wr_rate =   2; break;
   1595 		case  20: tap->wr_rate =   4; break;
   1596 		case  55: tap->wr_rate =  11; break;
   1597 		case 110: tap->wr_rate =  22; break;
   1598 		/* OFDM rates */
   1599 		case 0xd: tap->wr_rate =  12; break;
   1600 		case 0xf: tap->wr_rate =  18; break;
   1601 		case 0x5: tap->wr_rate =  24; break;
   1602 		case 0x7: tap->wr_rate =  36; break;
   1603 		case 0x9: tap->wr_rate =  48; break;
   1604 		case 0xb: tap->wr_rate =  72; break;
   1605 		case 0x1: tap->wr_rate =  96; break;
   1606 		case 0x3: tap->wr_rate = 108; break;
   1607 		/* unknown rate: should not happen */
   1608 		default:  tap->wr_rate =   0;
   1609 		}
   1610 		if (le16toh(head->flags) & 0x4)
   1611 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1612 
   1613 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   1614 	}
   1615 
   1616 	/* grab a reference to the source node */
   1617 	wh = mtod(m, struct ieee80211_frame *);
   1618 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1619 
   1620 	/* send the frame to the 802.11 layer */
   1621 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1622 
   1623 	/* release node reference */
   1624 	ieee80211_free_node(ni);
   1625 
   1626 	splx(s);
   1627 }
   1628 
   1629 static void
   1630 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1631 {
   1632 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1633 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1634 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1635 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1636 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1637 	int s;
   1638 
   1639 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1640 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1641 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1642 	    le32toh(stat->status)));
   1643 
   1644 	s = splnet();
   1645 
   1646 	/*
   1647 	 * Update rate control statistics for the node.
   1648 	 * XXX we should not count mgmt frames since they're always sent at
   1649 	 * the lowest available bit-rate.
   1650 	 */
   1651 	wn->amn.amn_txcnt++;
   1652 	if (stat->ntries > 0) {
   1653 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1654 		wn->amn.amn_retrycnt++;
   1655 	}
   1656 
   1657 	if ((le32toh(stat->status) & 0xff) != 1)
   1658 		if_statinc(ifp, if_oerrors);
   1659 	else
   1660 		if_statinc(ifp, if_opackets);
   1661 
   1662 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1663 	m_freem(data->m);
   1664 	data->m = NULL;
   1665 	ieee80211_free_node(data->ni);
   1666 	data->ni = NULL;
   1667 
   1668 	ring->queued--;
   1669 
   1670 	sc->sc_tx_timer = 0;
   1671 	ifp->if_flags &= ~IFF_OACTIVE;
   1672 	wpi_start(ifp); /* in softint */
   1673 
   1674 	splx(s);
   1675 }
   1676 
   1677 static void
   1678 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1679 {
   1680 	struct wpi_tx_ring *ring = &sc->cmdq;
   1681 	struct wpi_tx_data *data;
   1682 
   1683 	if ((desc->qid & 7) != 4)
   1684 		return;	/* not a command ack */
   1685 
   1686 	data = &ring->data[desc->idx];
   1687 
   1688 	/* if the command was mapped in a mbuf, free it */
   1689 	if (data->m != NULL) {
   1690 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1691 		m_freem(data->m);
   1692 		data->m = NULL;
   1693 	}
   1694 
   1695 	wakeup(&ring->cmd[desc->idx]);
   1696 }
   1697 
   1698 static void
   1699 wpi_notif_intr(struct wpi_softc *sc)
   1700 {
   1701 	struct ieee80211com *ic = &sc->sc_ic;
   1702 	struct ifnet *ifp =  ic->ic_ifp;
   1703 	uint32_t hw;
   1704 	int s;
   1705 
   1706 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1707 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1708 
   1709 	hw = le32toh(sc->shared->next);
   1710 	while (sc->rxq.cur != hw) {
   1711 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1712 		struct wpi_rx_desc *desc;
   1713 
   1714 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1715 		    BUS_DMASYNC_POSTREAD);
   1716 		desc = mtod(data->m, struct wpi_rx_desc *);
   1717 
   1718 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1719 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1720 		    desc->type, le32toh(desc->len)));
   1721 
   1722 		if (!(desc->qid & 0x80))	/* reply to a command */
   1723 			wpi_cmd_intr(sc, desc);
   1724 
   1725 		switch (desc->type) {
   1726 		case WPI_RX_DONE:
   1727 			/* a 802.11 frame was received */
   1728 			wpi_rx_intr(sc, desc, data);
   1729 			break;
   1730 
   1731 		case WPI_TX_DONE:
   1732 			/* a 802.11 frame has been transmitted */
   1733 			wpi_tx_intr(sc, desc);
   1734 			break;
   1735 
   1736 		case WPI_UC_READY:
   1737 		{
   1738 			struct wpi_ucode_info *uc =
   1739 			    (struct wpi_ucode_info *)(desc + 1);
   1740 
   1741 			/* the microcontroller is ready */
   1742 			DPRINTF(("microcode alive notification version %x "
   1743 			    "alive %x\n", le32toh(uc->version),
   1744 			    le32toh(uc->valid)));
   1745 
   1746 			if (le32toh(uc->valid) != 1) {
   1747 				aprint_error_dev(sc->sc_dev,
   1748 				    "microcontroller initialization failed\n");
   1749 			}
   1750 			break;
   1751 		}
   1752 		case WPI_STATE_CHANGED:
   1753 		{
   1754 			uint32_t *status = (uint32_t *)(desc + 1);
   1755 
   1756 			/* enabled/disabled notification */
   1757 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1758 
   1759 			if (le32toh(*status) & 1) {
   1760 				s = splnet();
   1761 				/* the radio button has to be pushed */
   1762 				/* wake up thread to signal powerd */
   1763 				cv_signal(&sc->sc_rsw_cv);
   1764 				aprint_error_dev(sc->sc_dev,
   1765 				    "Radio transmitter is off\n");
   1766 				/* turn the interface down */
   1767 				ifp->if_flags &= ~IFF_UP;
   1768 				wpi_stop_intr(ifp, 1);
   1769 				splx(s);
   1770 				return;	/* no further processing */
   1771 			}
   1772 			break;
   1773 		}
   1774 		case WPI_START_SCAN:
   1775 		{
   1776 #if 0
   1777 			struct wpi_start_scan *scan =
   1778 			    (struct wpi_start_scan *)(desc + 1);
   1779 
   1780 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1781 			    scan->chan, le32toh(scan->status)));
   1782 
   1783 			/* fix current channel */
   1784 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1785 #endif
   1786 			break;
   1787 		}
   1788 		case WPI_STOP_SCAN:
   1789 		{
   1790 #ifdef WPI_DEBUG
   1791 			struct wpi_stop_scan *scan =
   1792 			    (struct wpi_stop_scan *)(desc + 1);
   1793 #endif
   1794 
   1795 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1796 			    scan->nchan, scan->status, scan->chan));
   1797 
   1798 			s = splnet();
   1799 			sc->is_scanning = false;
   1800 			if (ic->ic_state == IEEE80211_S_SCAN)
   1801 				ieee80211_next_scan(ic);
   1802 			splx(s);
   1803 			break;
   1804 		}
   1805 		}
   1806 
   1807 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1808 	}
   1809 
   1810 	/* tell the firmware what we have processed */
   1811 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1812 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1813 }
   1814 
   1815 static int
   1816 wpi_intr(void *arg)
   1817 {
   1818 	struct wpi_softc *sc = arg;
   1819 	uint32_t r;
   1820 
   1821 	r = WPI_READ(sc, WPI_INTR);
   1822 	if (r == 0 || r == 0xffffffff)
   1823 		return 0;	/* not for us */
   1824 
   1825 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1826 
   1827 	/* disable interrupts */
   1828 	WPI_WRITE(sc, WPI_MASK, 0);
   1829 
   1830 	softint_schedule(sc->sc_soft_ih);
   1831 	return 1;
   1832 }
   1833 
   1834 static void
   1835 wpi_softintr(void *arg)
   1836 {
   1837 	struct wpi_softc *sc = arg;
   1838 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1839 	uint32_t r;
   1840 
   1841 	r = WPI_READ(sc, WPI_INTR);
   1842 	if (r == 0 || r == 0xffffffff)
   1843 		goto out;
   1844 
   1845 	/* ack interrupts */
   1846 	WPI_WRITE(sc, WPI_INTR, r);
   1847 
   1848 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1849 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1850 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1851 		ifp->if_flags &= ~IFF_UP;
   1852 		wpi_stop_intr(ifp, 1);
   1853 		return;
   1854 	}
   1855 
   1856 	if (r & WPI_RX_INTR)
   1857 		wpi_notif_intr(sc);
   1858 
   1859 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1860 		wakeup(sc);
   1861 
   1862  out:
   1863 	/* re-enable interrupts */
   1864 	if (ifp->if_flags & IFF_UP)
   1865 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1866 }
   1867 
   1868 static uint8_t
   1869 wpi_plcp_signal(int rate)
   1870 {
   1871 	switch (rate) {
   1872 	/* CCK rates (returned values are device-dependent) */
   1873 	case 2:		return 10;
   1874 	case 4:		return 20;
   1875 	case 11:	return 55;
   1876 	case 22:	return 110;
   1877 
   1878 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1879 	/* R1-R4, (u)ral is R4-R1 */
   1880 	case 12:	return 0xd;
   1881 	case 18:	return 0xf;
   1882 	case 24:	return 0x5;
   1883 	case 36:	return 0x7;
   1884 	case 48:	return 0x9;
   1885 	case 72:	return 0xb;
   1886 	case 96:	return 0x1;
   1887 	case 108:	return 0x3;
   1888 
   1889 	/* unsupported rates (should not get there) */
   1890 	default:	return 0;
   1891 	}
   1892 }
   1893 
   1894 /* quickly determine if a given rate is CCK or OFDM */
   1895 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1896 
   1897 static int
   1898 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1899     int ac)
   1900 {
   1901 	struct ieee80211com *ic = &sc->sc_ic;
   1902 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1903 	struct wpi_tx_desc *desc;
   1904 	struct wpi_tx_data *data;
   1905 	struct wpi_tx_cmd *cmd;
   1906 	struct wpi_cmd_data *tx;
   1907 	struct ieee80211_frame *wh;
   1908 	struct ieee80211_key *k;
   1909 	const struct chanAccParams *cap;
   1910 	struct mbuf *mnew;
   1911 	int i, rate, error, hdrlen, noack = 0;
   1912 
   1913 	desc = &ring->desc[ring->cur];
   1914 	data = &ring->data[ring->cur];
   1915 
   1916 	wh = mtod(m0, struct ieee80211_frame *);
   1917 
   1918 	if (ieee80211_has_qos(wh)) {
   1919 		cap = &ic->ic_wme.wme_chanParams;
   1920 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1921 	}
   1922 
   1923 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1924 		k = ieee80211_crypto_encap(ic, ni, m0);
   1925 		if (k == NULL) {
   1926 			m_freem(m0);
   1927 			return ENOBUFS;
   1928 		}
   1929 
   1930 		/* packet header may have moved, reset our local pointer */
   1931 		wh = mtod(m0, struct ieee80211_frame *);
   1932 	}
   1933 
   1934 	hdrlen = ieee80211_anyhdrsize(wh);
   1935 
   1936 	/* pickup a rate */
   1937 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1938 	    IEEE80211_FC0_TYPE_MGT) {
   1939 		/* mgmt frames are sent at the lowest available bit-rate */
   1940 		rate = ni->ni_rates.rs_rates[0];
   1941 	} else {
   1942 		if (ic->ic_fixed_rate != -1) {
   1943 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1944 			    rs_rates[ic->ic_fixed_rate];
   1945 		} else
   1946 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1947 	}
   1948 	rate &= IEEE80211_RATE_VAL;
   1949 
   1950 	if (sc->sc_drvbpf != NULL) {
   1951 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1952 
   1953 		tap->wt_flags = 0;
   1954 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1955 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1956 		tap->wt_rate = rate;
   1957 		tap->wt_hwqueue = ac;
   1958 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1959 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1960 
   1961 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
   1962 	}
   1963 
   1964 	cmd = &ring->cmd[ring->cur];
   1965 	cmd->code = WPI_CMD_TX_DATA;
   1966 	cmd->flags = 0;
   1967 	cmd->qid = ring->qid;
   1968 	cmd->idx = ring->cur;
   1969 
   1970 	tx = (struct wpi_cmd_data *)cmd->data;
   1971 	/* no need to zero tx, all fields are reinitialized here */
   1972 	tx->flags = 0;
   1973 
   1974 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1975 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1976 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1977 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1978 
   1979 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1980 
   1981 	/* retrieve destination node's id */
   1982 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1983 		WPI_ID_BSS;
   1984 
   1985 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1986 	    IEEE80211_FC0_TYPE_MGT) {
   1987 		/* tell h/w to set timestamp in probe responses */
   1988 		if ((wh->i_fc[0] &
   1989 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1990 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1991 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1992 
   1993 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1994 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1995 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1996 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1997 			tx->timeout = htole16(3);
   1998 		else
   1999 			tx->timeout = htole16(2);
   2000 	} else
   2001 		tx->timeout = htole16(0);
   2002 
   2003 	tx->rate = wpi_plcp_signal(rate);
   2004 
   2005 	/* be very persistent at sending frames out */
   2006 	tx->rts_ntries = 7;
   2007 	tx->data_ntries = 15;
   2008 
   2009 	tx->ofdm_mask = 0xff;
   2010 	tx->cck_mask = 0x0f;
   2011 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2012 
   2013 	tx->len = htole16(m0->m_pkthdr.len);
   2014 
   2015 	/* save and trim IEEE802.11 header */
   2016 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   2017 	m_adj(m0, hdrlen);
   2018 
   2019 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2020 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2021 	if (error != 0 && error != EFBIG) {
   2022 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   2023 		    error);
   2024 		m_freem(m0);
   2025 		return error;
   2026 	}
   2027 	if (error != 0) {
   2028 		/* too many fragments, linearize */
   2029 
   2030 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2031 		if (mnew == NULL) {
   2032 			m_freem(m0);
   2033 			return ENOMEM;
   2034 		}
   2035 		m_copy_pkthdr(mnew, m0);
   2036 		if (m0->m_pkthdr.len > MHLEN) {
   2037 			MCLGET(mnew, M_DONTWAIT);
   2038 			if (!(mnew->m_flags & M_EXT)) {
   2039 				m_freem(m0);
   2040 				m_freem(mnew);
   2041 				return ENOMEM;
   2042 			}
   2043 		}
   2044 
   2045 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   2046 		m_freem(m0);
   2047 		mnew->m_len = mnew->m_pkthdr.len;
   2048 		m0 = mnew;
   2049 
   2050 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2051 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2052 		if (error != 0) {
   2053 			aprint_error_dev(sc->sc_dev,
   2054 			    "could not map mbuf (error %d)\n", error);
   2055 			m_freem(m0);
   2056 			return error;
   2057 		}
   2058 	}
   2059 
   2060 	data->m = m0;
   2061 	data->ni = ni;
   2062 
   2063 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2064 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2065 
   2066 	/* first scatter/gather segment is used by the tx data command */
   2067 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2068 	    (1 + data->map->dm_nsegs) << 24);
   2069 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2070 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2071 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2072 	    ((hdrlen + 3) & ~3));
   2073 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2074 		desc->segs[i].addr =
   2075 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2076 		desc->segs[i].len  =
   2077 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2078 	}
   2079 
   2080 	ring->queued++;
   2081 
   2082 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2083 	    data->map->dm_mapsize,
   2084 	    BUS_DMASYNC_PREWRITE);
   2085 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2086 	    ring->cmd_dma.size,
   2087 	    BUS_DMASYNC_PREWRITE);
   2088 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2089 	    ring->desc_dma.size,
   2090 	    BUS_DMASYNC_PREWRITE);
   2091 
   2092 	/* kick ring */
   2093 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2094 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2095 
   2096 	return 0;
   2097 }
   2098 
   2099 static void
   2100 wpi_start(struct ifnet *ifp)
   2101 {
   2102 	struct wpi_softc *sc = ifp->if_softc;
   2103 	struct ieee80211com *ic = &sc->sc_ic;
   2104 	struct ieee80211_node *ni;
   2105 	struct ether_header *eh;
   2106 	struct mbuf *m0;
   2107 	int ac;
   2108 
   2109 	/*
   2110 	 * net80211 may still try to send management frames even if the
   2111 	 * IFF_RUNNING flag is not set...
   2112 	 */
   2113 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2114 		return;
   2115 
   2116 	for (;;) {
   2117 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2118 		if (m0 != NULL) {
   2119 
   2120 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2121 			M_CLEARCTX(m0);
   2122 
   2123 			/* management frames go into ring 0 */
   2124 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2125 				if_statinc(ifp, if_oerrors);
   2126 				continue;
   2127 			}
   2128 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   2129 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2130 				if_statinc(ifp, if_oerrors);
   2131 				break;
   2132 			}
   2133 		} else {
   2134 			if (ic->ic_state != IEEE80211_S_RUN)
   2135 				break;
   2136 			IFQ_POLL(&ifp->if_snd, m0);
   2137 			if (m0 == NULL)
   2138 				break;
   2139 
   2140 			if (m0->m_len < sizeof (*eh) &&
   2141 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2142 				if_statinc(ifp, if_oerrors);
   2143 				continue;
   2144 			}
   2145 			eh = mtod(m0, struct ether_header *);
   2146 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2147 			if (ni == NULL) {
   2148 				m_freem(m0);
   2149 				if_statinc(ifp, if_oerrors);
   2150 				continue;
   2151 			}
   2152 
   2153 			/* classify mbuf so we can find which tx ring to use */
   2154 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2155 				m_freem(m0);
   2156 				ieee80211_free_node(ni);
   2157 				if_statinc(ifp, if_oerrors);
   2158 				continue;
   2159 			}
   2160 
   2161 			/* no QoS encapsulation for EAPOL frames */
   2162 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2163 			    M_WME_GETAC(m0) : WME_AC_BE;
   2164 
   2165 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2166 				/* there is no place left in this ring */
   2167 				ifp->if_flags |= IFF_OACTIVE;
   2168 				break;
   2169 			}
   2170 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2171 			bpf_mtap(ifp, m0, BPF_D_OUT);
   2172 			m0 = ieee80211_encap(ic, m0, ni);
   2173 			if (m0 == NULL) {
   2174 				ieee80211_free_node(ni);
   2175 				if_statinc(ifp, if_oerrors);
   2176 				continue;
   2177 			}
   2178 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   2179 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2180 				ieee80211_free_node(ni);
   2181 				if_statinc(ifp, if_oerrors);
   2182 				break;
   2183 			}
   2184 		}
   2185 
   2186 		sc->sc_tx_timer = 5;
   2187 		ifp->if_timer = 1;
   2188 	}
   2189 }
   2190 
   2191 static void
   2192 wpi_watchdog(struct ifnet *ifp)
   2193 {
   2194 	struct wpi_softc *sc = ifp->if_softc;
   2195 
   2196 	ifp->if_timer = 0;
   2197 
   2198 	if (sc->sc_tx_timer > 0) {
   2199 		if (--sc->sc_tx_timer == 0) {
   2200 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2201 			ifp->if_flags &= ~IFF_UP;
   2202 			wpi_stop_intr(ifp, 1);
   2203 			if_statinc(ifp, if_oerrors);
   2204 			return;
   2205 		}
   2206 		ifp->if_timer = 1;
   2207 	}
   2208 
   2209 	ieee80211_watchdog(&sc->sc_ic);
   2210 }
   2211 
   2212 static int
   2213 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2214 {
   2215 #define IS_RUNNING(ifp) \
   2216 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2217 
   2218 	struct wpi_softc *sc = ifp->if_softc;
   2219 	struct ieee80211com *ic = &sc->sc_ic;
   2220 	int s, error = 0;
   2221 
   2222 	s = splnet();
   2223 
   2224 	switch (cmd) {
   2225 	case SIOCSIFFLAGS:
   2226 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2227 			break;
   2228 		if (ifp->if_flags & IFF_UP) {
   2229 			if (!(ifp->if_flags & IFF_RUNNING))
   2230 				wpi_init(ifp);
   2231 		} else {
   2232 			if (ifp->if_flags & IFF_RUNNING)
   2233 				wpi_stop(ifp, 1);
   2234 		}
   2235 		break;
   2236 
   2237 	case SIOCADDMULTI:
   2238 	case SIOCDELMULTI:
   2239 		/* XXX no h/w multicast filter? --dyoung */
   2240 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2241 			/* setup multicast filter, etc */
   2242 			error = 0;
   2243 		}
   2244 		break;
   2245 
   2246 	default:
   2247 		error = ieee80211_ioctl(ic, cmd, data);
   2248 	}
   2249 
   2250 	if (error == ENETRESET) {
   2251 		if (IS_RUNNING(ifp) &&
   2252 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2253 			wpi_init(ifp);
   2254 		error = 0;
   2255 	}
   2256 
   2257 	splx(s);
   2258 	return error;
   2259 
   2260 #undef IS_RUNNING
   2261 }
   2262 
   2263 /*
   2264  * Extract various information from EEPROM.
   2265  */
   2266 static void
   2267 wpi_read_eeprom(struct wpi_softc *sc)
   2268 {
   2269 	struct ieee80211com *ic = &sc->sc_ic;
   2270 	char domain[4];
   2271 	int i;
   2272 
   2273 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2274 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2275 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2276 
   2277 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2278 	    sc->type));
   2279 
   2280 	/* read and print regulatory domain */
   2281 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2282 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2283 
   2284 	/* read and print MAC address */
   2285 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2286 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2287 
   2288 	/* read the list of authorized channels */
   2289 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2290 		wpi_read_eeprom_channels(sc, i);
   2291 
   2292 	/* read the list of power groups */
   2293 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2294 		wpi_read_eeprom_group(sc, i);
   2295 }
   2296 
   2297 static void
   2298 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2299 {
   2300 	struct ieee80211com *ic = &sc->sc_ic;
   2301 	const struct wpi_chan_band *band = &wpi_bands[n];
   2302 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2303 	int chan, i;
   2304 
   2305 	wpi_read_prom_data(sc, band->addr, channels,
   2306 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2307 
   2308 	for (i = 0; i < band->nchan; i++) {
   2309 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2310 			continue;
   2311 
   2312 		chan = band->chan[i];
   2313 
   2314 		if (n == 0) {	/* 2GHz band */
   2315 			ic->ic_channels[chan].ic_freq =
   2316 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2317 			ic->ic_channels[chan].ic_flags =
   2318 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2319 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2320 
   2321 		} else {	/* 5GHz band */
   2322 			/*
   2323 			 * Some 3945ABG adapters support channels 7, 8, 11
   2324 			 * and 12 in the 2GHz *and* 5GHz bands.
   2325 			 * Because of limitations in our net80211(9) stack,
   2326 			 * we can't support these channels in 5GHz band.
   2327 			 */
   2328 			if (chan <= 14)
   2329 				continue;
   2330 
   2331 			ic->ic_channels[chan].ic_freq =
   2332 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2333 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2334 		}
   2335 
   2336 		/* is active scan allowed on this channel? */
   2337 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2338 			ic->ic_channels[chan].ic_flags |=
   2339 			    IEEE80211_CHAN_PASSIVE;
   2340 		}
   2341 
   2342 		/* save maximum allowed power for this channel */
   2343 		sc->maxpwr[chan] = channels[i].maxpwr;
   2344 
   2345 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2346 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2347 	}
   2348 }
   2349 
   2350 static void
   2351 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2352 {
   2353 	struct wpi_power_group *group = &sc->groups[n];
   2354 	struct wpi_eeprom_group rgroup;
   2355 	int i;
   2356 
   2357 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2358 	    sizeof rgroup);
   2359 
   2360 	/* save power group information */
   2361 	group->chan   = rgroup.chan;
   2362 	group->maxpwr = rgroup.maxpwr;
   2363 	/* temperature at which the samples were taken */
   2364 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2365 
   2366 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2367 	    group->chan, group->maxpwr, group->temp));
   2368 
   2369 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2370 		group->samples[i].index = rgroup.samples[i].index;
   2371 		group->samples[i].power = rgroup.samples[i].power;
   2372 
   2373 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2374 		    group->samples[i].index, group->samples[i].power));
   2375 	}
   2376 }
   2377 
   2378 /*
   2379  * Send a command to the firmware.
   2380  */
   2381 static int
   2382 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2383 {
   2384 	struct wpi_tx_ring *ring = &sc->cmdq;
   2385 	struct wpi_tx_desc *desc;
   2386 	struct wpi_tx_cmd *cmd;
   2387 	struct wpi_dma_info *dma;
   2388 
   2389 	KASSERT(size <= sizeof cmd->data);
   2390 
   2391 	desc = &ring->desc[ring->cur];
   2392 	cmd = &ring->cmd[ring->cur];
   2393 
   2394 	cmd->code = code;
   2395 	cmd->flags = 0;
   2396 	cmd->qid = ring->qid;
   2397 	cmd->idx = ring->cur;
   2398 	memcpy(cmd->data, buf, size);
   2399 
   2400 	dma = &ring->cmd_dma;
   2401 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2402 
   2403 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2404 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2405 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2406 	desc->segs[0].len  = htole32(4 + size);
   2407 
   2408 	dma = &ring->desc_dma;
   2409 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2410 
   2411 	/* kick cmd ring */
   2412 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2413 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2414 
   2415 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2416 }
   2417 
   2418 static int
   2419 wpi_wme_update(struct ieee80211com *ic)
   2420 {
   2421 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2422 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2423 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2424 	const struct wmeParams *wmep;
   2425 	struct wpi_wme_setup wme;
   2426 	int ac;
   2427 
   2428 	/* don't override default WME values if WME is not actually enabled */
   2429 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2430 		return 0;
   2431 
   2432 	wme.flags = 0;
   2433 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2434 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2435 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2436 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2437 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2438 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2439 
   2440 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2441 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2442 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2443 	}
   2444 
   2445 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2446 #undef WPI_USEC
   2447 #undef WPI_EXP2
   2448 }
   2449 
   2450 /*
   2451  * Configure h/w multi-rate retries.
   2452  */
   2453 static int
   2454 wpi_mrr_setup(struct wpi_softc *sc)
   2455 {
   2456 	struct ieee80211com *ic = &sc->sc_ic;
   2457 	struct wpi_mrr_setup mrr;
   2458 	int i, error;
   2459 
   2460 	/* CCK rates (not used with 802.11a) */
   2461 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2462 		mrr.rates[i].flags = 0;
   2463 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2464 		/* fallback to the immediate lower CCK rate (if any) */
   2465 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2466 		/* try one time at this rate before falling back to "next" */
   2467 		mrr.rates[i].ntries = 1;
   2468 	}
   2469 
   2470 	/* OFDM rates (not used with 802.11b) */
   2471 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2472 		mrr.rates[i].flags = 0;
   2473 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2474 		/* fallback to the immediate lower rate (if any) */
   2475 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2476 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2477 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2478 			WPI_OFDM6 : WPI_CCK2) :
   2479 		    i - 1;
   2480 		/* try one time at this rate before falling back to "next" */
   2481 		mrr.rates[i].ntries = 1;
   2482 	}
   2483 
   2484 	/* setup MRR for control frames */
   2485 	mrr.which = htole32(WPI_MRR_CTL);
   2486 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2487 	if (error != 0) {
   2488 		aprint_error_dev(sc->sc_dev,
   2489 		    "could not setup MRR for control frames\n");
   2490 		return error;
   2491 	}
   2492 
   2493 	/* setup MRR for data frames */
   2494 	mrr.which = htole32(WPI_MRR_DATA);
   2495 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2496 	if (error != 0) {
   2497 		aprint_error_dev(sc->sc_dev,
   2498 		    "could not setup MRR for data frames\n");
   2499 		return error;
   2500 	}
   2501 
   2502 	return 0;
   2503 }
   2504 
   2505 static void
   2506 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2507 {
   2508 	struct wpi_cmd_led led;
   2509 
   2510 	led.which = which;
   2511 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2512 	led.off = off;
   2513 	led.on = on;
   2514 
   2515 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2516 }
   2517 
   2518 static void
   2519 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2520 {
   2521 	struct wpi_cmd_tsf tsf;
   2522 	uint64_t val, mod;
   2523 
   2524 	memset(&tsf, 0, sizeof tsf);
   2525 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2526 	tsf.bintval = htole16(ni->ni_intval);
   2527 	tsf.lintval = htole16(10);
   2528 
   2529 	/* compute remaining time until next beacon */
   2530 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2531 	mod = le64toh(tsf.tstamp) % val;
   2532 	tsf.binitval = htole32((uint32_t)(val - mod));
   2533 
   2534 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2535 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2536 
   2537 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2538 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2539 }
   2540 
   2541 /*
   2542  * Update Tx power to match what is defined for channel `c'.
   2543  */
   2544 static int
   2545 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2546 {
   2547 	struct ieee80211com *ic = &sc->sc_ic;
   2548 	struct wpi_power_group *group;
   2549 	struct wpi_cmd_txpower txpower;
   2550 	u_int chan;
   2551 	int i;
   2552 
   2553 	/* get channel number */
   2554 	chan = ieee80211_chan2ieee(ic, c);
   2555 
   2556 	/* find the power group to which this channel belongs */
   2557 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2558 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2559 			if (chan <= group->chan)
   2560 				break;
   2561 	} else
   2562 		group = &sc->groups[0];
   2563 
   2564 	memset(&txpower, 0, sizeof txpower);
   2565 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2566 	txpower.chan = htole16(chan);
   2567 
   2568 	/* set Tx power for all OFDM and CCK rates */
   2569 	for (i = 0; i <= 11 ; i++) {
   2570 		/* retrieve Tx power for this channel/rate combination */
   2571 		int idx = wpi_get_power_index(sc, group, c,
   2572 		    wpi_ridx_to_rate[i]);
   2573 
   2574 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2575 
   2576 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2577 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2578 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2579 		} else {
   2580 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2581 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2582 		}
   2583 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2584 		    wpi_ridx_to_rate[i], idx));
   2585 	}
   2586 
   2587 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2588 }
   2589 
   2590 /*
   2591  * Determine Tx power index for a given channel/rate combination.
   2592  * This takes into account the regulatory information from EEPROM and the
   2593  * current temperature.
   2594  */
   2595 static int
   2596 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2597     struct ieee80211_channel *c, int rate)
   2598 {
   2599 /* fixed-point arithmetic division using a n-bit fractional part */
   2600 #define fdivround(a, b, n)	\
   2601 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2602 
   2603 /* linear interpolation */
   2604 #define interpolate(x, x1, y1, x2, y2, n)	\
   2605 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2606 
   2607 	struct ieee80211com *ic = &sc->sc_ic;
   2608 	struct wpi_power_sample *sample;
   2609 	int pwr, idx;
   2610 	u_int chan;
   2611 
   2612 	/* get channel number */
   2613 	chan = ieee80211_chan2ieee(ic, c);
   2614 
   2615 	/* default power is group's maximum power - 3dB */
   2616 	pwr = group->maxpwr / 2;
   2617 
   2618 	/* decrease power for highest OFDM rates to reduce distortion */
   2619 	switch (rate) {
   2620 	case 72:	/* 36Mb/s */
   2621 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2622 		break;
   2623 	case 96:	/* 48Mb/s */
   2624 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2625 		break;
   2626 	case 108:	/* 54Mb/s */
   2627 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2628 		break;
   2629 	}
   2630 
   2631 	/* never exceed channel's maximum allowed Tx power */
   2632 	pwr = uimin(pwr, sc->maxpwr[chan]);
   2633 
   2634 	/* retrieve power index into gain tables from samples */
   2635 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2636 		if (pwr > sample[1].power)
   2637 			break;
   2638 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2639 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2640 	    sample[1].power, sample[1].index, 19);
   2641 
   2642 	/*-
   2643 	 * Adjust power index based on current temperature:
   2644 	 * - if cooler than factory-calibrated: decrease output power
   2645 	 * - if warmer than factory-calibrated: increase output power
   2646 	 */
   2647 	idx -= (sc->temp - group->temp) * 11 / 100;
   2648 
   2649 	/* decrease power for CCK rates (-5dB) */
   2650 	if (!WPI_RATE_IS_OFDM(rate))
   2651 		idx += 10;
   2652 
   2653 	/* keep power index in a valid range */
   2654 	if (idx < 0)
   2655 		return 0;
   2656 	if (idx > WPI_MAX_PWR_INDEX)
   2657 		return WPI_MAX_PWR_INDEX;
   2658 	return idx;
   2659 
   2660 #undef interpolate
   2661 #undef fdivround
   2662 }
   2663 
   2664 /*
   2665  * Build a beacon frame that the firmware will broadcast periodically in
   2666  * IBSS or HostAP modes.
   2667  */
   2668 static int
   2669 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2670 {
   2671 	struct ieee80211com *ic = &sc->sc_ic;
   2672 	struct wpi_tx_ring *ring = &sc->cmdq;
   2673 	struct wpi_tx_desc *desc;
   2674 	struct wpi_tx_data *data;
   2675 	struct wpi_tx_cmd *cmd;
   2676 	struct wpi_cmd_beacon *bcn;
   2677 	struct ieee80211_beacon_offsets bo;
   2678 	struct mbuf *m0;
   2679 	int error;
   2680 
   2681 	desc = &ring->desc[ring->cur];
   2682 	data = &ring->data[ring->cur];
   2683 
   2684 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2685 	if (m0 == NULL) {
   2686 		aprint_error_dev(sc->sc_dev,
   2687 		    "could not allocate beacon frame\n");
   2688 		return ENOMEM;
   2689 	}
   2690 
   2691 	cmd = &ring->cmd[ring->cur];
   2692 	cmd->code = WPI_CMD_SET_BEACON;
   2693 	cmd->flags = 0;
   2694 	cmd->qid = ring->qid;
   2695 	cmd->idx = ring->cur;
   2696 
   2697 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2698 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2699 	bcn->id = WPI_ID_BROADCAST;
   2700 	bcn->ofdm_mask = 0xff;
   2701 	bcn->cck_mask = 0x0f;
   2702 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2703 	bcn->len = htole16(m0->m_pkthdr.len);
   2704 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2705 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2706 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2707 
   2708 	/* save and trim IEEE802.11 header */
   2709 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2710 	m_adj(m0, sizeof (struct ieee80211_frame));
   2711 
   2712 	/* assume beacon frame is contiguous */
   2713 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2714 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2715 	if (error != 0) {
   2716 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2717 		m_freem(m0);
   2718 		return error;
   2719 	}
   2720 
   2721 	data->m = m0;
   2722 
   2723 	/* first scatter/gather segment is used by the beacon command */
   2724 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2725 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2726 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2727 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2728 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2729 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2730 
   2731 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2732 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2733 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2734 	    BUS_DMASYNC_PREWRITE);
   2735 
   2736 	/* kick cmd ring */
   2737 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2738 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2739 
   2740 	return 0;
   2741 }
   2742 
   2743 static int
   2744 wpi_auth(struct wpi_softc *sc)
   2745 {
   2746 	struct ieee80211com *ic = &sc->sc_ic;
   2747 	struct ieee80211_node *ni = ic->ic_bss;
   2748 	struct wpi_node_info node;
   2749 	int error;
   2750 
   2751 	/* update adapter's configuration */
   2752 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2753 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2754 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2755 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2756 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2757 		    WPI_CONFIG_24GHZ);
   2758 	}
   2759 	switch (ic->ic_curmode) {
   2760 	case IEEE80211_MODE_11A:
   2761 		sc->config.cck_mask  = 0;
   2762 		sc->config.ofdm_mask = 0x15;
   2763 		break;
   2764 	case IEEE80211_MODE_11B:
   2765 		sc->config.cck_mask  = 0x03;
   2766 		sc->config.ofdm_mask = 0;
   2767 		break;
   2768 	default:	/* assume 802.11b/g */
   2769 		sc->config.cck_mask  = 0x0f;
   2770 		sc->config.ofdm_mask = 0x15;
   2771 	}
   2772 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2773 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2774 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2775 	    sizeof (struct wpi_config), 1);
   2776 	if (error != 0) {
   2777 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2778 		return error;
   2779 	}
   2780 
   2781 	/* configuration has changed, set Tx power accordingly */
   2782 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2783 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2784 		return error;
   2785 	}
   2786 
   2787 	/* add default node */
   2788 	memset(&node, 0, sizeof node);
   2789 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2790 	node.id = WPI_ID_BSS;
   2791 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2792 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2793 	node.action = htole32(WPI_ACTION_SET_RATE);
   2794 	node.antenna = WPI_ANTENNA_BOTH;
   2795 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2796 	if (error != 0) {
   2797 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2798 		return error;
   2799 	}
   2800 
   2801 	return 0;
   2802 }
   2803 
   2804 /*
   2805  * Send a scan request to the firmware.  Since this command is huge, we map it
   2806  * into a mbuf instead of using the pre-allocated set of commands.
   2807  */
   2808 static int
   2809 wpi_scan(struct wpi_softc *sc)
   2810 {
   2811 	struct ieee80211com *ic = &sc->sc_ic;
   2812 	struct wpi_tx_ring *ring = &sc->cmdq;
   2813 	struct wpi_tx_desc *desc;
   2814 	struct wpi_tx_data *data;
   2815 	struct wpi_tx_cmd *cmd;
   2816 	struct wpi_scan_hdr *hdr;
   2817 	struct wpi_scan_chan *chan;
   2818 	struct ieee80211_frame *wh;
   2819 	struct ieee80211_rateset *rs;
   2820 	struct ieee80211_channel *c;
   2821 	uint8_t *frm;
   2822 	int pktlen, error, nrates;
   2823 
   2824 	if (ic->ic_curchan == NULL)
   2825 		return EIO;
   2826 
   2827 	desc = &ring->desc[ring->cur];
   2828 	data = &ring->data[ring->cur];
   2829 
   2830 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2831 	if (data->m == NULL) {
   2832 		aprint_error_dev(sc->sc_dev,
   2833 		    "could not allocate mbuf for scan command\n");
   2834 		return ENOMEM;
   2835 	}
   2836 	MCLGET(data->m, M_DONTWAIT);
   2837 	if (!(data->m->m_flags & M_EXT)) {
   2838 		m_freem(data->m);
   2839 		data->m = NULL;
   2840 		aprint_error_dev(sc->sc_dev,
   2841 		    "could not allocate mbuf for scan command\n");
   2842 		return ENOMEM;
   2843 	}
   2844 
   2845 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2846 	cmd->code = WPI_CMD_SCAN;
   2847 	cmd->flags = 0;
   2848 	cmd->qid = ring->qid;
   2849 	cmd->idx = ring->cur;
   2850 
   2851 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2852 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2853 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2854 	hdr->cmd.id = WPI_ID_BROADCAST;
   2855 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2856 	/*
   2857 	 * Move to the next channel if no packets are received within 5 msecs
   2858 	 * after sending the probe request (this helps to reduce the duration
   2859 	 * of active scans).
   2860 	 */
   2861 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2862 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2863 
   2864 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2865 		hdr->crc_threshold = htole16(1);
   2866 		/* send probe requests at 6Mbps */
   2867 		hdr->cmd.rate = wpi_plcp_signal(12);
   2868 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2869 	} else {
   2870 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2871 		/* send probe requests at 1Mbps */
   2872 		hdr->cmd.rate = wpi_plcp_signal(2);
   2873 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2874 	}
   2875 
   2876 	/* for directed scans, firmware inserts the essid IE itself */
   2877 	if (ic->ic_des_esslen != 0) {
   2878 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2879 		hdr->essid[0].len = ic->ic_des_esslen;
   2880 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2881 	}
   2882 
   2883 	/*
   2884 	 * Build a probe request frame.  Most of the following code is a
   2885 	 * copy & paste of what is done in net80211.
   2886 	 */
   2887 	wh = (struct ieee80211_frame *)(hdr + 1);
   2888 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2889 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2890 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2891 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2892 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2893 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2894 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2895 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2896 
   2897 	frm = (uint8_t *)(wh + 1);
   2898 
   2899 	/* add empty essid IE (firmware generates it for directed scans) */
   2900 	*frm++ = IEEE80211_ELEMID_SSID;
   2901 	*frm++ = 0;
   2902 
   2903 	/* add supported rates IE */
   2904 	*frm++ = IEEE80211_ELEMID_RATES;
   2905 	nrates = rs->rs_nrates;
   2906 	if (nrates > IEEE80211_RATE_SIZE)
   2907 		nrates = IEEE80211_RATE_SIZE;
   2908 	*frm++ = nrates;
   2909 	memcpy(frm, rs->rs_rates, nrates);
   2910 	frm += nrates;
   2911 
   2912 	/* add supported xrates IE */
   2913 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2914 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2915 		*frm++ = IEEE80211_ELEMID_XRATES;
   2916 		*frm++ = nrates;
   2917 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2918 		frm += nrates;
   2919 	}
   2920 
   2921 	/* setup length of probe request */
   2922 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2923 
   2924 	chan = (struct wpi_scan_chan *)frm;
   2925 	c = ic->ic_curchan;
   2926 
   2927 	chan->chan = ieee80211_chan2ieee(ic, c);
   2928 	chan->flags = 0;
   2929 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2930 		chan->flags |= WPI_CHAN_ACTIVE;
   2931 		if (ic->ic_des_esslen != 0)
   2932 			chan->flags |= WPI_CHAN_DIRECT;
   2933 	}
   2934 	chan->dsp_gain = 0x6e;
   2935 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2936 		chan->rf_gain = 0x3b;
   2937 		chan->active  = htole16(10);
   2938 		chan->passive = htole16(110);
   2939 	} else {
   2940 		chan->rf_gain = 0x28;
   2941 		chan->active  = htole16(20);
   2942 		chan->passive = htole16(120);
   2943 	}
   2944 	hdr->nchan++;
   2945 	chan++;
   2946 
   2947 	frm += sizeof (struct wpi_scan_chan);
   2948 
   2949 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2950 	pktlen = frm - (uint8_t *)cmd;
   2951 
   2952 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2953 	    BUS_DMA_NOWAIT);
   2954 	if (error != 0) {
   2955 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2956 		m_freem(data->m);
   2957 		data->m = NULL;
   2958 		return error;
   2959 	}
   2960 
   2961 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2962 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2963 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2964 
   2965 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2966 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2967 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2968 	    BUS_DMASYNC_PREWRITE);
   2969 
   2970 	/* kick cmd ring */
   2971 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2972 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2973 
   2974 	return 0;	/* will be notified async. of failure/success */
   2975 }
   2976 
   2977 static int
   2978 wpi_config(struct wpi_softc *sc)
   2979 {
   2980 	struct ieee80211com *ic = &sc->sc_ic;
   2981 	struct ifnet *ifp = ic->ic_ifp;
   2982 	struct wpi_power power;
   2983 	struct wpi_bluetooth bluetooth;
   2984 	struct wpi_node_info node;
   2985 	int error;
   2986 
   2987 	memset(&power, 0, sizeof power);
   2988 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2989 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2990 	if (error != 0) {
   2991 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2992 		return error;
   2993 	}
   2994 
   2995 	/* configure bluetooth coexistence */
   2996 	memset(&bluetooth, 0, sizeof bluetooth);
   2997 	bluetooth.flags = 3;
   2998 	bluetooth.lead = 0xaa;
   2999 	bluetooth.kill = 1;
   3000 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   3001 	    0);
   3002 	if (error != 0) {
   3003 		aprint_error_dev(sc->sc_dev,
   3004 			"could not configure bluetooth coexistence\n");
   3005 		return error;
   3006 	}
   3007 
   3008 	/* configure adapter */
   3009 	memset(&sc->config, 0, sizeof (struct wpi_config));
   3010 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   3011 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   3012 	/* set default channel */
   3013 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   3014 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   3015 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   3016 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   3017 		    WPI_CONFIG_24GHZ);
   3018 	}
   3019 	sc->config.filter = 0;
   3020 	switch (ic->ic_opmode) {
   3021 	case IEEE80211_M_STA:
   3022 		sc->config.mode = WPI_MODE_STA;
   3023 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   3024 		break;
   3025 	case IEEE80211_M_IBSS:
   3026 	case IEEE80211_M_AHDEMO:
   3027 		sc->config.mode = WPI_MODE_IBSS;
   3028 		break;
   3029 	case IEEE80211_M_HOSTAP:
   3030 		sc->config.mode = WPI_MODE_HOSTAP;
   3031 		break;
   3032 	case IEEE80211_M_MONITOR:
   3033 		sc->config.mode = WPI_MODE_MONITOR;
   3034 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   3035 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   3036 		break;
   3037 	}
   3038 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   3039 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   3040 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   3041 	    sizeof (struct wpi_config), 0);
   3042 	if (error != 0) {
   3043 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   3044 		return error;
   3045 	}
   3046 
   3047 	/* configuration has changed, set Tx power accordingly */
   3048 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   3049 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   3050 		return error;
   3051 	}
   3052 
   3053 	/* add broadcast node */
   3054 	memset(&node, 0, sizeof node);
   3055 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   3056 	node.id = WPI_ID_BROADCAST;
   3057 	node.rate = wpi_plcp_signal(2);
   3058 	node.action = htole32(WPI_ACTION_SET_RATE);
   3059 	node.antenna = WPI_ANTENNA_BOTH;
   3060 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3061 	if (error != 0) {
   3062 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3063 		return error;
   3064 	}
   3065 
   3066 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3067 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3068 		return error;
   3069 	}
   3070 
   3071 	return 0;
   3072 }
   3073 
   3074 static void
   3075 wpi_stop_master(struct wpi_softc *sc)
   3076 {
   3077 	uint32_t tmp;
   3078 	int ntries;
   3079 
   3080 	tmp = WPI_READ(sc, WPI_RESET);
   3081 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3082 
   3083 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3084 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3085 		return;	/* already asleep */
   3086 
   3087 	for (ntries = 0; ntries < 100; ntries++) {
   3088 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3089 			break;
   3090 		DELAY(10);
   3091 	}
   3092 	if (ntries == 100) {
   3093 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3094 	}
   3095 }
   3096 
   3097 static int
   3098 wpi_power_up(struct wpi_softc *sc)
   3099 {
   3100 	uint32_t tmp;
   3101 	int ntries;
   3102 
   3103 	wpi_mem_lock(sc);
   3104 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3105 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3106 	wpi_mem_unlock(sc);
   3107 
   3108 	for (ntries = 0; ntries < 5000; ntries++) {
   3109 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3110 			break;
   3111 		DELAY(10);
   3112 	}
   3113 	if (ntries == 5000) {
   3114 		aprint_error_dev(sc->sc_dev,
   3115 		    "timeout waiting for NIC to power up\n");
   3116 		return ETIMEDOUT;
   3117 	}
   3118 	return 0;
   3119 }
   3120 
   3121 static int
   3122 wpi_reset(struct wpi_softc *sc)
   3123 {
   3124 	uint32_t tmp;
   3125 	int ntries;
   3126 
   3127 	/* clear any pending interrupts */
   3128 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3129 
   3130 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3131 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3132 
   3133 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3134 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3135 
   3136 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3137 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3138 
   3139 	/* wait for clock stabilization */
   3140 	for (ntries = 0; ntries < 1000; ntries++) {
   3141 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3142 			break;
   3143 		DELAY(10);
   3144 	}
   3145 	if (ntries == 1000) {
   3146 		aprint_error_dev(sc->sc_dev,
   3147 		    "timeout waiting for clock stabilization\n");
   3148 		return ETIMEDOUT;
   3149 	}
   3150 
   3151 	/* initialize EEPROM */
   3152 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3153 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3154 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3155 		return EIO;
   3156 	}
   3157 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3158 
   3159 	return 0;
   3160 }
   3161 
   3162 static void
   3163 wpi_hw_config(struct wpi_softc *sc)
   3164 {
   3165 	uint32_t rev, hw;
   3166 
   3167 	/* voodoo from the reference driver */
   3168 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3169 
   3170 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3171 	rev = PCI_REVISION(rev);
   3172 	if ((rev & 0xc0) == 0x40)
   3173 		hw |= WPI_HW_ALM_MB;
   3174 	else if (!(rev & 0x80))
   3175 		hw |= WPI_HW_ALM_MM;
   3176 
   3177 	if (sc->cap == 0x80)
   3178 		hw |= WPI_HW_SKU_MRC;
   3179 
   3180 	hw &= ~WPI_HW_REV_D;
   3181 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3182 		hw |= WPI_HW_REV_D;
   3183 
   3184 	if (sc->type > 1)
   3185 		hw |= WPI_HW_TYPE_B;
   3186 
   3187 	DPRINTF(("setting h/w config %x\n", hw));
   3188 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3189 }
   3190 
   3191 static int
   3192 wpi_init(struct ifnet *ifp)
   3193 {
   3194 	struct wpi_softc *sc = ifp->if_softc;
   3195 	struct ieee80211com *ic = &sc->sc_ic;
   3196 	uint32_t tmp;
   3197 	int qid, ntries, error;
   3198 
   3199 	wpi_stop(ifp, 1);
   3200 	(void)wpi_reset(sc);
   3201 
   3202 	wpi_mem_lock(sc);
   3203 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3204 	DELAY(20);
   3205 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3206 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3207 	wpi_mem_unlock(sc);
   3208 
   3209 	(void)wpi_power_up(sc);
   3210 	wpi_hw_config(sc);
   3211 
   3212 	/* init Rx ring */
   3213 	wpi_mem_lock(sc);
   3214 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3215 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3216 	    offsetof(struct wpi_shared, next));
   3217 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3218 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3219 	wpi_mem_unlock(sc);
   3220 
   3221 	/* init Tx rings */
   3222 	wpi_mem_lock(sc);
   3223 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3224 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3225 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3226 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3227 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3228 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3229 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3230 
   3231 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3232 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3233 
   3234 	for (qid = 0; qid < 6; qid++) {
   3235 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3236 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3237 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3238 	}
   3239 	wpi_mem_unlock(sc);
   3240 
   3241 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3242 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3243 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3244 
   3245 	/* clear any pending interrupts */
   3246 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3247 	/* enable interrupts */
   3248 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3249 
   3250 	/* not sure why/if this is necessary... */
   3251 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3252 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3253 
   3254 	if ((error = wpi_load_firmware(sc)) != 0)
   3255 		/* wpi_load_firmware prints error messages for us.  */
   3256 		goto fail1;
   3257 
   3258 	/* Check the status of the radio switch */
   3259 	mutex_enter(&sc->sc_rsw_mtx);
   3260 	if (wpi_getrfkill(sc)) {
   3261 		mutex_exit(&sc->sc_rsw_mtx);
   3262 		aprint_error_dev(sc->sc_dev,
   3263 		    "radio is disabled by hardware switch\n");
   3264 		ifp->if_flags &= ~IFF_UP;
   3265 		error = EBUSY;
   3266 		goto fail1;
   3267 	}
   3268 	sc->sc_rsw_suspend = false;
   3269 	cv_broadcast(&sc->sc_rsw_cv);
   3270 	while (sc->sc_rsw_suspend)
   3271 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3272 	mutex_exit(&sc->sc_rsw_mtx);
   3273 
   3274 	/* wait for thermal sensors to calibrate */
   3275 	for (ntries = 0; ntries < 1000; ntries++) {
   3276 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3277 			break;
   3278 		DELAY(10);
   3279 	}
   3280 	if (ntries == 1000) {
   3281 		aprint_error_dev(sc->sc_dev,
   3282 		    "timeout waiting for thermal sensors calibration\n");
   3283 		error = ETIMEDOUT;
   3284 		goto fail1;
   3285 	}
   3286 	DPRINTF(("temperature %d\n", sc->temp));
   3287 
   3288 	if ((error = wpi_config(sc)) != 0) {
   3289 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3290 		goto fail1;
   3291 	}
   3292 
   3293 	ifp->if_flags &= ~IFF_OACTIVE;
   3294 	ifp->if_flags |= IFF_RUNNING;
   3295 
   3296 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3297 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3298 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3299 	}
   3300 	else
   3301 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3302 
   3303 	return 0;
   3304 
   3305 fail1:	wpi_stop(ifp, 1);
   3306 	return error;
   3307 }
   3308 
   3309 static void
   3310 wpi_stop1(struct ifnet *ifp, int disable, bool fromintr)
   3311 {
   3312 	struct wpi_softc *sc = ifp->if_softc;
   3313 	struct ieee80211com *ic = &sc->sc_ic;
   3314 	uint32_t tmp;
   3315 	int ac;
   3316 
   3317 	ifp->if_timer = sc->sc_tx_timer = 0;
   3318 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3319 
   3320 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3321 
   3322 	if (fromintr) {
   3323 		sc->sc_rsw_suspend = true; // XXX: without mutex or wait
   3324 	} else {
   3325 		wpi_rsw_suspend(sc);
   3326 	}
   3327 
   3328 	/* disable interrupts */
   3329 	WPI_WRITE(sc, WPI_MASK, 0);
   3330 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3331 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3332 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3333 
   3334 	wpi_mem_lock(sc);
   3335 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3336 	wpi_mem_unlock(sc);
   3337 
   3338 	/* reset all Tx rings */
   3339 	for (ac = 0; ac < 4; ac++)
   3340 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3341 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3342 
   3343 	/* reset Rx ring */
   3344 	wpi_reset_rx_ring(sc, &sc->rxq);
   3345 
   3346 	wpi_mem_lock(sc);
   3347 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3348 	wpi_mem_unlock(sc);
   3349 
   3350 	DELAY(5);
   3351 
   3352 	wpi_stop_master(sc);
   3353 
   3354 	tmp = WPI_READ(sc, WPI_RESET);
   3355 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3356 }
   3357 
   3358 static void
   3359 wpi_stop(struct ifnet *ifp, int disable)
   3360 {
   3361 	wpi_stop1(ifp, disable, false);
   3362 }
   3363 
   3364 static void
   3365 wpi_stop_intr(struct ifnet *ifp, int disable)
   3366 {
   3367 	wpi_stop1(ifp, disable, true);
   3368 }
   3369 
   3370 static bool
   3371 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3372 {
   3373 	struct wpi_softc *sc = device_private(dv);
   3374 
   3375 	(void)wpi_reset(sc);
   3376 
   3377 	return true;
   3378 }
   3379 
   3380 /*
   3381  * Return whether or not the radio is enabled in hardware
   3382  * (i.e. the rfkill switch is "off").
   3383  */
   3384 static int
   3385 wpi_getrfkill(struct wpi_softc *sc)
   3386 {
   3387 	uint32_t tmp;
   3388 
   3389 	wpi_mem_lock(sc);
   3390 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3391 	wpi_mem_unlock(sc);
   3392 
   3393 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3394 	if (tmp & 0x01) {
   3395 		/* switch is on */
   3396 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3397 			sc->sc_rsw_status = WPI_RSW_ON;
   3398 			sysmon_pswitch_event(&sc->sc_rsw,
   3399 			    PSWITCH_EVENT_PRESSED);
   3400 		}
   3401 	} else {
   3402 		/* switch is off */
   3403 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3404 			sc->sc_rsw_status = WPI_RSW_OFF;
   3405 			sysmon_pswitch_event(&sc->sc_rsw,
   3406 			    PSWITCH_EVENT_RELEASED);
   3407 		}
   3408 	}
   3409 
   3410 	return !(tmp & 0x01);
   3411 }
   3412 
   3413 static int
   3414 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3415 {
   3416 	struct sysctlnode node;
   3417 	struct wpi_softc *sc;
   3418 	int val, error;
   3419 
   3420 	node = *rnode;
   3421 	sc = (struct wpi_softc *)node.sysctl_data;
   3422 
   3423 	mutex_enter(&sc->sc_rsw_mtx);
   3424 	val = !wpi_getrfkill(sc);
   3425 	mutex_exit(&sc->sc_rsw_mtx);
   3426 
   3427 	node.sysctl_data = &val;
   3428 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3429 
   3430 	if (error || newp == NULL)
   3431 		return error;
   3432 
   3433 	return 0;
   3434 }
   3435 
   3436 static void
   3437 wpi_sysctlattach(struct wpi_softc *sc)
   3438 {
   3439 	int rc;
   3440 	const struct sysctlnode *rnode;
   3441 	const struct sysctlnode *cnode;
   3442 
   3443 	struct sysctllog **clog = &sc->sc_sysctllog;
   3444 
   3445 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3446 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3447 	    SYSCTL_DESCR("wpi controls and statistics"),
   3448 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3449 		goto err;
   3450 
   3451 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3452 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3453 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3454 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3455 		goto err;
   3456 
   3457 #ifdef WPI_DEBUG
   3458 	/* control debugging printfs */
   3459 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3460 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3461 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3462 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3463 		goto err;
   3464 #endif
   3465 
   3466 	return;
   3467 err:
   3468 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3469 }
   3470 
   3471 static void
   3472 wpi_rsw_suspend(struct wpi_softc *sc)
   3473 {
   3474 	/* suspend rfkill test thread */
   3475 	mutex_enter(&sc->sc_rsw_mtx);
   3476 	sc->sc_rsw_suspend = true;
   3477 	cv_broadcast(&sc->sc_rsw_cv);
   3478 	while (!sc->sc_rsw_suspended)
   3479 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3480 	mutex_exit(&sc->sc_rsw_mtx);
   3481 }
   3482 
   3483 static void
   3484 wpi_rsw_thread(void *arg)
   3485 {
   3486 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3487 
   3488 	mutex_enter(&sc->sc_rsw_mtx);
   3489 	for (;;) {
   3490 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3491 		if (sc->sc_dying) {
   3492 			sc->sc_rsw_lwp = NULL;
   3493 			cv_broadcast(&sc->sc_rsw_cv);
   3494 			mutex_exit(&sc->sc_rsw_mtx);
   3495 			kthread_exit(0);
   3496 		}
   3497 		if (sc->sc_rsw_suspend) {
   3498 			sc->sc_rsw_suspended = true;
   3499 			cv_broadcast(&sc->sc_rsw_cv);
   3500 			while (sc->sc_rsw_suspend || sc->sc_dying)
   3501 				cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3502 			sc->sc_rsw_suspended = false;
   3503 			cv_broadcast(&sc->sc_rsw_cv);
   3504 		}
   3505 		wpi_getrfkill(sc);
   3506 	}
   3507 }
   3508