Home | History | Annotate | Line # | Download | only in ic
      1 /* $NetBSD: adwlib.c,v 1.45 2022/09/25 18:43:32 thorpej Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 /*
     33  * Ported from:
     34  */
     35 /*
     36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     37  *
     38  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     39  * All Rights Reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that redistributions of source
     43  * code retain the above copyright notice and this comment without
     44  * modification.
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.45 2022/09/25 18:43:32 thorpej Exp $");
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/queue.h>
     54 #include <sys/device.h>
     55 
     56 #include <sys/bus.h>
     57 #include <sys/intr.h>
     58 
     59 #include <dev/scsipi/scsi_all.h>
     60 #include <dev/scsipi/scsipi_all.h>
     61 #include <dev/scsipi/scsiconf.h>
     62 
     63 #include <dev/pci/pcidevs.h>
     64 
     65 #include <dev/ic/adwlib.h>
     66 #include <dev/ic/adwmcode.h>
     67 #include <dev/ic/adw.h>
     68 
     69 
     70 /* Static Functions */
     71 
     72 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     73 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     74 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     75 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     76 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     77 
     78 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     79      							ADW_EEPROM *);
     80 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     81 					                 ADW_EEPROM *);
     82 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     83 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     84 
     85 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     86 
     87 static void AdwSleepMilliSecond(u_int32_t);
     88 static void AdwDelayMicroSecond(u_int32_t);
     89 
     90 
     91 /*
     92  * EEPROM Configuration.
     93  *
     94  * All drivers should use this structure to set the default EEPROM
     95  * configuration. The BIOS now uses this structure when it is built.
     96  * Additional structure information can be found in adwlib.h where
     97  * the structure is defined.
     98  */
     99 static const ADW_EEPROM adw_3550_Default_EEPROM = {
    100 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    101 	0x0000,			/* 01 cfg_msw */
    102 	0xFFFF,			/* 02 disc_enable */
    103 	0xFFFF,			/* 03 wdtr_able */
    104 	{ 0xFFFF },		/* 04 sdtr_able */
    105 	0xFFFF,			/* 05 start_motor */
    106 	0xFFFF,			/* 06 tagqng_able */
    107 	0xFFFF,			/* 07 bios_scan */
    108 	0,			/* 08 scam_tolerant */
    109 	7,			/* 09 adapter_scsi_id */
    110 	0,			/*    bios_boot_delay */
    111 	3,			/* 10 scsi_reset_delay */
    112 	0,			/*    bios_id_lun */
    113 	0,			/* 11 termination */
    114 	0,			/*    reserved1 */
    115 	0xFFE7,			/* 12 bios_ctrl */
    116 	{ 0xFFFF },		/* 13 ultra_able */
    117 	{ 0 },			/* 14 reserved2 */
    118 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    119 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    120 	0,			/* 16 dvc_cntl */
    121 	{ 0 },			/* 17 bug_fix */
    122 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    123 	0,			/* 21 check_sum */
    124 	{			/* 22-29 oem_name[16] */
    125 	  0,0,0,0,0,0,0,0,
    126 	  0,0,0,0,0,0,0,0
    127 	},
    128 	0,			/* 30 dvc_err_code */
    129 	0,			/* 31 adv_err_code */
    130 	0,			/* 32 adv_err_addr */
    131 	0,			/* 33 saved_dvc_err_code */
    132 	0,			/* 34 saved_adv_err_code */
    133 	0,			/* 35 saved_adv_err_addr */
    134 	{			/* 36-55 reserved1[16] */
    135 	  0,0,0,0,0,0,0,0,0,0,
    136 	  0,0,0,0,0,0,0,0,0,0
    137 	},
    138 	0,			/* 56 cisptr_lsw */
    139 	0,			/* 57 cisprt_msw */
    140 	0,			/* 58 subsysvid */
    141 	0,			/* 59 subsysid */
    142 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    143 };
    144 
    145 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    146 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    147 	0x0000,			/* 01 cfg_msw */
    148 	0xFFFF,			/* 02 disc_enable */
    149 	0xFFFF,			/* 03 wdtr_able */
    150 	{ 0x4444 },		/* 04 sdtr_speed1 */
    151 	0xFFFF,			/* 05 start_motor */
    152 	0xFFFF,			/* 06 tagqng_able */
    153 	0xFFFF,			/* 07 bios_scan */
    154 	0,			/* 08 scam_tolerant */
    155 	7,			/* 09 adapter_scsi_id */
    156 	0,			/*    bios_boot_delay */
    157 	3,			/* 10 scsi_reset_delay */
    158 	0,			/*    bios_id_lun */
    159 	0,			/* 11 termination_se */
    160 	0,			/*    termination_lvd */
    161 	0xFFE7,			/* 12 bios_ctrl */
    162 	{ 0x4444 },		/* 13 sdtr_speed2 */
    163 	{ 0x4444 },		/* 14 sdtr_speed3 */
    164 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    165 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    166 	0,			/* 16 dvc_cntl */
    167 	{ 0x4444 },		/* 17 sdtr_speed4 */
    168 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    169 	0,			/* 21 check_sum */
    170 	{			/* 22-29 oem_name[16] */
    171 	  0,0,0,0,0,0,0,0,
    172 	  0,0,0,0,0,0,0,0
    173 	},
    174 	0,			/* 30 dvc_err_code */
    175 	0,			/* 31 adv_err_code */
    176 	0,			/* 32 adv_err_addr */
    177 	0,			/* 33 saved_dvc_err_code */
    178 	0,			/* 34 saved_adv_err_code */
    179 	0,			/* 35 saved_adv_err_addr */
    180 	{			/* 36-55 reserved1[16] */
    181 	  0,0,0,0,0,0,0,0,0,0,
    182 	  0,0,0,0,0,0,0,0,0,0
    183 	},
    184 	0,			/* 56 cisptr_lsw */
    185 	0,			/* 57 cisprt_msw */
    186 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    187 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    188 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    189 };
    190 
    191 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    192 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    193 	0x0000,			/* 01 cfg_msw */
    194 	0xFFFF,			/* 02 disc_enable */
    195 	0xFFFF,			/* 03 wdtr_able */
    196 	{ 0x5555 },		/* 04 sdtr_speed1 */
    197 	0xFFFF,			/* 05 start_motor */
    198 	0xFFFF,			/* 06 tagqng_able */
    199 	0xFFFF,			/* 07 bios_scan */
    200 	0,			/* 08 scam_tolerant */
    201 	7,			/* 09 adapter_scsi_id */
    202 	0,			/*    bios_boot_delay */
    203 	3,			/* 10 scsi_reset_delay */
    204 	0,			/*    bios_id_lun */
    205 	0,			/* 11 termination_se */
    206 	0,			/*    termination_lvd */
    207 	0xFFE7,			/* 12 bios_ctrl */
    208 	{ 0x5555 },		/* 13 sdtr_speed2 */
    209 	{ 0x5555 },		/* 14 sdtr_speed3 */
    210 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    211 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    212 	0,			/* 16 dvc_cntl */
    213 	{ 0x5555 },		/* 17 sdtr_speed4 */
    214 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    215 	0,			/* 21 check_sum */
    216 	{			/* 22-29 oem_name[16] */
    217 	  0,0,0,0,0,0,0,0,
    218 	  0,0,0,0,0,0,0,0
    219 	},
    220 	0,			/* 30 dvc_err_code */
    221 	0,			/* 31 adv_err_code */
    222 	0,			/* 32 adv_err_addr */
    223 	0,			/* 33 saved_dvc_err_code */
    224 	0,			/* 34 saved_adv_err_code */
    225 	0,			/* 35 saved_adv_err_addr */
    226 	{			/* 36-55 reserved1[16] */
    227 	  0,0,0,0,0,0,0,0,0,0,
    228 	  0,0,0,0,0,0,0,0,0,0
    229 	},
    230 	0,			/* 56 cisptr_lsw */
    231 	0,			/* 57 cisprt_msw */
    232 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    233 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    234 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    235 };
    236 
    237 
    238 /*
    239  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    240  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    241  * all of this is done.
    242  *
    243  * For a non-fatal error return a warning code. If there are no warnings
    244  * then 0 is returned.
    245  *
    246  * Note: Chip is stopped on entry.
    247  */
    248 int
    249 AdwInitFromEEPROM(ADW_SOFTC *sc)
    250 {
    251 	bus_space_tag_t iot = sc->sc_iot;
    252 	bus_space_handle_t ioh = sc->sc_ioh;
    253 	ADW_EEPROM		eep_config;
    254 	u_int16_t		warn_code;
    255 	u_int16_t		sdtr_speed = 0;
    256 	u_int8_t		tid, termination;
    257 	int			i, j;
    258 
    259 
    260 	warn_code = 0;
    261 
    262 	/*
    263 	 * Read the board's EEPROM configuration.
    264 	 *
    265 	 * Set default values if a bad checksum is found.
    266 	 *
    267 	 * XXX - Don't handle big-endian access to EEPROM yet.
    268 	 */
    269 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    270 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    271 
    272 		/*
    273 		 * Set EEPROM default values.
    274 		 */
    275 		switch(sc->chip_type) {
    276 		case ADW_CHIP_ASC3550:
    277 			eep_config = adw_3550_Default_EEPROM;
    278 			break;
    279 		case ADW_CHIP_ASC38C0800:
    280 			eep_config = adw_38C0800_Default_EEPROM;
    281 			break;
    282 		case ADW_CHIP_ASC38C1600:
    283 			eep_config = adw_38C1600_Default_EEPROM;
    284 
    285 #if 0
    286 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    287 #endif
    288 			if (sc->cfg.pci_slot_info != 0) {
    289 				u_int8_t lsw_msb;
    290 
    291 				lsw_msb = eep_config.cfg_lsw >> 8;
    292 				/*
    293 				 * Set Function 1 EEPROM Word 0 MSB
    294 				 *
    295 				 * Clear the BIOS_ENABLE (bit 14) and
    296 				 * INTAB (bit 11) EEPROM bits.
    297 				 *
    298 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    299 				 * SPARC Ultra 60 and old Mac system booting
    300 				 * problem. The Expansion ROM must
    301 				 * be disabled in Function 1 for these systems.
    302 				 */
    303 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    304 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    305 				/*
    306 				 * Set the INTAB (bit 11) if the GPIO 0 input
    307 				 * indicates the Function 1 interrupt line is
    308 				 * wired to INTA.
    309 				 *
    310 				 * Set/Clear Bit 11 (INTAB) from
    311 				 * the GPIO bit 0 input:
    312 				 *   1 - Function 1 intr line wired to INT A.
    313 				 *   0 - Function 1 intr line wired to INT B.
    314 				 *
    315 				 * Note: Adapter boards always have Function 0
    316 				 * wired to INTA.
    317 				 * Put all 5 GPIO bits in input mode and then
    318 				 * read their input values.
    319 				 */
    320 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    321 							IOPB_GPIO_CNTL, 0);
    322 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    323 						IOPB_GPIO_DATA) & 0x01) {
    324 					/*
    325 					 * Function 1 interrupt wired to INTA;
    326 					 * Set EEPROM bit.
    327 					 */
    328 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    329 							 & 0xFF;
    330 				 }
    331 				 eep_config.cfg_lsw &= 0x00FF;
    332 				 eep_config.cfg_lsw |= lsw_msb << 8;
    333 			}
    334 			break;
    335 		}
    336 
    337 		/*
    338 		 * Assume the 6 byte board serial number that was read
    339 		 * from EEPROM is correct even if the EEPROM checksum
    340 		 * failed.
    341 		 */
    342 		for (i=2, j=1; i>=0; i--, j++) {
    343 		eep_config.serial_number[i] =
    344 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    345 		}
    346 
    347 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    348 	}
    349 	/*
    350 	 * Set sc and sc->cfg variables from the EEPROM configuration
    351 	 * that was read.
    352 	 *
    353 	 * This is the mapping of EEPROM fields to Adw Library fields.
    354 	 */
    355 	sc->wdtr_able = eep_config.wdtr_able;
    356 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    357 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    358 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    359 	} else {
    360 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    361 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    362 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    363 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    364 	}
    365 	sc->ppr_able = 0;
    366 	sc->tagqng_able = eep_config.tagqng_able;
    367 	sc->cfg.disc_enable = eep_config.disc_enable;
    368 	sc->max_host_qng = eep_config.max_host_qng;
    369 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    370 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    371 	sc->start_motor = eep_config.start_motor;
    372 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    373 	sc->bios_ctrl = eep_config.bios_ctrl;
    374 	sc->no_scam = eep_config.scam_tolerant;
    375 	sc->cfg.serial1 = eep_config.serial_number[0];
    376 	sc->cfg.serial2 = eep_config.serial_number[1];
    377 	sc->cfg.serial3 = eep_config.serial_number[2];
    378 
    379 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    380 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    381 		sc->sdtr_able = 0;
    382 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    383 			if (tid == 0) {
    384 				sdtr_speed = sc->sdtr_speed1;
    385 			} else if (tid == 4) {
    386 				sdtr_speed = sc->sdtr_speed2;
    387 			} else if (tid == 8) {
    388 				sdtr_speed = sc->sdtr_speed3;
    389 			} else if (tid == 12) {
    390 				sdtr_speed = sc->sdtr_speed4;
    391 			}
    392 			if (sdtr_speed & ADW_MAX_TID) {
    393 				sc->sdtr_able |= (1 << tid);
    394 			}
    395 			sdtr_speed >>= 4;
    396 		}
    397 	}
    398 
    399 	/*
    400 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    401 	 * maximum queuing (max. 63, min. 4).
    402 	 */
    403 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    404 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    405 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    406 	{
    407 		/* If the value is zero, assume it is uninitialized. */
    408 		if (eep_config.max_host_qng == 0) {
    409 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    410 		} else {
    411 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    412 		}
    413 	}
    414 
    415 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    416 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    417 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    418 		/* If the value is zero, assume it is uninitialized. */
    419 		if (eep_config.max_dvc_qng == 0) {
    420 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    421 		} else {
    422 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    423 		}
    424 	}
    425 
    426 	/*
    427 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    428 	 * set 'max_dvc_qng' to 'max_host_qng'.
    429 	 */
    430 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    431 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    432 	}
    433 
    434 	/*
    435 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    436 	 * values based on possibly adjusted EEPROM values.
    437 	 */
    438 	sc->max_host_qng = eep_config.max_host_qng;
    439 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    440 
    441 
    442 	/*
    443 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    444 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    445 	 *
    446 	 * If the termination is specified with a non-zero 'termination'
    447 	 * value check that a legal value is set and set the ADV_DVC_CFG
    448 	 * 'termination' field appropriately.
    449 	 */
    450 
    451 	switch(sc->chip_type) {
    452 	case ADW_CHIP_ASC3550:
    453 		sc->cfg.termination = 0;	/* auto termination */
    454 		switch(eep_config.termination_se) {
    455 		case 3:
    456 			/* Enable manual control with low on / high on. */
    457 			sc->cfg.termination |= ADW_TERM_CTL_L;
    458 			/* FALLTHROUGH */
    459 		case 2:
    460 			/* Enable manual control with low off / high on. */
    461 			sc->cfg.termination |= ADW_TERM_CTL_H;
    462 			/* FALLTHROUGH */
    463 		case 1:
    464 			/* Enable manual control with low off / high off. */
    465 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    466 			/* FALLTHROUGH */
    467 		case 0:
    468 			break;
    469 		default:
    470 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    471 		}
    472 		break;
    473 
    474 	case ADW_CHIP_ASC38C0800:
    475 	case ADW_CHIP_ASC38C1600:
    476 		switch(eep_config.termination_se) {
    477 		case 0:
    478 			/* auto termination for SE */
    479 			termination = 0;
    480 			break;
    481 		case 1:
    482 			/* Enable manual control with low off / high off. */
    483 			termination = 0;
    484 			break;
    485 		case 2:
    486 			/* Enable manual control with low off / high on. */
    487 			termination = ADW_TERM_SE_HI;
    488 			break;
    489 		case 3:
    490 			/* Enable manual control with low on / high on. */
    491 			termination = ADW_TERM_SE;
    492 			break;
    493 		default:
    494 			/*
    495 			 * The EEPROM 'termination_se' field contains a
    496 			 * bad value. Use automatic termination instead.
    497 			 */
    498 			termination = 0;
    499 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    500 		}
    501 
    502 		switch(eep_config.termination_lvd) {
    503 		case 0:
    504 			/* auto termination for LVD */
    505 			sc->cfg.termination = termination;
    506 			break;
    507 		case 1:
    508 			/* Enable manual control with low off / high off. */
    509 			sc->cfg.termination = termination;
    510 			break;
    511 		case 2:
    512 			/* Enable manual control with low off / high on. */
    513 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    514 			break;
    515 		case 3:
    516 			/* Enable manual control with low on / high on. */
    517 			sc->cfg.termination = termination | ADW_TERM_LVD;
    518 			break;
    519 		default:
    520 			/*
    521 			 * The EEPROM 'termination_lvd' field contains a
    522 			 * bad value. Use automatic termination instead.
    523 			 */
    524 			sc->cfg.termination = termination;
    525 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    526 		}
    527 		break;
    528 	}
    529 
    530 	return warn_code;
    531 }
    532 
    533 
    534 /*
    535  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    536  *
    537  * On failure return the error code.
    538  */
    539 int
    540 AdwInitDriver(ADW_SOFTC *sc)
    541 {
    542 	bus_space_tag_t iot = sc->sc_iot;
    543 	bus_space_handle_t ioh = sc->sc_ioh;
    544 	u_int16_t	error_code;
    545 	int		word;
    546 	int		i;
    547 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    548 								0x40-0x8F. */
    549 	u_int16_t	wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
    550 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    551 	u_int8_t	tid;
    552 
    553 
    554 	error_code = 0;
    555 
    556 	/*
    557 	 * Save the RISC memory BIOS region before writing the microcode.
    558 	 * The BIOS may already be loaded and using its RISC LRAM region
    559 	 * so its region must be saved and restored.
    560 	 *
    561 	 * Note: This code makes the assumption, which is currently true,
    562 	 * that a chip reset does not clear RISC LRAM.
    563 	 */
    564 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    565 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    566 	}
    567 
    568 	/*
    569 	 * Save current per TID negotiated values.
    570 	 */
    571 	switch (sc->chip_type) {
    572 	case ADW_CHIP_ASC3550:
    573 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    574 
    575 			u_int16_t  bios_version, major, minor;
    576 
    577 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    578 					ADW_MC_BIOSMEM) / 2];
    579 			major = (bios_version  >> 12) & 0xF;
    580 			minor = (bios_version  >> 8) & 0xF;
    581 			if (major < 3 || (major == 3 && minor == 1)) {
    582 			    /*
    583 			     * BIOS 3.1 and earlier location of
    584 			     * 'wdtr_able' variable.
    585 			     */
    586 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    587 			} else {
    588 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    589 					    wdtr_able);
    590 			}
    591 		}
    592 		break;
    593 
    594 	case ADW_CHIP_ASC38C1600:
    595 		/* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
    596 		/* FALLTHROUGH */
    597 	case ADW_CHIP_ASC38C0800:
    598 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    599 		break;
    600 	}
    601 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    602 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    603 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    604 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    605 			max_cmd[tid]);
    606 	}
    607 
    608 	/*
    609 	 * Perform a RAM Built-In Self Test
    610 	 */
    611 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    612 		return error_code;
    613 	}
    614 
    615 	/*
    616 	 * Load the Microcode
    617 	 */
    618 	;
    619 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    620 		return error_code;
    621 	}
    622 
    623 	/*
    624 	 * Read microcode version and date.
    625 	 */
    626 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    627 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    628 
    629 	/*
    630 	 * If the PCI Configuration Command Register "Parity Error Response
    631 	 * Control" Bit was clear (0), then set the microcode variable
    632 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    633 	 * to ignore DMA parity errors.
    634 	 */
    635 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    636 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    637 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    638 					word | CONTROL_FLAG_IGNORE_PERR);
    639 	}
    640 
    641 	switch (sc->chip_type) {
    642 	case ADW_CHIP_ASC3550:
    643 		/*
    644 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    645 		 * FIFO threshold of 128 bytes.
    646 		 * This register is only accessible to the host.
    647 		 */
    648 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    649 				START_CTL_EMFU | READ_CMD_MRM);
    650 		break;
    651 
    652 	case ADW_CHIP_ASC38C0800:
    653 		/*
    654 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    655 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    656 		 * cable detection and then we are able to read C_DET[3:0].
    657 		 *
    658 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    659 		 * Microcode Default Value' section below.
    660 		 */
    661 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    662 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    663 				| ADW_DIS_TERM_DRV);
    664 
    665 		/*
    666 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    667 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    668 		 *
    669 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    670 		 * 256 bytes.
    671 		 *
    672 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    673 		 */
    674 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    675 						BC_THRESH_ENB | FIFO_THRESH_80B
    676 						| START_CTL_TH | READ_CMD_MRM);
    677 		break;
    678 
    679 	case ADW_CHIP_ASC38C1600:
    680 		/*
    681 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    682 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    683 		 * cable detection and then we are able to read C_DET[3:0].
    684 		 *
    685 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    686 		 * Microcode Default Value' section below.
    687 		 */
    688 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    689 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    690 				| ADW_DIS_TERM_DRV);
    691 
    692 		/*
    693 		 * If the BIOS control flag AIPP (Asynchronous Information
    694 		 * Phase Protection) disable bit is not set, then set the
    695 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    696 		 * enable AIPP checking and encoding.
    697 		 */
    698 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    699 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    700 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    701 					word | CONTROL_FLAG_ENABLE_AIPP);
    702 		}
    703 
    704 		/*
    705 		 * For ASC-38C1600 use DMA_CFG0 default values:
    706 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    707 		 */
    708 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    709 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    710 		break;
    711 	}
    712 
    713 	/*
    714 	 * Microcode operating variables for WDTR, SDTR, and command tag
    715 	 * queuing will be set in AdvInquiryHandling() based on what a
    716 	 * device reports it is capable of in Inquiry byte 7.
    717 	 *
    718 	 * If SCSI Bus Resets have been disabled, then directly set
    719 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    720 	 * the BIOS and warm boot to work without a SCSI bus hang on
    721 	 * the Inquiry caused by host and target mismatched DTR values.
    722 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    723 	 * be assumed to be in Asynchronous, Narrow mode.
    724 	 */
    725 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    726 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    727 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    728 	}
    729 
    730 	/*
    731 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    732 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    733 	 * bitmask. These values determine the maximum SDTR speed negotiated
    734 	 * with a device.
    735 	 *
    736 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    737 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    738 	 * without determining here whether the device supports SDTR.
    739 	 */
    740 	switch (sc->chip_type) {
    741 	case ADW_CHIP_ASC3550:
    742 		word = 0;
    743 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    744 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    745 				/* Set Ultra speed for TID 'tid'. */
    746 				word |= (0x3 << (4 * (tid % 4)));
    747 			} else {
    748 				/* Set Fast speed for TID 'tid'. */
    749 				word |= (0x2 << (4 * (tid % 4)));
    750 			}
    751 			/* Check if done with sdtr_speed1. */
    752 			if (tid == 3) {
    753 				ADW_WRITE_WORD_LRAM(iot, ioh,
    754 						ADW_MC_SDTR_SPEED1, word);
    755 				word = 0;
    756 			/* Check if done with sdtr_speed2. */
    757 			} else if (tid == 7) {
    758 				ADW_WRITE_WORD_LRAM(iot, ioh,
    759 						ADW_MC_SDTR_SPEED2, word);
    760 				word = 0;
    761 			/* Check if done with sdtr_speed3. */
    762 			} else if (tid == 11) {
    763 				ADW_WRITE_WORD_LRAM(iot, ioh,
    764 						ADW_MC_SDTR_SPEED3, word);
    765 				word = 0;
    766 			/* Check if done with sdtr_speed4. */
    767 			} else if (tid == 15) {
    768 				ADW_WRITE_WORD_LRAM(iot, ioh,
    769 						ADW_MC_SDTR_SPEED4, word);
    770 				/* End of loop. */
    771 			}
    772 		}
    773 
    774 		/*
    775 		 * Set microcode operating variable for the
    776 		 * disconnect per TID bitmask.
    777 		 */
    778 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    779 							sc->cfg.disc_enable);
    780 		break;
    781 
    782 	case ADW_CHIP_ASC38C0800:
    783 		/* FALLTHROUGH */
    784 	case ADW_CHIP_ASC38C1600:
    785 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    786 							sc->cfg.disc_enable);
    787 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    788 							sc->sdtr_speed1);
    789 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    790 							sc->sdtr_speed2);
    791 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    792 							sc->sdtr_speed3);
    793 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    794 							sc->sdtr_speed4);
    795 		break;
    796 	}
    797 
    798 
    799 	/*
    800 	 * Set SCSI_CFG0 Microcode Default Value.
    801 	 *
    802 	 * The microcode will set the SCSI_CFG0 register using this value
    803 	 * after it is started below.
    804 	 */
    805 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    806 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    807 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    808 
    809 
    810 	switch(sc->chip_type) {
    811 	case ADW_CHIP_ASC3550:
    812 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    813 		break;
    814 
    815 	case ADW_CHIP_ASC38C0800:
    816 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    817 		break;
    818 
    819 	case ADW_CHIP_ASC38C1600:
    820 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    821 		break;
    822 	}
    823 	if(error_code) {
    824 		return error_code;
    825 	}
    826 
    827 	/*
    828 	 * Set SEL_MASK Microcode Default Value
    829 	 *
    830 	 * The microcode will set the SEL_MASK register using this value
    831 	 * after it is started below.
    832 	 */
    833 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    834 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    835 
    836 	/*
    837 	 * Create and Initialize Host->RISC Carrier lists
    838 	 */
    839 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    840 						sc->sc_control->carriers);
    841 
    842 	/*
    843 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    844 	 */
    845 
    846 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    847 		return ADW_IERR_NO_CARRIER;
    848 	}
    849 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    850 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    851 
    852 	/*
    853 	 * The first command issued will be placed in the stopper carrier.
    854 	 */
    855 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    856 
    857 	/*
    858 	 * Set RISC ICQ physical address start value.
    859 	 */
    860 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    861 
    862 	/*
    863 	 * Initialize the COMMA register to the same value otherwise
    864 	 * the RISC will prematurely detect a command is available.
    865 	 */
    866 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    867 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    868 						le32toh(sc->icq_sp->carr_ba));
    869 	}
    870 
    871 	/*
    872 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    873 	 */
    874 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    875 		return ADW_IERR_NO_CARRIER;
    876 	}
    877 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    878 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    879 
    880 	/*
    881 	 * The first command completed by the RISC will be placed in
    882 	 * the stopper.
    883 	 *
    884 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    885 	 * completed the RISC will set the ASC_RQ_DONE bit.
    886 	 */
    887 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    888 
    889 	/*
    890 	 * Set RISC IRQ physical address start value.
    891 	 */
    892 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    893 	sc->carr_pending_cnt = 0;
    894 
    895 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    896 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    897 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    898 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    899 
    900 	/* finally, finally, gentlemen, start your engine */
    901 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    902 
    903 	/*
    904 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    905 	 * Resets should be performed. The RISC has to be running
    906 	 * to issue a SCSI Bus Reset.
    907 	 */
    908 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    909 	{
    910 		/*
    911 		 * If the BIOS Signature is present in memory, restore the
    912 		 * BIOS Handshake Configuration Table and do not perform
    913 		 * a SCSI Bus Reset.
    914 		 */
    915 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    916 				0x55AA) {
    917 			/*
    918 			 * Restore per TID negotiated values.
    919 			 */
    920 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    921 					wdtr_able);
    922 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    923 					sdtr_able);
    924 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    925 					tagqng_able);
    926 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    927 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    928 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    929 						max_cmd[tid]);
    930 			}
    931 		} else {
    932 			if (AdwResetCCB(sc) != ADW_TRUE) {
    933 				error_code = ADW_WARN_BUSRESET_ERROR;
    934 			}
    935 		}
    936 	}
    937 
    938 	return error_code;
    939 }
    940 
    941 
    942 int
    943 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    944 {
    945 	int		i;
    946 	u_int8_t	byte;
    947 
    948 
    949 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    950 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    951 		/*
    952 		 * RAM BIST (RAM Built-In Self Test)
    953 		 *
    954 		 * Address : I/O base + offset 0x38h register (byte).
    955 		 * Function: Bit 7-6(RW) : RAM mode
    956 		 *			    Normal Mode   : 0x00
    957 		 *			    Pre-test Mode : 0x40
    958 		 *			    RAM Test Mode : 0x80
    959 		 *	     Bit 5	 : unused
    960 		 *	     Bit 4(RO)   : Done bit
    961 		 *	     Bit 3-0(RO) : Status
    962 		 *			    Host Error    : 0x08
    963 		 *			    Int_RAM Error : 0x04
    964 		 *			    RISC Error    : 0x02
    965 		 *			    SCSI Error    : 0x01
    966 		 *			    No Error	  : 0x00
    967 		 *
    968 		 * Note: RAM BIST code should be put right here, before loading
    969 		 * the microcode and after saving the RISC memory BIOS region.
    970 		 */
    971 
    972 		/*
    973 		 * LRAM Pre-test
    974 		 *
    975 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    976 		 * 10 milliseconds.
    977 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    978 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    979 		 * If cannot reset to NORMAL_MODE, return an error too.
    980 		 */
    981 		for (i = 0; i < 2; i++) {
    982 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    983 					PRE_TEST_MODE);
    984 			 /* Wait for 10ms before reading back. */
    985 			AdwSleepMilliSecond(10);
    986 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    987 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    988 					PRE_TEST_VALUE) {
    989 				return ADW_IERR_BIST_PRE_TEST;
    990 			}
    991 
    992 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    993 								NORMAL_MODE);
    994 			/* Wait for 10ms before reading back. */
    995 			AdwSleepMilliSecond(10);
    996 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    997 			    != NORMAL_VALUE) {
    998 				return ADW_IERR_BIST_PRE_TEST;
    999 			}
   1000 		}
   1001 
   1002 		/*
   1003 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1004 		 *
   1005 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1006 		 * 10 milliseconds.
   1007 		 * If Done bit not set or Status not 0, save register byte,
   1008 		 * set the err_code, and return an error.
   1009 		 */
   1010 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1011 		/* Wait for 10ms before checking status. */
   1012 		AdwSleepMilliSecond(10);
   1013 
   1014 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1015 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1016 			/* Get here if Done bit not set or Status not 0. */
   1017 			return ADW_IERR_BIST_RAM_TEST;
   1018 		}
   1019 
   1020 		/* We need to reset back to normal mode after LRAM test passes*/
   1021 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1022 	}
   1023 
   1024 	return 0;
   1025 }
   1026 
   1027 
   1028 int
   1029 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1030 {
   1031 	const u_int8_t	*mcode_data;
   1032 	u_int32_t	 mcode_chksum;
   1033 	u_int16_t	 mcode_size;
   1034 	u_int32_t	sum;
   1035 	u_int16_t	code_sum;
   1036 	int		begin_addr;
   1037 	int		end_addr;
   1038 	int		word;
   1039 	int		adw_memsize;
   1040 	int		adw_mcode_expanded_size;
   1041 	int		i, j;
   1042 
   1043 
   1044 	switch(chip_type) {
   1045 	case ADW_CHIP_ASC3550:
   1046 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1047 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1048 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1049 		adw_memsize = ADW_3550_MEMSIZE;
   1050 		break;
   1051 
   1052 	case ADW_CHIP_ASC38C0800:
   1053 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1054 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1055 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1056 		adw_memsize = ADW_38C0800_MEMSIZE;
   1057 		break;
   1058 
   1059 	case ADW_CHIP_ASC38C1600:
   1060 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1061 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1062 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1063 		adw_memsize = ADW_38C1600_MEMSIZE;
   1064 		break;
   1065 
   1066 	default:
   1067 		return (EINVAL);
   1068 	}
   1069 
   1070 	/*
   1071 	 * Write the microcode image to RISC memory starting at address 0.
   1072 	 */
   1073 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1074 
   1075 	/* Assume the following compressed format of the microcode buffer:
   1076 	 *
   1077 	 *  254 word (508 byte) table indexed by byte code followed
   1078 	 *  by the following byte codes:
   1079 	 *
   1080 	 *    1-Byte Code:
   1081 	 *	00: Emit word 0 in table.
   1082 	 *	01: Emit word 1 in table.
   1083 	 *	.
   1084 	 *	FD: Emit word 253 in table.
   1085 	 *
   1086 	 *    Multi-Byte Code:
   1087 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1088 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1089 	 */
   1090 	word = 0;
   1091 	for (i = 253 * 2; i < mcode_size; i++) {
   1092 		if (mcode_data[i] == 0xff) {
   1093 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1094 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1095 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1096 				  mcode_data[i + 2]));
   1097 				word++;
   1098 			}
   1099 			i += 3;
   1100 		} else if (mcode_data[i] == 0xfe) {
   1101 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1102 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1103 			    mcode_data[i + 1]));
   1104 			i += 2;
   1105 			word++;
   1106 		} else {
   1107 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1108 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1109 			 mcode_data[mcode_data[i] * 2]));
   1110 			word++;
   1111 		}
   1112 	}
   1113 
   1114 	/*
   1115 	 * Set 'word' for later use to clear the rest of memory and save
   1116 	 * the expanded mcode size.
   1117 	 */
   1118 	word *= 2;
   1119 	adw_mcode_expanded_size = word;
   1120 
   1121 	/*
   1122 	 * Clear the rest of the Internal RAM.
   1123 	 */
   1124 	for (; word < adw_memsize; word += 2) {
   1125 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1126 	}
   1127 
   1128 	/*
   1129 	 * Verify the microcode checksum.
   1130 	 */
   1131 	sum = 0;
   1132 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1133 
   1134 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1135 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1136 	}
   1137 
   1138 	if (sum != mcode_chksum) {
   1139 		return ADW_IERR_MCODE_CHKSUM;
   1140 	}
   1141 
   1142 	/*
   1143 	 * Restore the RISC memory BIOS region.
   1144 	 */
   1145 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1146 		if(chip_type == ADW_CHIP_ASC3550) {
   1147 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1148 								bios_mem[i]);
   1149 		} else {
   1150 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1151 								bios_mem[i]);
   1152 		}
   1153 	}
   1154 
   1155 	/*
   1156 	 * Calculate and write the microcode code checksum to the microcode
   1157 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1158 	 */
   1159 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1160 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1161 	code_sum = 0;
   1162 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1163 	for (word = begin_addr; word < end_addr; word += 2) {
   1164 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1165 	}
   1166 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1167 
   1168 	/*
   1169 	 * Set the chip type.
   1170 	 */
   1171 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1172 
   1173 	return 0;
   1174 }
   1175 
   1176 
   1177 int
   1178 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1179 {
   1180 	u_int16_t	scsi_cfg1;
   1181 
   1182 
   1183 	/*
   1184 	 * Determine SCSI_CFG1 Microcode Default Value.
   1185 	 *
   1186 	 * The microcode will set the SCSI_CFG1 register using this value
   1187 	 * after it is started below.
   1188 	 */
   1189 
   1190 	/* Read current SCSI_CFG1 Register value. */
   1191 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1192 
   1193 	/*
   1194 	 * If all three connectors are in use in ASC3550, return an error.
   1195 	 */
   1196 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1197 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1198 		return ADW_IERR_ILLEGAL_CONNECTION;
   1199 	}
   1200 
   1201 	/*
   1202 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1203 	 * will be set. Check for and return an error if this condition is
   1204 	 * found.
   1205 	 */
   1206 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1207 		return ADW_IERR_REVERSED_CABLE;
   1208 	}
   1209 
   1210 	/*
   1211 	 * If this is a differential board and a single-ended device
   1212 	 * is attached to one of the connectors, return an error.
   1213 	 */
   1214 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1215 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1216 		return ADW_IERR_SINGLE_END_DEVICE;
   1217 	}
   1218 
   1219 	/*
   1220 	 * If automatic termination control is enabled, then set the
   1221 	 * termination value based on a table listed in a_condor.h.
   1222 	 *
   1223 	 * If manual termination was specified with an EEPROM setting
   1224 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1225 	 * is ready to be 'ored' into SCSI_CFG1.
   1226 	 */
   1227 	if (cfg->termination == 0) {
   1228 		/*
   1229 		 * The software always controls termination by setting
   1230 		 * TERM_CTL_SEL.
   1231 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1232 		 * termination.
   1233 		 */
   1234 		cfg->termination |= ADW_TERM_CTL_SEL;
   1235 
   1236 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1237 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1238 			case 0x3: case 0x7: case 0xB:
   1239 			case 0xD: case 0xE: case 0xF:
   1240 				cfg->termination |=
   1241 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1242 				break;
   1243 
   1244 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1245 			case 0x1: case 0x5: case 0x9:
   1246 			case 0xA: case 0xC:
   1247 				cfg->termination |= ADW_TERM_CTL_H;
   1248 				break;
   1249 
   1250 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1251 			case 0x2: case 0x6:
   1252 				break;
   1253 		}
   1254 	}
   1255 
   1256 	/*
   1257 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1258 	 */
   1259 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1260 
   1261 	/*
   1262 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1263 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1264 	 * referenced, because the hardware internally inverts
   1265 	 * the Termination High and Low bits if TERM_POL is set.
   1266 	 */
   1267 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1268 
   1269 	/*
   1270 	 * Set SCSI_CFG1 Microcode Default Value
   1271 	 *
   1272 	 * Set filter value and possibly modified termination control
   1273 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1274 	 *
   1275 	 * The microcode will set the SCSI_CFG1 register using this value
   1276 	 * after it is started below.
   1277 	 */
   1278 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1279 						ADW_FLTR_DISABLE | scsi_cfg1);
   1280 
   1281 	/*
   1282 	 * Set MEM_CFG Microcode Default Value
   1283 	 *
   1284 	 * The microcode will set the MEM_CFG register using this value
   1285 	 * after it is started below.
   1286 	 *
   1287 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1288 	 * are defined.
   1289 	 *
   1290 	 * ASC-3550 has 8KB internal memory.
   1291 	 */
   1292 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1293 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1294 
   1295 	return 0;
   1296 }
   1297 
   1298 
   1299 int
   1300 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1301 {
   1302 	u_int16_t	scsi_cfg1;
   1303 
   1304 
   1305 	/*
   1306 	 * Determine SCSI_CFG1 Microcode Default Value.
   1307 	 *
   1308 	 * The microcode will set the SCSI_CFG1 register using this value
   1309 	 * after it is started below.
   1310 	 */
   1311 
   1312 	/* Read current SCSI_CFG1 Register value. */
   1313 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1314 
   1315 	/*
   1316 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1317 	 * will be set. Check for and return an error if this condition is
   1318 	 * found.
   1319 	 */
   1320 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1321 		return ADW_IERR_REVERSED_CABLE;
   1322 	}
   1323 
   1324 	/*
   1325 	 * All kind of combinations of devices attached to one of four
   1326 	 * connectors are acceptable except HVD device attached.
   1327 	 * For example, LVD device can be attached to SE connector while
   1328 	 * SE device attached to LVD connector.
   1329 	 * If LVD device attached to SE connector, it only runs up to
   1330 	 * Ultra speed.
   1331 	 *
   1332 	 * If an HVD device is attached to one of LVD connectors, return
   1333 	 * an error.
   1334 	 * However, there is no way to detect HVD device attached to
   1335 	 * SE connectors.
   1336 	 */
   1337 	if (scsi_cfg1 & ADW_HVD) {
   1338 		return ADW_IERR_HVD_DEVICE;
   1339 	}
   1340 
   1341 	/*
   1342 	 * If either SE or LVD automatic termination control is enabled, then
   1343 	 * set the termination value based on a table listed in a_condor.h.
   1344 	 *
   1345 	 * If manual termination was specified with an EEPROM setting then
   1346 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1347 	 * to be 'ored' into SCSI_CFG1.
   1348 	 */
   1349 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1350 		/* SE automatic termination control is enabled. */
   1351 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1352 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1353 			case 0x1: case 0x2: case 0x3:
   1354 				cfg->termination |= ADW_TERM_SE;
   1355 				break;
   1356 
   1357 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1358 			case 0x0:
   1359 				cfg->termination |= ADW_TERM_SE_HI;
   1360 				break;
   1361 		}
   1362 	}
   1363 
   1364 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1365 		/* LVD automatic termination control is enabled. */
   1366 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1367 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1368 			case 0x4: case 0x8: case 0xC:
   1369 				cfg->termination |= ADW_TERM_LVD;
   1370 				break;
   1371 
   1372 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1373 			case 0x0:
   1374 				break;
   1375 		}
   1376 	}
   1377 
   1378 	/*
   1379 	 * Clear any set TERM_SE and TERM_LVD bits.
   1380 	 */
   1381 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1382 
   1383 	/*
   1384 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1385 	 */
   1386 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1387 
   1388 	/*
   1389 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1390 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1391 	 * in the Microcode SCSI_CFG1 Register Value.
   1392 	 */
   1393 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1394 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1395 
   1396 	/*
   1397 	 * Set SCSI_CFG1 Microcode Default Value
   1398 	 *
   1399 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1400 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1401 	 *
   1402 	 * The microcode will set the SCSI_CFG1 register using this value
   1403 	 * after it is started below.
   1404 	 */
   1405 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1406 
   1407 	/*
   1408 	 * Set MEM_CFG Microcode Default Value
   1409 	 *
   1410 	 * The microcode will set the MEM_CFG register using this value
   1411 	 * after it is started below.
   1412 	 *
   1413 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1414 	 * are defined.
   1415 	 *
   1416 	 * ASC-38C0800 has 16KB internal memory.
   1417 	 */
   1418 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1419 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1420 
   1421 	return 0;
   1422 }
   1423 
   1424 
   1425 int
   1426 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1427 {
   1428 	u_int16_t	scsi_cfg1;
   1429 
   1430 
   1431 	/*
   1432 	 * Determine SCSI_CFG1 Microcode Default Value.
   1433 	 *
   1434 	 * The microcode will set the SCSI_CFG1 register using this value
   1435 	 * after it is started below.
   1436 	 * Each ASC-38C1600 function has only two cable detect bits.
   1437 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1438 	 */
   1439 
   1440 	/* Read current SCSI_CFG1 Register value. */
   1441 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1442 
   1443 	/*
   1444 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1445 	 * will be set. Check for and return an error if this condition is
   1446 	 * found.
   1447 	 */
   1448 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1449 		return ADW_IERR_REVERSED_CABLE;
   1450 	}
   1451 
   1452 	/*
   1453 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1454 	 * cannot be connected to either connector. An LVD device or SE device
   1455 	 * may be connected to either connector. If an SE device is connected,
   1456 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1457 	 *
   1458 	 * If an HVD device is attached, return an error.
   1459 	 */
   1460 	if (scsi_cfg1 & ADW_HVD) {
   1461 		return ADW_IERR_HVD_DEVICE;
   1462 	}
   1463 
   1464 	/*
   1465 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1466 	 * termination because there are two connectors for each function.
   1467 	 * Each function may use either LVD or SE mode.
   1468 	 * Corresponding the SE automatic termination control EEPROM bits are
   1469 	 * used for each function.
   1470 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1471 	 * for the function, then set the termination value based on a table
   1472 	 * listed in adwlib.h.
   1473 	 *
   1474 	 * If manual termination is specified in the EEPROM for the function,
   1475 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1476 	 * ready to be 'ored' into SCSI_CFG1.
   1477 	 */
   1478 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1479 		/* SE automatic termination control is enabled. */
   1480 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1481 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1482 			case 0x1: case 0x2: case 0x3:
   1483 				cfg->termination |= ADW_TERM_SE;
   1484 				break;
   1485 
   1486 			case 0x0:
   1487 #if 0
   1488 	/* !!!!TODO!!!! */
   1489 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1490 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1491 				}
   1492 				else
   1493 #endif
   1494 				{
   1495 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1496 					cfg->termination |= ADW_TERM_SE_HI;
   1497 				}
   1498 				break;
   1499 			}
   1500 	}
   1501 
   1502 	/*
   1503 	 * Clear any set TERM_SE bits.
   1504 	 */
   1505 	scsi_cfg1 &= ~ADW_TERM_SE;
   1506 
   1507 	/*
   1508 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1509 	 */
   1510 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1511 
   1512 	/*
   1513 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1514 	 * modified termination control bits in the Microcode SCSI_CFG1
   1515 	 * Register Value.
   1516 	 */
   1517 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1518 
   1519 	/*
   1520 	 * Set SCSI_CFG1 Microcode Default Value
   1521 	 *
   1522 	 * Set possibly modified termination control bits in the Microcode
   1523 	 * SCSI_CFG1 Register Value.
   1524 	 *
   1525 	 * The microcode will set the SCSI_CFG1 register using this value
   1526 	 * after it is started below.
   1527 	 */
   1528 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1529 
   1530 	/*
   1531 	 * Set MEM_CFG Microcode Default Value
   1532 	 *
   1533 	 * The microcode will set the MEM_CFG register using this value
   1534 	 * after it is started below.
   1535 	 *
   1536 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1537 	 * are defined.
   1538 	 *
   1539 	 * ASC-38C1600 has 32KB internal memory.
   1540 	 */
   1541 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1542 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1543 
   1544 	return 0;
   1545 }
   1546 
   1547 
   1548 /*
   1549  * Read EEPROM configuration into the specified buffer.
   1550  *
   1551  * Return a checksum based on the EEPROM configuration read.
   1552  */
   1553 static u_int16_t
   1554 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1555 {
   1556 	u_int16_t	       wval, chksum;
   1557 	u_int16_t	       *wbuf;
   1558 	int		    eep_addr;
   1559 
   1560 
   1561 	wbuf = (u_int16_t *) cfg_buf;
   1562 	chksum = 0;
   1563 
   1564 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1565 		eep_addr < ASC_EEP_DVC_CFG_END;
   1566 		eep_addr++, wbuf++) {
   1567 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1568 		chksum += wval;
   1569 		*wbuf = wval;
   1570 	}
   1571 
   1572 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1573 	wbuf++;
   1574 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1575 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1576 			eep_addr++, wbuf++) {
   1577 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1578 	}
   1579 
   1580 	return chksum;
   1581 }
   1582 
   1583 
   1584 /*
   1585  * Read the EEPROM from specified location
   1586  */
   1587 static u_int16_t
   1588 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1589 {
   1590 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1591 		ASC_EEP_CMD_READ | eep_word_addr);
   1592 	AdwWaitEEPCmd(iot, ioh);
   1593 
   1594 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1595 }
   1596 
   1597 
   1598 /*
   1599  * Wait for EEPROM command to complete
   1600  */
   1601 static void
   1602 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1603 {
   1604 	int eep_delay_ms;
   1605 
   1606 
   1607 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1608 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1609 				ASC_EEP_CMD_DONE) {
   1610 			break;
   1611 		}
   1612 		AdwSleepMilliSecond(1);
   1613 	}
   1614 
   1615 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1616 }
   1617 
   1618 
   1619 /*
   1620  * Write the EEPROM from 'cfg_buf'.
   1621  */
   1622 static void
   1623 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1624 {
   1625 	u_int16_t *wbuf;
   1626 	u_int16_t addr, chksum;
   1627 
   1628 
   1629 	wbuf = (u_int16_t *) cfg_buf;
   1630 	chksum = 0;
   1631 
   1632 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1633 	AdwWaitEEPCmd(iot, ioh);
   1634 
   1635 	/*
   1636 	 * Write EEPROM from word 0 to word 20
   1637 	 */
   1638 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1639 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1640 		chksum += *wbuf;
   1641 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1642 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1643 				ASC_EEP_CMD_WRITE | addr);
   1644 		AdwWaitEEPCmd(iot, ioh);
   1645 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1646 	}
   1647 
   1648 	/*
   1649 	 * Write EEPROM checksum at word 21
   1650 	 */
   1651 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1652 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1653 			ASC_EEP_CMD_WRITE | addr);
   1654 	AdwWaitEEPCmd(iot, ioh);
   1655 	wbuf++;        /* skip over check_sum */
   1656 
   1657 	/*
   1658 	 * Write EEPROM OEM name at words 22 to 29
   1659 	 */
   1660 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1661 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1662 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1663 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1664 				ASC_EEP_CMD_WRITE | addr);
   1665 		AdwWaitEEPCmd(iot, ioh);
   1666 	}
   1667 
   1668 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1669 			ASC_EEP_CMD_WRITE_DISABLE);
   1670 	AdwWaitEEPCmd(iot, ioh);
   1671 
   1672 	return;
   1673 }
   1674 
   1675 
   1676 /*
   1677  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1678  *
   1679  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1680  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1681  *   RISC to notify it a new command is ready to be executed.
   1682  *
   1683  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1684  * set to SCSI_MAX_RETRY.
   1685  *
   1686  * Return:
   1687  *      ADW_SUCCESS(1) - The request was successfully queued.
   1688  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1689  *                       request completes.
   1690  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1691  *                       host IC error.
   1692  */
   1693 int
   1694 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1695 {
   1696 	bus_space_tag_t iot = sc->sc_iot;
   1697 	bus_space_handle_t ioh = sc->sc_ioh;
   1698 	ADW_CCB		*ccb;
   1699 	u_int32_t	req_paddr;
   1700 	ADW_CARRIER	*new_carrp;
   1701 
   1702 	/*
   1703 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1704 	 */
   1705 	if (scsiq->target_id > ADW_MAX_TID) {
   1706 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1707 		scsiq->done_status = QD_WITH_ERROR;
   1708 		return ADW_ERROR;
   1709 	}
   1710 
   1711 	/*
   1712 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1713 	 */
   1714 
   1715 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1716 
   1717 	/*
   1718 	 * Allocate a carrier and initialize fields.
   1719 	 */
   1720 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1721 		return ADW_BUSY;
   1722 	}
   1723 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1724 			ASC_GET_CARRP(new_carrp->next_ba));
   1725 	sc->carr_pending_cnt++;
   1726 
   1727 	/*
   1728 	 * Set the carrier to be a stopper by setting 'next_ba'
   1729 	 * to the stopper value. The current stopper will be changed
   1730 	 * below to point to the new stopper.
   1731 	 */
   1732 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1733 
   1734 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1735 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1736 
   1737 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1738 	scsiq->scsiq_rptr = htole32(req_paddr);
   1739 
   1740 	/*
   1741 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1742 	 * order during initialization.
   1743 	 */
   1744 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1745 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1746 
   1747 	/*
   1748 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1749 	 * the microcode. The newly allocated stopper will become the new
   1750 	 * stopper.
   1751 	 */
   1752 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1753 
   1754 	/*
   1755 	 * Set the 'next_ba' pointer for the old stopper to be the
   1756 	 * physical address of the new stopper. The RISC can only
   1757 	 * follow physical addresses.
   1758 	 */
   1759 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1760 
   1761 #if ADW_DEBUG
   1762 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1763 			sc->icq_sp->carr_id,
   1764 			sc->icq_sp->carr_ba,
   1765 			sc->icq_sp->areq_ba,
   1766 			sc->icq_sp->next_ba);
   1767 #endif
   1768 	/*
   1769 	 * Set the host adapter stopper pointer to point to the new carrier.
   1770 	 */
   1771 	sc->icq_sp = new_carrp;
   1772 
   1773 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1774 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1775 		/*
   1776 		 * Tickle the RISC to tell it to read its Command Queue Head
   1777 		 * pointer.
   1778 		 */
   1779 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1780 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1781 			/*
   1782 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1783 			 * command 'clr_tickle_a' does not work unless the host
   1784 			 * value is cleared.
   1785 			 */
   1786 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1787 					ADW_TICKLE_NOP);
   1788 		}
   1789 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1790 		/*
   1791 		 * Notify the RISC a carrier is ready by writing the physical
   1792 		 * address of the new carrier stopper to the COMMA register.
   1793 		 */
   1794 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1795 				le32toh(new_carrp->carr_ba));
   1796 	}
   1797 
   1798 	/*
   1799 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1800 	 */
   1801 
   1802 	return ADW_SUCCESS;
   1803 }
   1804 
   1805 
   1806 void
   1807 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1808 {
   1809 
   1810 	/*
   1811 	 * Reset Chip.
   1812 	 */
   1813 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1814 			ADW_CTRL_REG_CMD_RESET);
   1815 	AdwSleepMilliSecond(100);
   1816 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1817 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1818 }
   1819 
   1820 
   1821 /*
   1822  * Reset SCSI Bus and purge all outstanding requests.
   1823  *
   1824  * Return Value:
   1825  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1826  *      ADW_FALSE(0) -  Microcode command failed.
   1827  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1828  *                      may be hung which requires driver recovery.
   1829  */
   1830 int
   1831 AdwResetCCB(ADW_SOFTC *sc)
   1832 {
   1833 	int	    status;
   1834 
   1835 	/*
   1836 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1837 	 * the SCSI Bus Reset signal.
   1838 	 */
   1839 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1840 	if (status != ADW_TRUE) {
   1841 		return status;
   1842 	}
   1843 
   1844 	/*
   1845 	 * Delay for the specified SCSI Bus Reset hold time.
   1846 	 *
   1847 	 * The hold time delay is done on the host because the RISC has no
   1848 	 * microsecond accurate timer.
   1849 	 */
   1850 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1851 
   1852 	/*
   1853 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1854 	 * the SCSI Bus Reset signal and purges any pending requests.
   1855 	 */
   1856 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1857 	if (status != ADW_TRUE) {
   1858 		return status;
   1859 	}
   1860 
   1861 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1862 
   1863 	return status;
   1864 }
   1865 
   1866 
   1867 /*
   1868  * Reset chip and SCSI Bus.
   1869  *
   1870  * Return Value:
   1871  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1872  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1873  */
   1874 int
   1875 AdwResetSCSIBus(ADW_SOFTC *sc)
   1876 {
   1877 	bus_space_tag_t iot = sc->sc_iot;
   1878 	bus_space_handle_t ioh = sc->sc_ioh;
   1879 	int		status;
   1880 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1881 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1882 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1883 	u_int16_t	bios_sig;
   1884 
   1885 
   1886 	/*
   1887 	 * Save current per TID negotiated values.
   1888 	 */
   1889 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1890 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1891 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1892 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1893 	}
   1894 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1895 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1896 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1897 			max_cmd[tid]);
   1898 	}
   1899 
   1900 	/*
   1901 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1902 	 * by clearing the BIOS signature word.
   1903 	 * The initialization functions assumes a SCSI Bus Reset is not
   1904 	 * needed if the BIOS signature word is present.
   1905 	 */
   1906 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1907 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1908 
   1909 	/*
   1910 	 * Stop chip and reset it.
   1911 	 */
   1912 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1913 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1914 			ADW_CTRL_REG_CMD_RESET);
   1915 	AdwSleepMilliSecond(100);
   1916 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1917 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1918 
   1919 	/*
   1920 	 * Reset Adv Library error code, if any, and try
   1921 	 * re-initializing the chip.
   1922 	 * Then translate initialization return value to status value.
   1923 	 */
   1924 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1925 
   1926 	/*
   1927 	 * Restore the BIOS signature word.
   1928 	 */
   1929 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1930 
   1931 	/*
   1932 	 * Restore per TID negotiated values.
   1933 	 */
   1934 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1935 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1936 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1937 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1938 	}
   1939 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1940 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1941 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1942 			max_cmd[tid]);
   1943 	}
   1944 
   1945 	return status;
   1946 }
   1947 
   1948 
   1949 /*
   1950  * Adv Library Interrupt Service Routine
   1951  *
   1952  *  This function is called by a driver's interrupt service routine.
   1953  *  The function disables and re-enables interrupts.
   1954  *
   1955  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1956  *  'idle_cmd_done' field is set to ADW_TRUE.
   1957  *
   1958  *  Note: AdwISR() can be called when interrupts are disabled or even
   1959  *  when there is no hardware interrupt condition present. It will
   1960  *  always check for completed idle commands and microcode requests.
   1961  *  This is an important feature that shouldn't be changed because it
   1962  *  allows commands to be completed from polling mode loops.
   1963  *
   1964  * Return:
   1965  *   ADW_TRUE(1) - interrupt was pending
   1966  *   ADW_FALSE(0) - no interrupt was pending
   1967  */
   1968 int
   1969 AdwISR(ADW_SOFTC *sc)
   1970 {
   1971 	bus_space_tag_t iot = sc->sc_iot;
   1972 	bus_space_handle_t ioh = sc->sc_ioh;
   1973 	u_int8_t	int_stat;
   1974 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1975 	u_int32_t	irq_next_pa;
   1976 	ADW_SCSI_REQ_Q	*scsiq;
   1977 	ADW_CCB		*ccb;
   1978 	int		s;
   1979 
   1980 
   1981 	s = splbio();
   1982 
   1983 	/* Reading the register clears the interrupt. */
   1984 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1985 
   1986 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1987 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1988 		splx(s);
   1989 		return ADW_FALSE;
   1990 	}
   1991 
   1992 	/*
   1993 	 * Notify the driver of an asynchronous microcode condition by
   1994 	 * calling the ADV_DVC_VAR.async_callback function. The function
   1995 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   1996 	 */
   1997 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   1998 		u_int8_t intrb_code;
   1999 
   2000 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2001 
   2002 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2003 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2004 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2005 				sc->carr_pending_cnt != 0) {
   2006 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2007 					IOPB_TICKLE, ADW_TICKLE_A);
   2008 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2009 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2010 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2011 				}
   2012 			}
   2013 		}
   2014 
   2015 		if (sc->async_callback != 0) {
   2016 			(*sc->async_callback)(sc, intrb_code);
   2017 		}
   2018 	}
   2019 
   2020 	/*
   2021 	 * Check if the IRQ stopper carrier contains a completed request.
   2022 	 */
   2023 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2024 	{
   2025 #if ADW_DEBUG
   2026 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2027 				sc->irq_sp->carr_id,
   2028 				sc->irq_sp->carr_ba,
   2029 				sc->irq_sp->areq_ba,
   2030 				sc->irq_sp->next_ba);
   2031 #endif
   2032 		/*
   2033 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2034 		 * structure.
   2035 		 * The RISC will have set 'areq_ba' to a virtual address.
   2036 		 *
   2037 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2038 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2039 		 * The conversion below complements the conversion of
   2040 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2041 		 */
   2042 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2043 		scsiq = &ccb->scsiq;
   2044 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2045 
   2046 		/*
   2047 		 * Request finished with good status and the queue was not
   2048 		 * DMAed to host memory by the firmware. Set all status fields
   2049 		 * to indicate good status.
   2050 		 */
   2051 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2052 			scsiq->done_status = QD_NO_ERROR;
   2053 			scsiq->host_status = scsiq->scsi_status = 0;
   2054 			scsiq->data_cnt = 0L;
   2055 		}
   2056 
   2057 		/*
   2058 		 * Advance the stopper pointer to the next carrier
   2059 		 * ignoring the lower four bits. Free the previous
   2060 		 * stopper carrier.
   2061 		 */
   2062 		free_carrp = sc->irq_sp;
   2063 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2064 
   2065 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2066 					: sc->carr_freelist->carr_ba;
   2067 		sc->carr_freelist = free_carrp;
   2068 		sc->carr_pending_cnt--;
   2069 
   2070 		/*
   2071 		 * Clear request microcode control flag.
   2072 		 */
   2073 		scsiq->cntl = 0;
   2074 
   2075 		/*
   2076 		 * Check Condition handling
   2077 		 */
   2078 		/*
   2079 		 * If the command that completed was a SCSI INQUIRY and
   2080 		 * LUN 0 was sent the command, then process the INQUIRY
   2081 		 * command information for the device.
   2082 		 */
   2083 		if (scsiq->done_status == QD_NO_ERROR &&
   2084 		    scsiq->cdb[0] == INQUIRY &&
   2085 		    scsiq->target_lun == 0) {
   2086 			AdwInquiryHandling(sc, scsiq);
   2087 		}
   2088 
   2089 		/*
   2090 		 * Notify the driver of the completed request by passing
   2091 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2092 		 */
   2093 		(*sc->isr_callback)(sc, scsiq);
   2094 		/*
   2095 		 * Note: After the driver callback function is called, 'scsiq'
   2096 		 * can no longer be referenced.
   2097 		 *
   2098 		 * Fall through and continue processing other completed
   2099 		 * requests...
   2100 		 */
   2101 	}
   2102 
   2103 	splx(s);
   2104 
   2105 	return ADW_TRUE;
   2106 }
   2107 
   2108 
   2109 /*
   2110  * Send an idle command to the chip and wait for completion.
   2111  *
   2112  * Command completion is polled for once per microsecond.
   2113  *
   2114  * The function can be called from anywhere including an interrupt handler.
   2115  * But the function is not re-entrant, so it uses the splbio/splx()
   2116  * functions to prevent reentrancy.
   2117  *
   2118  * Return Values:
   2119  *   ADW_TRUE - command completed successfully
   2120  *   ADW_FALSE - command failed
   2121  *   ADW_ERROR - command timed out
   2122  */
   2123 int
   2124 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2125 {
   2126 	bus_space_tag_t iot = sc->sc_iot;
   2127 	bus_space_handle_t ioh = sc->sc_ioh;
   2128 	u_int16_t	result;
   2129 	u_int32_t	i, j, s;
   2130 
   2131 	s = splbio();
   2132 
   2133 	/*
   2134 	 * Clear the idle command status which is set by the microcode
   2135 	 * to a non-zero value to indicate when the command is completed.
   2136 	 */
   2137 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2138 
   2139 	/*
   2140 	 * Write the idle command value after the idle command parameter
   2141 	 * has been written to avoid a race condition. If the order is not
   2142 	 * followed, the microcode may process the idle command before the
   2143 	 * parameters have been written to LRAM.
   2144 	 */
   2145 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2146 			idle_cmd_parameter);
   2147 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2148 
   2149 	/*
   2150 	 * Tickle the RISC to tell it to process the idle command.
   2151 	 */
   2152 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2153 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2154 		/*
   2155 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2156 		 * command 'clr_tickle_b' does not work unless the host
   2157 		 * value is cleared.
   2158 		 */
   2159 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2160 	}
   2161 
   2162 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2163 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2164 		/* Poll once each microsecond for command completion. */
   2165 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2166 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2167 									result);
   2168 			if (result != 0) {
   2169 				splx(s);
   2170 				return result;
   2171 			}
   2172 			AdwDelayMicroSecond(1);
   2173 		}
   2174 	}
   2175 
   2176 	splx(s);
   2177 	return ADW_ERROR;
   2178 }
   2179 
   2180 
   2181 /*
   2182  * Inquiry Information Byte 7 Handling
   2183  *
   2184  * Handle SCSI Inquiry Command information for a device by setting
   2185  * microcode operating variables that affect WDTR, SDTR, and Tag
   2186  * Queuing.
   2187  */
   2188 static void
   2189 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2190 {
   2191 #ifndef FAILSAFE
   2192 	bus_space_tag_t iot = sc->sc_iot;
   2193 	bus_space_handle_t ioh = sc->sc_ioh;
   2194 	u_int8_t		tid;
   2195 	struct scsipi_inquiry_data *inq;
   2196 	u_int16_t		tidmask;
   2197 	u_int16_t		cfg_word;
   2198 
   2199 
   2200 	/*
   2201 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2202 	 * to be available.
   2203 	 *
   2204 	 * If less than 8 bytes of INQUIRY information were requested or less
   2205 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2206 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2207 	 * microcode to the transfer residual count.
   2208 	 */
   2209 
   2210 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2211 		return;
   2212 	}
   2213 
   2214 	tid = scsiq->target_id;
   2215 
   2216 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2217 
   2218 	/*
   2219 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2220 	 */
   2221 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2222 	    ((inq->version & SID_ANSII) < 2)) {
   2223 		return;
   2224 	} else {
   2225 		/*
   2226 		 * INQUIRY Byte 7 Handling
   2227 		 *
   2228 		 * Use a device's INQUIRY byte 7 to determine whether it
   2229 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2230 		 * is enabled in the EEPROM and the device supports the
   2231 		 * feature, then enable it in the microcode.
   2232 		 */
   2233 
   2234 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2235 
   2236 		/*
   2237 		 * Wide Transfers
   2238 		 *
   2239 		 * If the EEPROM enabled WDTR for the device and the device
   2240 		 * supports wide bus (16 bit) transfers, then turn on the
   2241 		 * device's 'wdtr_able' bit and write the new value to the
   2242 		 * microcode.
   2243 		 */
   2244 #ifdef SCSI_ADW_WDTR_DISABLE
   2245 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2246 #endif /* SCSI_ADW_WDTR_DISABLE */
   2247 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2248 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2249 					cfg_word);
   2250 			if ((cfg_word & tidmask) == 0) {
   2251 				cfg_word |= tidmask;
   2252 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2253 						cfg_word);
   2254 
   2255 				/*
   2256 				 * Clear the microcode "SDTR negotiation" and
   2257 				 * "WDTR negotiation" done indicators for the
   2258 				 * target to cause it to negotiate with the new
   2259 				 * setting set above.
   2260 				 * WDTR when accepted causes the target to enter
   2261 				 * asynchronous mode, so SDTR must be negotiated
   2262 				 */
   2263 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2264 						cfg_word);
   2265 				cfg_word &= ~tidmask;
   2266 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2267 						cfg_word);
   2268 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2269 						cfg_word);
   2270 				cfg_word &= ~tidmask;
   2271 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2272 						cfg_word);
   2273 			}
   2274 		}
   2275 
   2276 		/*
   2277 		 * Synchronous Transfers
   2278 		 *
   2279 		 * If the EEPROM enabled SDTR for the device and the device
   2280 		 * supports synchronous transfers, then turn on the device's
   2281 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2282 		 */
   2283 #ifdef SCSI_ADW_SDTR_DISABLE
   2284 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2285 #endif /* SCSI_ADW_SDTR_DISABLE */
   2286 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2287 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2288 			if ((cfg_word & tidmask) == 0) {
   2289 				cfg_word |= tidmask;
   2290 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2291 						cfg_word);
   2292 
   2293 				/*
   2294 				 * Clear the microcode "SDTR negotiation"
   2295 				 * done indicator for the target to cause it
   2296 				 * to negotiate with the new setting set above.
   2297 				 */
   2298 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2299 						cfg_word);
   2300 				cfg_word &= ~tidmask;
   2301 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2302 						cfg_word);
   2303 			}
   2304 		}
   2305 		/*
   2306 		 * If the Inquiry data included enough space for the SPI-3
   2307 		 * Clocking field, then check if DT mode is supported.
   2308 		 */
   2309 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2310 		   (scsiq->cdb[4] >= 57 ||
   2311 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2312 			/*
   2313 			 * PPR (Parallel Protocol Request) Capable
   2314 			 *
   2315 			 * If the device supports DT mode, then it must be
   2316 			 * PPR capable.
   2317 			 * The PPR message will be used in place of the SDTR
   2318 			 * and WDTR messages to negotiate synchronous speed
   2319 			 * and offset, transfer width, and protocol options.
   2320 			 */
   2321 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2322 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2323 						sc->ppr_able);
   2324 				sc->ppr_able |= tidmask;
   2325 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2326 						sc->ppr_able);
   2327 			}
   2328 		}
   2329 
   2330 		/*
   2331 		 * If the EEPROM enabled Tag Queuing for the device and the
   2332 		 * device supports Tag Queueing, then turn on the device's
   2333 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2334 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2335 		 * value.
   2336 		 *
   2337 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2338 		 * mode and would see no benefit from Tag Queuing. Also by
   2339 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2340 		 * bugs will at least work with the BIOS.
   2341 		 */
   2342 #ifdef SCSI_ADW_TAGQ_DISABLE
   2343 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2344 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2345 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2346 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2347 					cfg_word);
   2348 			cfg_word |= tidmask;
   2349 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2350 					cfg_word);
   2351 
   2352 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2353 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2354 					sc->max_dvc_qng);
   2355 		}
   2356 	}
   2357 #endif /* FAILSAFE */
   2358 }
   2359 
   2360 
   2361 static void
   2362 AdwSleepMilliSecond(u_int32_t n)
   2363 {
   2364 
   2365 	DELAY(n * 1000);
   2366 }
   2367 
   2368 
   2369 static void
   2370 AdwDelayMicroSecond(u_int32_t n)
   2371 {
   2372 
   2373 	DELAY(n);
   2374 }
   2375 
   2376