Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const struct device_compatible_entry compat_data[] = {
     79 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     80 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
     81 
     82 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     83 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
     84 
     85 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     86 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
     87 
     88 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     89 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
     90 
     91 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     92 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
     93 
     94 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     95 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
     96 
     97 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
     98 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
     99 
    100 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    101 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
    102 
    103 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    104 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
    105 
    106 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    107 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
    108 
    109 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    110 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
    111 
    112 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    113 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
    114 
    115 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    116 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
    117 
    118 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    119 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
    120 
    121 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    122 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
    123 
    124 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    125 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
    126 
    127 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    128 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
    129 
    130 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    131 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
    132 
    133 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    134 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
    135 
    136 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    137 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
    138 
    139 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    140 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
    141 
    142 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    143 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
    144 
    145 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    146 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
    147 
    148 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    149 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
    150 
    151 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    152 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
    153 
    154 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    155 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
    156 
    157 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    158 		PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
    159 
    160 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    161 		PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
    162 
    163 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    164 		PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
    165 
    166 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    167 		PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
    168 
    169 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    170 		PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
    171 
    172 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    173 		PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
    174 
    175 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    176 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
    177 
    178 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    179 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
    180 
    181 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    182 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
    183 
    184 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    185 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
    186 
    187 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    188 		PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
    189 
    190 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    191 		PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
    192 
    193 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    194 		PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
    195 
    196 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    197 		PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
    198 
    199 	PCI_COMPAT_EOL
    200 };
    201 
    202 static int	iwn_match(device_t , struct cfdata *, void *);
    203 static void	iwn_attach(device_t , device_t , void *);
    204 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    205 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    206 static void	iwn_radiotap_attach(struct iwn_softc *);
    207 static int	iwn_detach(device_t , int);
    208 #if 0
    209 static void	iwn_power(int, void *);
    210 #endif
    211 static bool	iwn_resume(device_t, const pmf_qual_t *);
    212 static int	iwn_nic_lock(struct iwn_softc *);
    213 static int	iwn_eeprom_lock(struct iwn_softc *);
    214 static int	iwn_init_otprom(struct iwn_softc *);
    215 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    216 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    217 		    void **, bus_size_t, bus_size_t);
    218 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    219 static int	iwn_alloc_sched(struct iwn_softc *);
    220 static void	iwn_free_sched(struct iwn_softc *);
    221 static int	iwn_alloc_kw(struct iwn_softc *);
    222 static void	iwn_free_kw(struct iwn_softc *);
    223 static int	iwn_alloc_ict(struct iwn_softc *);
    224 static void	iwn_free_ict(struct iwn_softc *);
    225 static int	iwn_alloc_fwmem(struct iwn_softc *);
    226 static void	iwn_free_fwmem(struct iwn_softc *);
    227 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    228 static void	iwn_claim_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    229 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    230 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    231 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    232 		    int);
    233 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    234 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    235 static void	iwn5000_ict_reset(struct iwn_softc *);
    236 static int	iwn_read_eeprom(struct iwn_softc *);
    237 static void	iwn4965_read_eeprom(struct iwn_softc *);
    238 
    239 #ifdef IWN_DEBUG
    240 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    241 #endif
    242 static void	iwn5000_read_eeprom(struct iwn_softc *);
    243 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    244 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    245 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    246 static void	iwn_newassoc(struct ieee80211_node *, int);
    247 static int	iwn_media_change(struct ifnet *);
    248 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    249 static void	iwn_iter_func(void *, struct ieee80211_node *);
    250 static void	iwn_calib_timeout(void *);
    251 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    252 		    struct iwn_rx_data *);
    253 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    254 		    struct iwn_rx_data *);
    255 #ifndef IEEE80211_NO_HT
    256 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    257 		    struct iwn_rx_data *);
    258 #endif
    259 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    260 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    261 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    262 		    struct iwn_rx_data *);
    263 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    264 		    struct iwn_rx_data *);
    265 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    266 		    struct iwn_rx_data *);
    267 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    268 		    uint8_t);
    269 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    270 static void	iwn_notif_intr(struct iwn_softc *);
    271 static void	iwn_wakeup_intr(struct iwn_softc *);
    272 static void	iwn_fatal_intr(struct iwn_softc *);
    273 static int	iwn_intr(void *);
    274 static void	iwn_softintr(void *);
    275 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    276 		    uint16_t);
    277 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    278 		    uint16_t);
    279 #ifdef notyet
    280 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    281 #endif
    282 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    283 		    struct ieee80211_node *, int);
    284 static void	iwn_start(struct ifnet *);
    285 static void	iwn_watchdog(struct ifnet *);
    286 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    287 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    288 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    289 		    int);
    290 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    291 		    int);
    292 static int	iwn_set_link_quality(struct iwn_softc *,
    293 		    struct ieee80211_node *);
    294 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    295 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    296 static int	iwn_set_critical_temp(struct iwn_softc *);
    297 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    298 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    299 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    300 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    301 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    302 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    303 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    304 static int	iwn4965_get_temperature(struct iwn_softc *);
    305 static int	iwn5000_get_temperature(struct iwn_softc *);
    306 static int	iwn_init_sensitivity(struct iwn_softc *);
    307 static void	iwn_collect_noise(struct iwn_softc *,
    308 		    const struct iwn_rx_general_stats *);
    309 static int	iwn4965_init_gains(struct iwn_softc *);
    310 static int	iwn5000_init_gains(struct iwn_softc *);
    311 static int	iwn4965_set_gains(struct iwn_softc *);
    312 static int	iwn5000_set_gains(struct iwn_softc *);
    313 static void	iwn_tune_sensitivity(struct iwn_softc *,
    314 		    const struct iwn_rx_stats *);
    315 static int	iwn_send_sensitivity(struct iwn_softc *);
    316 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    317 static int	iwn5000_runtime_calib(struct iwn_softc *);
    318 
    319 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    320 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    321 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    322 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    323 
    324 static int	iwn_config(struct iwn_softc *);
    325 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    326 		    uint8_t);
    327 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    328 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    329 static int	iwn_scan(struct iwn_softc *, uint16_t);
    330 static int	iwn_auth(struct iwn_softc *);
    331 static int	iwn_run(struct iwn_softc *);
    332 #ifdef IWN_HWCRYPTO
    333 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    334 		    struct ieee80211_key *);
    335 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    336 		    struct ieee80211_key *);
    337 #endif
    338 static int	iwn_wme_update(struct ieee80211com *);
    339 #ifndef IEEE80211_NO_HT
    340 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    341 		    struct ieee80211_node *, uint8_t);
    342 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    343 		    struct ieee80211_node *, uint8_t);
    344 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    345 		    struct ieee80211_node *, uint8_t);
    346 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    347 		    struct ieee80211_node *, uint8_t);
    348 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    349 		    struct ieee80211_node *, uint8_t, uint16_t);
    350 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    351 		    uint8_t, uint16_t);
    352 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    353 		    struct ieee80211_node *, uint8_t, uint16_t);
    354 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    355 		    uint8_t, uint16_t);
    356 #endif
    357 static int	iwn5000_query_calibration(struct iwn_softc *);
    358 static int	iwn5000_send_calibration(struct iwn_softc *);
    359 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    360 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    361 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    362 static int	iwn4965_post_alive(struct iwn_softc *);
    363 static int	iwn5000_post_alive(struct iwn_softc *);
    364 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    365 		    int);
    366 static int	iwn4965_load_firmware(struct iwn_softc *);
    367 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    368 		    const uint8_t *, int);
    369 static int	iwn5000_load_firmware(struct iwn_softc *);
    370 static int	iwn_read_firmware_leg(struct iwn_softc *,
    371 		    struct iwn_fw_info *);
    372 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    373 		    struct iwn_fw_info *, uint16_t);
    374 static int	iwn_read_firmware(struct iwn_softc *);
    375 static int	iwn_clock_wait(struct iwn_softc *);
    376 static int	iwn_apm_init(struct iwn_softc *);
    377 static void	iwn_apm_stop_master(struct iwn_softc *);
    378 static void	iwn_apm_stop(struct iwn_softc *);
    379 static int	iwn4965_nic_config(struct iwn_softc *);
    380 static int	iwn5000_nic_config(struct iwn_softc *);
    381 static int	iwn_hw_prepare(struct iwn_softc *);
    382 static int	iwn_hw_init(struct iwn_softc *);
    383 static void	iwn_hw_stop(struct iwn_softc *);
    384 static int	iwn_init(struct ifnet *);
    385 static void	iwn_stop(struct ifnet *, int);
    386 
    387 /* XXX MCLGETI alternative */
    388 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    389 		    struct ifnet *, u_int);
    390 #ifdef IWN_USE_RBUF
    391 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    392 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    393 static int	iwn_alloc_rpool(struct iwn_softc *);
    394 static void	iwn_free_rpool(struct iwn_softc *);
    395 #endif
    396 
    397 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    398 		    struct iwn_rx_stat *);
    399 
    400 #ifdef IWN_DEBUG
    401 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    402 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    403 int iwn_debug = 0;
    404 #else
    405 #define DPRINTF(x)
    406 #define DPRINTFN(n, x)
    407 #endif
    408 
    409 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    410 	iwn_detach, NULL);
    411 
    412 static int
    413 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    414 {
    415 	struct pci_attach_args *pa = aux;
    416 
    417 	return pci_compatible_match(pa, compat_data);
    418 }
    419 
    420 static void
    421 iwn_attach(device_t parent __unused, device_t self, void *aux)
    422 {
    423 	struct iwn_softc *sc = device_private(self);
    424 	struct ieee80211com *ic = &sc->sc_ic;
    425 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    426 	struct pci_attach_args *pa = aux;
    427 	const char *intrstr;
    428 	pcireg_t memtype, reg;
    429 	int i, error;
    430 	char intrbuf[PCI_INTRSTR_LEN];
    431 
    432 	sc->sc_dev = self;
    433 	sc->sc_pct = pa->pa_pc;
    434 	sc->sc_pcitag = pa->pa_tag;
    435 	sc->sc_dmat = pa->pa_dmat;
    436 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    437 
    438 	callout_init(&sc->calib_to, 0);
    439 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    440 
    441 	pci_aprint_devinfo(pa, NULL);
    442 
    443 	/*
    444 	 * Get the offset of the PCI Express Capability Structure in PCI
    445 	 * Configuration Space.
    446 	 */
    447 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    448 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    449 	if (error == 0) {
    450 		aprint_error_dev(self,
    451 		    "PCIe capability structure not found!\n");
    452 		return;
    453 	}
    454 
    455 	/* Clear device-specific "PCI retry timeout" register (41h). */
    456 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    457 	if (reg & 0xff00)
    458 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    459 
    460 	/* Enable bus-mastering. */
    461 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    462 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    463 	reg |= PCI_COMMAND_MASTER_ENABLE;
    464 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    465 
    466 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    467 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    468 	    &sc->sc_sh, NULL, &sc->sc_sz);
    469 	if (error != 0) {
    470 		aprint_error_dev(self, "can't map mem space\n");
    471 		return;
    472 	}
    473 
    474 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    475 	if (sc->sc_soft_ih == NULL) {
    476 		aprint_error_dev(self, "can't establish soft interrupt\n");
    477 		goto unmap;
    478 	}
    479 
    480 	/* Install interrupt handler. */
    481 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    482 	if (error) {
    483 		aprint_error_dev(self, "can't allocate interrupt\n");
    484 		goto failsi;
    485 	}
    486 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    487 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    488 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    489 	else
    490 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    491 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    492 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    493 	    sizeof(intrbuf));
    494 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    495 	    IPL_NET, iwn_intr, sc, device_xname(self));
    496 	if (sc->sc_ih == NULL) {
    497 		aprint_error_dev(self, "can't establish interrupt");
    498 		if (intrstr != NULL)
    499 			aprint_error(" at %s", intrstr);
    500 		aprint_error("\n");
    501 		goto failia;
    502 	}
    503 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    504 
    505 	/* Read hardware revision and attach. */
    506 	sc->hw_type =
    507 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    508 	      >> IWN_HW_REV_TYPE_SHIFT;
    509 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    510 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    511 	else
    512 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    513 	if (error != 0) {
    514 		aprint_error_dev(self, "could not attach device\n");
    515 		goto failih;
    516 	}
    517 
    518 	if ((error = iwn_hw_prepare(sc)) != 0) {
    519 		aprint_error_dev(self, "hardware not ready\n");
    520 		goto failih;
    521 	}
    522 
    523 	/* Read MAC address, channels, etc from EEPROM. */
    524 	if ((error = iwn_read_eeprom(sc)) != 0) {
    525 		aprint_error_dev(self, "could not read EEPROM\n");
    526 		goto failih;
    527 	}
    528 
    529 	/* Allocate DMA memory for firmware transfers. */
    530 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    531 		aprint_error_dev(self,
    532 		    "could not allocate memory for firmware\n");
    533 		goto failih;
    534 	}
    535 
    536 	/* Allocate "Keep Warm" page. */
    537 	if ((error = iwn_alloc_kw(sc)) != 0) {
    538 		aprint_error_dev(self, "could not allocate keep warm page\n");
    539 		goto fail1;
    540 	}
    541 
    542 	/* Allocate ICT table for 5000 Series. */
    543 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    544 	    (error = iwn_alloc_ict(sc)) != 0) {
    545 		aprint_error_dev(self, "could not allocate ICT table\n");
    546 		goto fail2;
    547 	}
    548 
    549 	/* Allocate TX scheduler "rings". */
    550 	if ((error = iwn_alloc_sched(sc)) != 0) {
    551 		aprint_error_dev(self,
    552 		    "could not allocate TX scheduler rings\n");
    553 		goto fail3;
    554 	}
    555 
    556 #ifdef IWN_USE_RBUF
    557 	/* Allocate RX buffers. */
    558 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    559 		aprint_error_dev(self, "could not allocate RX buffers\n");
    560 		goto fail3;
    561 	}
    562 #endif
    563 
    564 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    565 	for (i = 0; i < sc->ntxqs; i++) {
    566 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    567 			aprint_error_dev(self,
    568 			    "could not allocate TX ring %d\n", i);
    569 			goto fail4;
    570 		}
    571 	}
    572 
    573 	/* Allocate RX ring. */
    574 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    575 		aprint_error_dev(self, "could not allocate RX ring\n");
    576 		goto fail4;
    577 	}
    578 
    579 	/* Clear pending interrupts. */
    580 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    581 
    582 	/* Count the number of available chains. */
    583 	sc->ntxchains =
    584 	    ((sc->txchainmask >> 2) & 1) +
    585 	    ((sc->txchainmask >> 1) & 1) +
    586 	    ((sc->txchainmask >> 0) & 1);
    587 	sc->nrxchains =
    588 	    ((sc->rxchainmask >> 2) & 1) +
    589 	    ((sc->rxchainmask >> 1) & 1) +
    590 	    ((sc->rxchainmask >> 0) & 1);
    591 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    592 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    593 	    ether_sprintf(ic->ic_myaddr));
    594 
    595 	ic->ic_ifp = ifp;
    596 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    597 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    598 	ic->ic_state = IEEE80211_S_INIT;
    599 
    600 	/*
    601 	 * Set device capabilities.
    602 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
    603 	 * IEEE80211_C_PMGT too.
    604 	 */
    605 	ic->ic_caps =
    606 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    607 	    IEEE80211_C_WPA |		/* 802.11i */
    608 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    609 	    IEEE80211_C_TXPMGT |	/* tx power management */
    610 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    611 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    612 	    IEEE80211_C_WME;		/* 802.11e */
    613 
    614 #ifndef IEEE80211_NO_HT
    615 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    616 		/* Set HT capabilities. */
    617 		ic->ic_htcaps =
    618 #if IWN_RBUF_SIZE == 8192
    619 		    IEEE80211_HTCAP_AMSDU7935 |
    620 #endif
    621 		    IEEE80211_HTCAP_CBW20_40 |
    622 		    IEEE80211_HTCAP_SGI20 |
    623 		    IEEE80211_HTCAP_SGI40;
    624 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    625 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    626 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    627 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    628 		else
    629 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    630 	}
    631 #endif	/* !IEEE80211_NO_HT */
    632 
    633 	/* Set supported legacy rates. */
    634 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    635 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    636 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    637 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    638 	}
    639 #ifndef IEEE80211_NO_HT
    640 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    641 		/* Set supported HT rates. */
    642 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    643 		if (sc->nrxchains > 1)
    644 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    645 		if (sc->nrxchains > 2)
    646 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    647 	}
    648 #endif
    649 
    650 	/* IBSS channel undefined for now. */
    651 	ic->ic_ibss_chan = &ic->ic_channels[0];
    652 
    653 	ifp->if_softc = sc;
    654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    655 	ifp->if_init = iwn_init;
    656 	ifp->if_ioctl = iwn_ioctl;
    657 	ifp->if_start = iwn_start;
    658 	ifp->if_stop = iwn_stop;
    659 	ifp->if_watchdog = iwn_watchdog;
    660 	IFQ_SET_READY(&ifp->if_snd);
    661 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    662 
    663 	if_initialize(ifp);
    664 	ieee80211_ifattach(ic);
    665 
    666 	/* MBUFTRACE */
    667 	iwn_claim_rx_ring(sc, &sc->rxq);
    668 
    669 	/* Use common softint-based if_input */
    670 	ifp->if_percpuq = if_percpuq_create(ifp);
    671 	if_register(ifp);
    672 
    673 	ic->ic_node_alloc = iwn_node_alloc;
    674 	ic->ic_newassoc = iwn_newassoc;
    675 #ifdef IWN_HWCRYPTO
    676 	ic->ic_crypto.cs_key_set = iwn_set_key;
    677 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    678 #endif
    679 	ic->ic_wme.wme_update = iwn_wme_update;
    680 #ifndef IEEE80211_NO_HT
    681 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    682 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    683 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    684 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    685 #endif
    686 
    687 	/* Override 802.11 state transition machine. */
    688 	sc->sc_newstate = ic->ic_newstate;
    689 	ic->ic_newstate = iwn_newstate;
    690 
    691 	/* XXX media locking needs revisiting */
    692 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
    693 	ieee80211_media_init_with_lock(ic,
    694 	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
    695 
    696 	sc->amrr.amrr_min_success_threshold =  1;
    697 	sc->amrr.amrr_max_success_threshold = 15;
    698 
    699 	iwn_radiotap_attach(sc);
    700 
    701 	/*
    702 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    703 	 * callout_init and callout_setfunc, above.
    704 	 */
    705 
    706 	if (pmf_device_register(self, NULL, iwn_resume))
    707 		pmf_class_network_register(self, ifp);
    708 	else
    709 		aprint_error_dev(self, "couldn't establish power handler\n");
    710 
    711 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    712 	ieee80211_announce(ic);
    713 
    714 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    715 	return;
    716 
    717 	/* Free allocated memory if something failed during attachment. */
    718 fail4:	while (--i >= 0)
    719 		iwn_free_tx_ring(sc, &sc->txq[i]);
    720 #ifdef IWN_USE_RBUF
    721 	iwn_free_rpool(sc);
    722 #endif
    723 	iwn_free_sched(sc);
    724 fail3:	if (sc->ict != NULL)
    725 		iwn_free_ict(sc);
    726 fail2:	iwn_free_kw(sc);
    727 fail1:	iwn_free_fwmem(sc);
    728 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    729 	sc->sc_ih = NULL;
    730 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    731 	sc->sc_pihp = NULL;
    732 failsi:	softint_disestablish(sc->sc_soft_ih);
    733 	sc->sc_soft_ih = NULL;
    734 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    735 }
    736 
    737 int
    738 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    739 {
    740 	struct iwn_ops *ops = &sc->ops;
    741 
    742 	ops->load_firmware = iwn4965_load_firmware;
    743 	ops->read_eeprom = iwn4965_read_eeprom;
    744 	ops->post_alive = iwn4965_post_alive;
    745 	ops->nic_config = iwn4965_nic_config;
    746 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    747 	ops->update_sched = iwn4965_update_sched;
    748 	ops->get_temperature = iwn4965_get_temperature;
    749 	ops->get_rssi = iwn4965_get_rssi;
    750 	ops->set_txpower = iwn4965_set_txpower;
    751 	ops->init_gains = iwn4965_init_gains;
    752 	ops->set_gains = iwn4965_set_gains;
    753 	ops->add_node = iwn4965_add_node;
    754 	ops->tx_done = iwn4965_tx_done;
    755 #ifndef IEEE80211_NO_HT
    756 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    757 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    758 #endif
    759 	sc->ntxqs = IWN4965_NTXQUEUES;
    760 	sc->ndmachnls = IWN4965_NDMACHNLS;
    761 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    762 	sc->rxonsz = IWN4965_RXONSZ;
    763 	sc->schedsz = IWN4965_SCHEDSZ;
    764 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    765 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    766 	sc->fwsz = IWN4965_FWSZ;
    767 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    768 	sc->limits = &iwn4965_sensitivity_limits;
    769 	sc->fwname = "iwlwifi-4965-2.ucode";
    770 	/* Override chains masks, ROM is known to be broken. */
    771 	sc->txchainmask = IWN_ANT_AB;
    772 	sc->rxchainmask = IWN_ANT_ABC;
    773 
    774 	return 0;
    775 }
    776 
    777 int
    778 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    779 {
    780 	struct iwn_ops *ops = &sc->ops;
    781 
    782 	ops->load_firmware = iwn5000_load_firmware;
    783 	ops->read_eeprom = iwn5000_read_eeprom;
    784 	ops->post_alive = iwn5000_post_alive;
    785 	ops->nic_config = iwn5000_nic_config;
    786 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    787 	ops->update_sched = iwn5000_update_sched;
    788 	ops->get_temperature = iwn5000_get_temperature;
    789 	ops->get_rssi = iwn5000_get_rssi;
    790 	ops->set_txpower = iwn5000_set_txpower;
    791 	ops->init_gains = iwn5000_init_gains;
    792 	ops->set_gains = iwn5000_set_gains;
    793 	ops->add_node = iwn5000_add_node;
    794 	ops->tx_done = iwn5000_tx_done;
    795 #ifndef IEEE80211_NO_HT
    796 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    797 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    798 #endif
    799 	sc->ntxqs = IWN5000_NTXQUEUES;
    800 	sc->ndmachnls = IWN5000_NDMACHNLS;
    801 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    802 	sc->rxonsz = IWN5000_RXONSZ;
    803 	sc->schedsz = IWN5000_SCHEDSZ;
    804 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    805 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    806 	sc->fwsz = IWN5000_FWSZ;
    807 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    808 
    809 	switch (sc->hw_type) {
    810 	case IWN_HW_REV_TYPE_5100:
    811 		sc->limits = &iwn5000_sensitivity_limits;
    812 		sc->fwname = "iwlwifi-5000-2.ucode";
    813 		/* Override chains masks, ROM is known to be broken. */
    814 		sc->txchainmask = IWN_ANT_B;
    815 		sc->rxchainmask = IWN_ANT_AB;
    816 		break;
    817 	case IWN_HW_REV_TYPE_5150:
    818 		sc->limits = &iwn5150_sensitivity_limits;
    819 		sc->fwname = "iwlwifi-5150-2.ucode";
    820 		break;
    821 	case IWN_HW_REV_TYPE_5300:
    822 	case IWN_HW_REV_TYPE_5350:
    823 		sc->limits = &iwn5000_sensitivity_limits;
    824 		sc->fwname = "iwlwifi-5000-2.ucode";
    825 		break;
    826 	case IWN_HW_REV_TYPE_1000:
    827 		sc->limits = &iwn1000_sensitivity_limits;
    828 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    829 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    830 			sc->fwname = "iwlwifi-100-5.ucode";
    831 		else
    832 			sc->fwname = "iwlwifi-1000-3.ucode";
    833 		break;
    834 	case IWN_HW_REV_TYPE_6000:
    835 		sc->limits = &iwn6000_sensitivity_limits;
    836 		sc->fwname = "iwlwifi-6000-4.ucode";
    837 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    838 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    839 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    840 			/* Override chains masks, ROM is known to be broken. */
    841 			sc->txchainmask = IWN_ANT_BC;
    842 			sc->rxchainmask = IWN_ANT_BC;
    843 		}
    844 		break;
    845 	case IWN_HW_REV_TYPE_6050:
    846 		sc->limits = &iwn6000_sensitivity_limits;
    847 		sc->fwname = "iwlwifi-6050-5.ucode";
    848 		break;
    849 	case IWN_HW_REV_TYPE_6005:
    850 		sc->limits = &iwn6000_sensitivity_limits;
    851 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    852 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    853 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    854 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1  ||
    855 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2  ||
    856 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    857 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    858 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    859 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    860 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    861 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    862 		}
    863 		/*
    864 		 * This covers:
    865 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
    866 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
    867 		 */
    868 		else
    869 			sc->fwname = "iwlwifi-6000g2a-6.ucode";
    870 		break;
    871 	case IWN_HW_REV_TYPE_2030:
    872 		sc->limits = &iwn2030_sensitivity_limits;
    873 		sc->fwname = "iwlwifi-2030-6.ucode";
    874 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    875 		break;
    876 	case IWN_HW_REV_TYPE_2000:
    877 		sc->limits = &iwn2000_sensitivity_limits;
    878 		sc->fwname = "iwlwifi-2000-6.ucode";
    879 		break;
    880 	case IWN_HW_REV_TYPE_135:
    881 		sc->limits = &iwn2000_sensitivity_limits;
    882 		sc->fwname = "iwlwifi-135-6.ucode";
    883 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    884 		break;
    885 	case IWN_HW_REV_TYPE_105:
    886 		sc->limits = &iwn2000_sensitivity_limits;
    887 		sc->fwname = "iwlwifi-105-6.ucode";
    888 		break;
    889 	default:
    890 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    891 		return ENOTSUP;
    892 	}
    893 	return 0;
    894 }
    895 
    896 /*
    897  * Attach the interface to 802.11 radiotap.
    898  */
    899 static void
    900 iwn_radiotap_attach(struct iwn_softc *sc)
    901 {
    902 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    903 
    904 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    905 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    906 	    &sc->sc_drvbpf);
    907 
    908 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    909 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    910 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    911 
    912 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    913 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    914 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    915 }
    916 
    917 static int
    918 iwn_detach(device_t self, int flags __unused)
    919 {
    920 	struct iwn_softc *sc = device_private(self);
    921 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    922 	int qid;
    923 
    924 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    925 		return 0;
    926 
    927 	callout_stop(&sc->calib_to);
    928 
    929 	/* Uninstall interrupt handler. */
    930 	if (sc->sc_ih != NULL)
    931 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    932 	if (sc->sc_pihp != NULL)
    933 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    934 	if (sc->sc_soft_ih != NULL)
    935 		softint_disestablish(sc->sc_soft_ih);
    936 
    937 	/* Free DMA resources. */
    938 	iwn_free_rx_ring(sc, &sc->rxq);
    939 	for (qid = 0; qid < sc->ntxqs; qid++)
    940 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    941 #ifdef IWN_USE_RBUF
    942 	iwn_free_rpool(sc);
    943 #endif
    944 	iwn_free_sched(sc);
    945 	iwn_free_kw(sc);
    946 	if (sc->ict != NULL)
    947 		iwn_free_ict(sc);
    948 	iwn_free_fwmem(sc);
    949 
    950 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    951 
    952 	ieee80211_ifdetach(&sc->sc_ic);
    953 	if_detach(ifp);
    954 
    955 	return 0;
    956 }
    957 
    958 #if 0
    959 /*
    960  * XXX Investigate if clearing the PCI retry timeout could eliminate
    961  * the repeated scan calls.  Also the calls to if_init and if_start
    962  * are similar to the effect of adding the call to ifioctl_common .
    963  */
    964 static void
    965 iwn_power(int why, void *arg)
    966 {
    967 	struct iwn_softc *sc = arg;
    968 	struct ifnet *ifp;
    969 	pcireg_t reg;
    970 	int s;
    971 
    972 	if (why != PWR_RESUME)
    973 		return;
    974 
    975 	/* Clear device-specific "PCI retry timeout" register (41h). */
    976 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    977 	if (reg & 0xff00)
    978 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    979 
    980 	s = splnet();
    981 	ifp = &sc->sc_ic.ic_if;
    982 	if (ifp->if_flags & IFF_UP) {
    983 		if_init(ifp);
    984 		if (ifp->if_flags & IFF_RUNNING)
    985 			ifp->if_start(ifp);
    986 	}
    987 	splx(s);
    988 }
    989 #endif
    990 
    991 static bool
    992 iwn_resume(device_t dv, const pmf_qual_t *qual)
    993 {
    994 	return true;
    995 }
    996 
    997 static int
    998 iwn_nic_lock(struct iwn_softc *sc)
    999 {
   1000 	int ntries;
   1001 
   1002 	/* Request exclusive access to NIC. */
   1003 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
   1004 
   1005 	/* Spin until we actually get the lock. */
   1006 	for (ntries = 0; ntries < 1000; ntries++) {
   1007 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
   1008 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
   1009 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
   1010 			return 0;
   1011 		DELAY(10);
   1012 	}
   1013 	return ETIMEDOUT;
   1014 }
   1015 
   1016 static __inline void
   1017 iwn_nic_unlock(struct iwn_softc *sc)
   1018 {
   1019 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
   1020 }
   1021 
   1022 static __inline uint32_t
   1023 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
   1024 {
   1025 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
   1026 	IWN_BARRIER_READ_WRITE(sc);
   1027 	return IWN_READ(sc, IWN_PRPH_RDATA);
   1028 }
   1029 
   1030 static __inline void
   1031 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
   1032 {
   1033 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
   1034 	IWN_BARRIER_WRITE(sc);
   1035 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
   1036 }
   1037 
   1038 static __inline void
   1039 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
   1040 {
   1041 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
   1042 }
   1043 
   1044 static __inline void
   1045 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
   1046 {
   1047 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
   1048 }
   1049 
   1050 static __inline void
   1051 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
   1052     const uint32_t *data, int count)
   1053 {
   1054 	for (; count > 0; count--, data++, addr += 4)
   1055 		iwn_prph_write(sc, addr, *data);
   1056 }
   1057 
   1058 static __inline uint32_t
   1059 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
   1060 {
   1061 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
   1062 	IWN_BARRIER_READ_WRITE(sc);
   1063 	return IWN_READ(sc, IWN_MEM_RDATA);
   1064 }
   1065 
   1066 static __inline void
   1067 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
   1068 {
   1069 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
   1070 	IWN_BARRIER_WRITE(sc);
   1071 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
   1072 }
   1073 
   1074 #ifndef IEEE80211_NO_HT
   1075 static __inline void
   1076 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
   1077 {
   1078 	uint32_t tmp;
   1079 
   1080 	tmp = iwn_mem_read(sc, addr & ~3);
   1081 	if (addr & 3)
   1082 		tmp = (tmp & 0x0000ffff) | data << 16;
   1083 	else
   1084 		tmp = (tmp & 0xffff0000) | data;
   1085 	iwn_mem_write(sc, addr & ~3, tmp);
   1086 }
   1087 #endif
   1088 
   1089 static __inline void
   1090 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1091     int count)
   1092 {
   1093 	for (; count > 0; count--, addr += 4)
   1094 		*data++ = iwn_mem_read(sc, addr);
   1095 }
   1096 
   1097 static __inline void
   1098 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1099     int count)
   1100 {
   1101 	for (; count > 0; count--, addr += 4)
   1102 		iwn_mem_write(sc, addr, val);
   1103 }
   1104 
   1105 static int
   1106 iwn_eeprom_lock(struct iwn_softc *sc)
   1107 {
   1108 	int i, ntries;
   1109 
   1110 	for (i = 0; i < 100; i++) {
   1111 		/* Request exclusive access to EEPROM. */
   1112 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1113 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1114 
   1115 		/* Spin until we actually get the lock. */
   1116 		for (ntries = 0; ntries < 100; ntries++) {
   1117 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1118 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1119 				return 0;
   1120 			DELAY(10);
   1121 		}
   1122 	}
   1123 	return ETIMEDOUT;
   1124 }
   1125 
   1126 static __inline void
   1127 iwn_eeprom_unlock(struct iwn_softc *sc)
   1128 {
   1129 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1130 }
   1131 
   1132 /*
   1133  * Initialize access by host to One Time Programmable ROM.
   1134  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1135  */
   1136 static int
   1137 iwn_init_otprom(struct iwn_softc *sc)
   1138 {
   1139 	uint16_t prev = 0, base, next;
   1140 	int count, error;
   1141 
   1142 	/* Wait for clock stabilization before accessing prph. */
   1143 	if ((error = iwn_clock_wait(sc)) != 0)
   1144 		return error;
   1145 
   1146 	if ((error = iwn_nic_lock(sc)) != 0)
   1147 		return error;
   1148 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1149 	DELAY(5);
   1150 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1151 	iwn_nic_unlock(sc);
   1152 
   1153 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1154 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1155 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1156 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1157 	}
   1158 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1159 	/* Clear ECC status. */
   1160 	IWN_SETBITS(sc, IWN_OTP_GP,
   1161 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1162 
   1163 	/*
   1164 	 * Find the block before last block (contains the EEPROM image)
   1165 	 * for HW without OTP shadow RAM.
   1166 	 */
   1167 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1168 		/* Switch to absolute addressing mode. */
   1169 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1170 		base = 0;
   1171 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1172 			error = iwn_read_prom_data(sc, base, &next, 2);
   1173 			if (error != 0)
   1174 				return error;
   1175 			if (next == 0)	/* End of linked-list. */
   1176 				break;
   1177 			prev = base;
   1178 			base = le16toh(next);
   1179 		}
   1180 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1181 			return EIO;
   1182 		/* Skip "next" word. */
   1183 		sc->prom_base = prev + 1;
   1184 	}
   1185 	return 0;
   1186 }
   1187 
   1188 static int
   1189 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1190 {
   1191 	uint8_t *out = data;
   1192 	uint32_t val, tmp;
   1193 	int ntries;
   1194 
   1195 	addr += sc->prom_base;
   1196 	for (; count > 0; count -= 2, addr++) {
   1197 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1198 		for (ntries = 0; ntries < 10; ntries++) {
   1199 			val = IWN_READ(sc, IWN_EEPROM);
   1200 			if (val & IWN_EEPROM_READ_VALID)
   1201 				break;
   1202 			DELAY(5);
   1203 		}
   1204 		if (ntries == 10) {
   1205 			aprint_error_dev(sc->sc_dev,
   1206 			    "timeout reading ROM at 0x%x\n", addr);
   1207 			return ETIMEDOUT;
   1208 		}
   1209 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1210 			/* OTPROM, check for ECC errors. */
   1211 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1212 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1213 				aprint_error_dev(sc->sc_dev,
   1214 				    "OTPROM ECC error at 0x%x\n", addr);
   1215 				return EIO;
   1216 			}
   1217 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1218 				/* Correctable ECC error, clear bit. */
   1219 				IWN_SETBITS(sc, IWN_OTP_GP,
   1220 				    IWN_OTP_GP_ECC_CORR_STTS);
   1221 			}
   1222 		}
   1223 		*out++ = val >> 16;
   1224 		if (count > 1)
   1225 			*out++ = val >> 24;
   1226 	}
   1227 	return 0;
   1228 }
   1229 
   1230 static int
   1231 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1232     bus_size_t size, bus_size_t alignment)
   1233 {
   1234 	int nsegs, error;
   1235 
   1236 	dma->tag = tag;
   1237 	dma->size = size;
   1238 
   1239 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1240 	    &dma->map);
   1241 	if (error != 0)
   1242 		goto fail;
   1243 
   1244 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1245 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1246 	if (error != 0)
   1247 		goto fail;
   1248 
   1249 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1250 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1251 	if (error != 0)
   1252 		goto fail;
   1253 
   1254 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1255 	    BUS_DMA_NOWAIT);
   1256 	if (error != 0)
   1257 		goto fail;
   1258 
   1259 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1260 	memset(dma->vaddr, 0, size);
   1261 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1262 
   1263 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1264 	if (kvap != NULL)
   1265 		*kvap = dma->vaddr;
   1266 
   1267 	return 0;
   1268 
   1269 fail:	iwn_dma_contig_free(dma);
   1270 	return error;
   1271 }
   1272 
   1273 static void
   1274 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1275 {
   1276 	if (dma->map != NULL) {
   1277 		if (dma->vaddr != NULL) {
   1278 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1279 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1280 			bus_dmamap_unload(dma->tag, dma->map);
   1281 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1282 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1283 			dma->vaddr = NULL;
   1284 		}
   1285 		bus_dmamap_destroy(dma->tag, dma->map);
   1286 		dma->map = NULL;
   1287 	}
   1288 }
   1289 
   1290 static int
   1291 iwn_alloc_sched(struct iwn_softc *sc)
   1292 {
   1293 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1294 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1295 	    (void **)&sc->sched, sc->schedsz, 1024);
   1296 }
   1297 
   1298 static void
   1299 iwn_free_sched(struct iwn_softc *sc)
   1300 {
   1301 	iwn_dma_contig_free(&sc->sched_dma);
   1302 }
   1303 
   1304 static int
   1305 iwn_alloc_kw(struct iwn_softc *sc)
   1306 {
   1307 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1308 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1309 	    4096);
   1310 }
   1311 
   1312 static void
   1313 iwn_free_kw(struct iwn_softc *sc)
   1314 {
   1315 	iwn_dma_contig_free(&sc->kw_dma);
   1316 }
   1317 
   1318 static int
   1319 iwn_alloc_ict(struct iwn_softc *sc)
   1320 {
   1321 	/* ICT table must be aligned on a 4KB boundary. */
   1322 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1323 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1324 }
   1325 
   1326 static void
   1327 iwn_free_ict(struct iwn_softc *sc)
   1328 {
   1329 	iwn_dma_contig_free(&sc->ict_dma);
   1330 }
   1331 
   1332 static int
   1333 iwn_alloc_fwmem(struct iwn_softc *sc)
   1334 {
   1335 	/* Must be aligned on a 16-byte boundary. */
   1336 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1337 	    sc->fwsz, 16);
   1338 }
   1339 
   1340 static void
   1341 iwn_free_fwmem(struct iwn_softc *sc)
   1342 {
   1343 	iwn_dma_contig_free(&sc->fw_dma);
   1344 }
   1345 
   1346 static int
   1347 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1348 {
   1349 	bus_size_t size;
   1350 	int i, error;
   1351 
   1352 	ring->cur = 0;
   1353 
   1354 	/* Allocate RX descriptors (256-byte aligned). */
   1355 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1356 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1357 	    (void **)&ring->desc, size, 256);
   1358 	if (error != 0) {
   1359 		aprint_error_dev(sc->sc_dev,
   1360 		    "could not allocate RX ring DMA memory\n");
   1361 		goto fail;
   1362 	}
   1363 
   1364 	/* Allocate RX status area (16-byte aligned). */
   1365 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1366 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1367 	if (error != 0) {
   1368 		aprint_error_dev(sc->sc_dev,
   1369 		    "could not allocate RX status DMA memory\n");
   1370 		goto fail;
   1371 	}
   1372 
   1373 	/*
   1374 	 * Allocate and map RX buffers.
   1375 	 */
   1376 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1377 		struct iwn_rx_data *data = &ring->data[i];
   1378 
   1379 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1380 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1381 		    &data->map);
   1382 		if (error != 0) {
   1383 			aprint_error_dev(sc->sc_dev,
   1384 			    "could not create RX buf DMA map\n");
   1385 			goto fail;
   1386 		}
   1387 
   1388 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1389 		if (data->m == NULL) {
   1390 			aprint_error_dev(sc->sc_dev,
   1391 			    "could not allocate RX mbuf\n");
   1392 			error = ENOBUFS;
   1393 			goto fail;
   1394 		}
   1395 
   1396 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1397 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1398 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1399 		if (error != 0) {
   1400 			aprint_error_dev(sc->sc_dev,
   1401 			    "can't not map mbuf (error %d)\n", error);
   1402 			goto fail;
   1403 		}
   1404 
   1405 		/* Set physical address of RX buffer (256-byte aligned). */
   1406 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1407 	}
   1408 
   1409 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1410 	    BUS_DMASYNC_PREWRITE);
   1411 
   1412 	return 0;
   1413 
   1414 fail:	iwn_free_rx_ring(sc, ring);
   1415 	return error;
   1416 }
   1417 
   1418 static void
   1419 iwn_claim_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1420 {
   1421 	int i;
   1422 
   1423 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1424 		struct iwn_rx_data *data = &ring->data[i];
   1425 
   1426 		if (data->m != NULL) {
   1427 			MCLAIM(data->m, &sc->sc_ec.ec_rx_mowner);
   1428 		}
   1429 	}
   1430 }
   1431 
   1432 static void
   1433 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1434 {
   1435 	int ntries;
   1436 
   1437 	if (iwn_nic_lock(sc) == 0) {
   1438 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1439 		for (ntries = 0; ntries < 1000; ntries++) {
   1440 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1441 			    IWN_FH_RX_STATUS_IDLE)
   1442 				break;
   1443 			DELAY(10);
   1444 		}
   1445 		iwn_nic_unlock(sc);
   1446 	}
   1447 	ring->cur = 0;
   1448 	sc->last_rx_valid = 0;
   1449 }
   1450 
   1451 static void
   1452 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1453 {
   1454 	int i;
   1455 
   1456 	iwn_dma_contig_free(&ring->desc_dma);
   1457 	iwn_dma_contig_free(&ring->stat_dma);
   1458 
   1459 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1460 		struct iwn_rx_data *data = &ring->data[i];
   1461 
   1462 		if (data->m != NULL) {
   1463 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1464 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1465 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1466 			m_freem(data->m);
   1467 		}
   1468 		if (data->map != NULL)
   1469 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1470 	}
   1471 }
   1472 
   1473 static int
   1474 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1475 {
   1476 	bus_addr_t paddr;
   1477 	bus_size_t size;
   1478 	int i, error;
   1479 
   1480 	ring->qid = qid;
   1481 	ring->queued = 0;
   1482 	ring->cur = 0;
   1483 
   1484 	/* Allocate TX descriptors (256-byte aligned). */
   1485 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1486 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1487 	    (void **)&ring->desc, size, 256);
   1488 	if (error != 0) {
   1489 		aprint_error_dev(sc->sc_dev,
   1490 		    "could not allocate TX ring DMA memory\n");
   1491 		goto fail;
   1492 	}
   1493 	/*
   1494 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1495 	 * to allocate commands space for other rings.
   1496 	 * XXX Do we really need to allocate descriptors for other rings?
   1497 	 */
   1498 	if (qid > 4)
   1499 		return 0;
   1500 
   1501 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1502 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1503 	    (void **)&ring->cmd, size, 4);
   1504 	if (error != 0) {
   1505 		aprint_error_dev(sc->sc_dev,
   1506 		    "could not allocate TX cmd DMA memory\n");
   1507 		goto fail;
   1508 	}
   1509 
   1510 	paddr = ring->cmd_dma.paddr;
   1511 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1512 		struct iwn_tx_data *data = &ring->data[i];
   1513 
   1514 		data->cmd_paddr = paddr;
   1515 		data->scratch_paddr = paddr + 12;
   1516 		paddr += sizeof (struct iwn_tx_cmd);
   1517 
   1518 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1519 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1520 		    &data->map);
   1521 		if (error != 0) {
   1522 			aprint_error_dev(sc->sc_dev,
   1523 			    "could not create TX buf DMA map\n");
   1524 			goto fail;
   1525 		}
   1526 	}
   1527 	return 0;
   1528 
   1529 fail:	iwn_free_tx_ring(sc, ring);
   1530 	return error;
   1531 }
   1532 
   1533 static void
   1534 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1535 {
   1536 	int i;
   1537 
   1538 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1539 		struct iwn_tx_data *data = &ring->data[i];
   1540 
   1541 		if (data->m != NULL) {
   1542 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1543 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1544 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1545 			m_freem(data->m);
   1546 			data->m = NULL;
   1547 		}
   1548 	}
   1549 	/* Clear TX descriptors. */
   1550 	memset(ring->desc, 0, ring->desc_dma.size);
   1551 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1552 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1553 	sc->qfullmsk &= ~(1 << ring->qid);
   1554 	ring->queued = 0;
   1555 	ring->cur = 0;
   1556 }
   1557 
   1558 static void
   1559 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1560 {
   1561 	int i;
   1562 
   1563 	iwn_dma_contig_free(&ring->desc_dma);
   1564 	iwn_dma_contig_free(&ring->cmd_dma);
   1565 
   1566 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1567 		struct iwn_tx_data *data = &ring->data[i];
   1568 
   1569 		if (data->m != NULL) {
   1570 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1571 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1572 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1573 			m_freem(data->m);
   1574 		}
   1575 		if (data->map != NULL)
   1576 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1577 	}
   1578 }
   1579 
   1580 static void
   1581 iwn5000_ict_reset(struct iwn_softc *sc)
   1582 {
   1583 	/* Disable interrupts. */
   1584 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1585 
   1586 	/* Reset ICT table. */
   1587 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1588 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1589 	    BUS_DMASYNC_PREWRITE);
   1590 	sc->ict_cur = 0;
   1591 
   1592 	/* Set physical address of ICT table (4KB aligned). */
   1593 	DPRINTF(("enabling ICT\n"));
   1594 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1595 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1596 
   1597 	/* Enable periodic RX interrupt. */
   1598 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1599 	/* Switch to ICT interrupt mode in driver. */
   1600 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1601 
   1602 	/* Re-enable interrupts. */
   1603 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1604 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1605 }
   1606 
   1607 static int
   1608 iwn_read_eeprom(struct iwn_softc *sc)
   1609 {
   1610 	struct iwn_ops *ops = &sc->ops;
   1611 	struct ieee80211com *ic = &sc->sc_ic;
   1612 	uint16_t val;
   1613 	int error;
   1614 
   1615 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1616 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1617 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1618 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1619 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1620 	    "OTPROM" : "EEPROM"));
   1621 
   1622 	/* Adapter has to be powered on for EEPROM access to work. */
   1623 	if ((error = iwn_apm_init(sc)) != 0) {
   1624 		aprint_error_dev(sc->sc_dev,
   1625 		    "could not power ON adapter\n");
   1626 		return error;
   1627 	}
   1628 
   1629 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1630 		aprint_error_dev(sc->sc_dev,
   1631 		    "bad ROM signature\n");
   1632 		return EIO;
   1633 	}
   1634 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1635 		aprint_error_dev(sc->sc_dev,
   1636 		    "could not lock ROM (error=%d)\n", error);
   1637 		return error;
   1638 	}
   1639 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1640 		if ((error = iwn_init_otprom(sc)) != 0) {
   1641 			aprint_error_dev(sc->sc_dev,
   1642 			    "could not initialize OTPROM\n");
   1643 			return error;
   1644 		}
   1645 	}
   1646 
   1647 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1648 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1649 	/* Check if HT support is bonded out. */
   1650 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1651 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1652 
   1653 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1654 	sc->rfcfg = le16toh(val);
   1655 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1656 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1657 	if (sc->txchainmask == 0)
   1658 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1659 	if (sc->rxchainmask == 0)
   1660 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1661 
   1662 	/* Read MAC address. */
   1663 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
   1664 
   1665 	/* Read adapter-specific information from EEPROM. */
   1666 	ops->read_eeprom(sc);
   1667 
   1668 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1669 
   1670 	iwn_eeprom_unlock(sc);
   1671 	return 0;
   1672 }
   1673 
   1674 static void
   1675 iwn4965_read_eeprom(struct iwn_softc *sc)
   1676 {
   1677 	uint32_t addr;
   1678 	uint16_t val;
   1679 	int i;
   1680 
   1681 	/* Read regulatory domain (4 ASCII characters). */
   1682 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1683 
   1684 	/* Read the list of authorized channels (20MHz ones only). */
   1685 	for (i = 0; i < 5; i++) {
   1686 		addr = iwn4965_regulatory_bands[i];
   1687 		iwn_read_eeprom_channels(sc, i, addr);
   1688 	}
   1689 
   1690 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1691 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1692 	sc->maxpwr2GHz = val & 0xff;
   1693 	sc->maxpwr5GHz = val >> 8;
   1694 	/* Check that EEPROM values are within valid range. */
   1695 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1696 		sc->maxpwr5GHz = 38;
   1697 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1698 		sc->maxpwr2GHz = 38;
   1699 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1700 
   1701 	/* Read samples for each TX power group. */
   1702 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1703 	    sizeof sc->bands);
   1704 
   1705 	/* Read voltage at which samples were taken. */
   1706 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1707 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1708 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1709 
   1710 #ifdef IWN_DEBUG
   1711 	/* Print samples. */
   1712 	if (iwn_debug > 0) {
   1713 		for (i = 0; i < IWN_NBANDS; i++)
   1714 			iwn4965_print_power_group(sc, i);
   1715 	}
   1716 #endif
   1717 }
   1718 
   1719 #ifdef IWN_DEBUG
   1720 static void
   1721 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1722 {
   1723 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1724 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1725 	int j, c;
   1726 
   1727 	aprint_normal("===band %d===\n", i);
   1728 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1729 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1730 	for (c = 0; c < 2; c++) {
   1731 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1732 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1733 			    "power=%d pa_det=%d\n", c, j,
   1734 			    chans[0].samples[c][j].temp,
   1735 			    chans[0].samples[c][j].gain,
   1736 			    chans[0].samples[c][j].power,
   1737 			    chans[0].samples[c][j].pa_det);
   1738 		}
   1739 	}
   1740 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1741 	for (c = 0; c < 2; c++) {
   1742 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1743 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1744 			    "power=%d pa_det=%d\n", c, j,
   1745 			    chans[1].samples[c][j].temp,
   1746 			    chans[1].samples[c][j].gain,
   1747 			    chans[1].samples[c][j].power,
   1748 			    chans[1].samples[c][j].pa_det);
   1749 		}
   1750 	}
   1751 }
   1752 #endif
   1753 
   1754 static void
   1755 iwn5000_read_eeprom(struct iwn_softc *sc)
   1756 {
   1757 	struct iwn5000_eeprom_calib_hdr hdr;
   1758 	int32_t volt;
   1759 	uint32_t base, addr;
   1760 	uint16_t val;
   1761 	int i;
   1762 
   1763 	/* Read regulatory domain (4 ASCII characters). */
   1764 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1765 	base = le16toh(val);
   1766 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1767 	    sc->eeprom_domain, 4);
   1768 
   1769 	/* Read the list of authorized channels (20MHz ones only). */
   1770 	for (i = 0; i < 5; i++) {
   1771 		addr = base + iwn5000_regulatory_bands[i];
   1772 		iwn_read_eeprom_channels(sc, i, addr);
   1773 	}
   1774 
   1775 	/* Read enhanced TX power information for 6000 Series. */
   1776 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1777 		iwn_read_eeprom_enhinfo(sc);
   1778 
   1779 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1780 	base = le16toh(val);
   1781 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1782 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1783 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1784 	sc->calib_ver = hdr.version;
   1785 
   1786 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1787 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1788 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1789 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1790 		sc->eeprom_voltage = le16toh(hdr.volt);
   1791 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1792 		sc->eeprom_temp = le16toh(val);
   1793 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1794 		sc->eeprom_rawtemp = le16toh(val);
   1795 	}
   1796 
   1797 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1798 		/* Compute temperature offset. */
   1799 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1800 		sc->eeprom_temp = le16toh(val);
   1801 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1802 		volt = le16toh(val);
   1803 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1804 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1805 		    sc->eeprom_temp, volt, sc->temp_off));
   1806 	} else {
   1807 		/* Read crystal calibration. */
   1808 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1809 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1810 		DPRINTF(("crystal calibration 0x%08x\n",
   1811 		    le32toh(sc->eeprom_crystal)));
   1812 	}
   1813 }
   1814 
   1815 static void
   1816 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1817 {
   1818 	struct ieee80211com *ic = &sc->sc_ic;
   1819 	const struct iwn_chan_band *band = &iwn_bands[n];
   1820 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1821 	uint8_t chan;
   1822 	int i;
   1823 
   1824 	iwn_read_prom_data(sc, addr, channels,
   1825 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1826 
   1827 	for (i = 0; i < band->nchan; i++) {
   1828 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1829 			continue;
   1830 
   1831 		chan = band->chan[i];
   1832 
   1833 		if (n == 0) {	/* 2GHz band */
   1834 			ic->ic_channels[chan].ic_freq =
   1835 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1836 			ic->ic_channels[chan].ic_flags =
   1837 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1838 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1839 
   1840 		} else {	/* 5GHz band */
   1841 			/*
   1842 			 * Some adapters support channels 7, 8, 11 and 12
   1843 			 * both in the 2GHz and 4.9GHz bands.
   1844 			 * Because of limitations in our net80211 layer,
   1845 			 * we don't support them in the 4.9GHz band.
   1846 			 */
   1847 			if (chan <= 14)
   1848 				continue;
   1849 
   1850 			ic->ic_channels[chan].ic_freq =
   1851 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1852 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1853 			/* We have at least one valid 5GHz channel. */
   1854 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1855 		}
   1856 
   1857 		/* Is active scan allowed on this channel? */
   1858 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1859 			ic->ic_channels[chan].ic_flags |=
   1860 			    IEEE80211_CHAN_PASSIVE;
   1861 		}
   1862 
   1863 		/* Save maximum allowed TX power for this channel. */
   1864 		sc->maxpwr[chan] = channels[i].maxpwr;
   1865 
   1866 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1867 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1868 	}
   1869 }
   1870 
   1871 static void
   1872 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1873 {
   1874 	struct iwn_eeprom_enhinfo enhinfo[35];
   1875 	uint16_t val, base;
   1876 	int8_t maxpwr;
   1877 	uint8_t flags;
   1878 	int i;
   1879 
   1880 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1881 	base = le16toh(val);
   1882 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1883 	    enhinfo, sizeof enhinfo);
   1884 
   1885 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1886 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1887 		flags = enhinfo[i].flags;
   1888 		if (!(flags & IWN_ENHINFO_VALID))
   1889 			continue;	/* Skip invalid entries. */
   1890 
   1891 		maxpwr = 0;
   1892 		if (sc->txchainmask & IWN_ANT_A)
   1893 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1894 		if (sc->txchainmask & IWN_ANT_B)
   1895 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1896 		if (sc->txchainmask & IWN_ANT_C)
   1897 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1898 		if (sc->ntxchains == 2)
   1899 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1900 		else if (sc->ntxchains == 3)
   1901 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1902 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1903 
   1904 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1905 		sc->enh_maxpwr[i] = maxpwr;
   1906 	}
   1907 }
   1908 
   1909 static struct ieee80211_node *
   1910 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1911 {
   1912 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1913 }
   1914 
   1915 static void
   1916 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1917 {
   1918 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1919 	struct iwn_node *wn = (void *)ni;
   1920 	uint8_t rate;
   1921 	int ridx, i;
   1922 
   1923 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1924 	/* Start at lowest available bit-rate, AMRR will raise. */
   1925 	ni->ni_txrate = 0;
   1926 
   1927 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1928 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1929 		/* Map 802.11 rate to HW rate index. */
   1930 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1931 			if (iwn_rates[ridx].rate == rate)
   1932 				break;
   1933 		wn->ridx[i] = ridx;
   1934 	}
   1935 }
   1936 
   1937 static int
   1938 iwn_media_change(struct ifnet *ifp)
   1939 {
   1940 	struct iwn_softc *sc = ifp->if_softc;
   1941 	struct ieee80211com *ic = &sc->sc_ic;
   1942 	uint8_t rate, ridx;
   1943 	int error;
   1944 
   1945 	error = ieee80211_media_change(ifp);
   1946 	if (error != ENETRESET)
   1947 		return error;
   1948 
   1949 	if (ic->ic_fixed_rate != -1) {
   1950 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1951 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1952 		/* Map 802.11 rate to HW rate index. */
   1953 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1954 			if (iwn_rates[ridx].rate == rate)
   1955 				break;
   1956 		sc->fixed_ridx = ridx;
   1957 	}
   1958 
   1959 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1960 	    (IFF_UP | IFF_RUNNING)) {
   1961 		iwn_stop(ifp, 0);
   1962 		error = iwn_init(ifp);
   1963 	}
   1964 	return error;
   1965 }
   1966 
   1967 static int
   1968 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1969 {
   1970 	struct ifnet *ifp = ic->ic_ifp;
   1971 	struct iwn_softc *sc = ifp->if_softc;
   1972 	int error;
   1973 
   1974 	callout_stop(&sc->calib_to);
   1975 
   1976 	switch (nstate) {
   1977 	case IEEE80211_S_SCAN:
   1978 		/* XXX Do not abort a running scan. */
   1979 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1980 			if (ic->ic_state != nstate)
   1981 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1982 				    "while scanning(%d) ignored\n", nstate,
   1983 				    ic->ic_state);
   1984 			break;
   1985 		}
   1986 
   1987 		/* XXX Not sure if call and flags are needed. */
   1988 		ieee80211_node_table_reset(&ic->ic_scan);
   1989 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1990 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1991 
   1992 		/* Make the link LED blink while we're scanning. */
   1993 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1994 
   1995 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1996 			aprint_error_dev(sc->sc_dev,
   1997 			    "could not initiate scan\n");
   1998 			return error;
   1999 		}
   2000 		ic->ic_state = nstate;
   2001 		return 0;
   2002 
   2003 	case IEEE80211_S_ASSOC:
   2004 		if (ic->ic_state != IEEE80211_S_RUN)
   2005 			break;
   2006 		/* FALLTHROUGH */
   2007 	case IEEE80211_S_AUTH:
   2008 		/* Reset state to handle reassociations correctly. */
   2009 		sc->rxon.associd = 0;
   2010 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   2011 		sc->calib.state = IWN_CALIB_STATE_INIT;
   2012 
   2013 		/* Wait until we hear a beacon before we transmit */
   2014 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   2015 			sc->sc_beacon_wait = 1;
   2016 
   2017 		if ((error = iwn_auth(sc)) != 0) {
   2018 			aprint_error_dev(sc->sc_dev,
   2019 			    "could not move to auth state\n");
   2020 			return error;
   2021 		}
   2022 		break;
   2023 
   2024 	case IEEE80211_S_RUN:
   2025 		/*
   2026 		 * RUN -> RUN transition; Just restart timers.
   2027 		 */
   2028 		if (ic->ic_state == IEEE80211_S_RUN) {
   2029 			sc->calib_cnt = 0;
   2030 			break;
   2031 		}
   2032 
   2033 		/* Wait until we hear a beacon before we transmit */
   2034 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   2035 			sc->sc_beacon_wait = 1;
   2036 
   2037 		if ((error = iwn_run(sc)) != 0) {
   2038 			aprint_error_dev(sc->sc_dev,
   2039 			    "could not move to run state\n");
   2040 			return error;
   2041 		}
   2042 		break;
   2043 
   2044 	case IEEE80211_S_INIT:
   2045 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2046 		sc->calib.state = IWN_CALIB_STATE_INIT;
   2047 		/*
   2048 		 * Purge the xmit queue so we don't have old frames
   2049 		 * during a new association attempt.
   2050 		 */
   2051 		sc->sc_beacon_wait = 0;
   2052 		ifp->if_flags &= ~IFF_OACTIVE;
   2053 		iwn_start(ifp);
   2054 		break;
   2055 	}
   2056 
   2057 	return sc->sc_newstate(ic, nstate, arg);
   2058 }
   2059 
   2060 static void
   2061 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   2062 {
   2063 	struct iwn_softc *sc = arg;
   2064 	struct iwn_node *wn = (struct iwn_node *)ni;
   2065 
   2066 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   2067 }
   2068 
   2069 static void
   2070 iwn_calib_timeout(void *arg)
   2071 {
   2072 	struct iwn_softc *sc = arg;
   2073 	struct ieee80211com *ic = &sc->sc_ic;
   2074 	int s;
   2075 
   2076 	s = splnet();
   2077 	if (ic->ic_fixed_rate == -1) {
   2078 		if (ic->ic_opmode == IEEE80211_M_STA)
   2079 			iwn_iter_func(sc, ic->ic_bss);
   2080 		else
   2081 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   2082 	}
   2083 	/* Force automatic TX power calibration every 60 secs. */
   2084 	if (++sc->calib_cnt >= 120) {
   2085 		uint32_t flags = 0;
   2086 
   2087 		DPRINTF(("sending request for statistics\n"));
   2088 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   2089 		    sizeof flags, 1);
   2090 		sc->calib_cnt = 0;
   2091 	}
   2092 	splx(s);
   2093 
   2094 	/* Automatic rate control triggered every 500ms. */
   2095 	callout_schedule(&sc->calib_to, mstohz(500));
   2096 }
   2097 
   2098 /*
   2099  * Process an RX_PHY firmware notification.  This is usually immediately
   2100  * followed by an MPDU_RX_DONE notification.
   2101  */
   2102 static void
   2103 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2104     struct iwn_rx_data *data)
   2105 {
   2106 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   2107 
   2108 	DPRINTFN(2, ("received PHY stats\n"));
   2109 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2110 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2111 
   2112 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   2113 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   2114 	sc->last_rx_valid = 1;
   2115 }
   2116 
   2117 /*
   2118  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2119  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2120  */
   2121 static void
   2122 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2123     struct iwn_rx_data *data)
   2124 {
   2125 	struct iwn_ops *ops = &sc->ops;
   2126 	struct ieee80211com *ic = &sc->sc_ic;
   2127 	struct ifnet *ifp = ic->ic_ifp;
   2128 	struct iwn_rx_ring *ring = &sc->rxq;
   2129 	struct ieee80211_frame *wh;
   2130 	struct ieee80211_node *ni;
   2131 	struct mbuf *m, *m1;
   2132 	struct iwn_rx_stat *stat;
   2133 	char	*head;
   2134 	uint32_t flags;
   2135 	int error, len, rssi, s;
   2136 
   2137 	if (desc->type == IWN_MPDU_RX_DONE) {
   2138 		/* Check for prior RX_PHY notification. */
   2139 		if (!sc->last_rx_valid) {
   2140 			DPRINTF(("missing RX_PHY\n"));
   2141 			return;
   2142 		}
   2143 		sc->last_rx_valid = 0;
   2144 		stat = &sc->last_rx_stat;
   2145 	} else
   2146 		stat = (struct iwn_rx_stat *)(desc + 1);
   2147 
   2148 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2149 	    BUS_DMASYNC_POSTREAD);
   2150 
   2151 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2152 		aprint_error_dev(sc->sc_dev,
   2153 		    "invalid RX statistic header\n");
   2154 		return;
   2155 	}
   2156 	if (desc->type == IWN_MPDU_RX_DONE) {
   2157 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2158 		head = (char *)(mpdu + 1);
   2159 		len = le16toh(mpdu->len);
   2160 	} else {
   2161 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2162 		len = le16toh(stat->len);
   2163 	}
   2164 
   2165 	flags = le32toh(*(uint32_t *)(head + len));
   2166 
   2167 	/* Discard frames with a bad FCS early. */
   2168 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2169 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2170 		if_statinc(ifp, if_ierrors);
   2171 		return;
   2172 	}
   2173 	/* Discard frames that are too short. */
   2174 	if (len < sizeof (*wh)) {
   2175 		DPRINTF(("frame too short: %d\n", len));
   2176 		ic->ic_stats.is_rx_tooshort++;
   2177 		if_statinc(ifp, if_ierrors);
   2178 		return;
   2179 	}
   2180 
   2181 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2182 	if (m1 == NULL) {
   2183 		ic->ic_stats.is_rx_nobuf++;
   2184 		if_statinc(ifp, if_ierrors);
   2185 		return;
   2186 	}
   2187 	MCLAIM(m1, &sc->sc_ec.ec_rx_mowner);
   2188 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2189 
   2190 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2191 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2192 	if (error != 0) {
   2193 		m_freem(m1);
   2194 
   2195 		/* Try to reload the old mbuf. */
   2196 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2197 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2198 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2199 		if (error != 0) {
   2200 			panic("%s: could not load old RX mbuf",
   2201 			    device_xname(sc->sc_dev));
   2202 		}
   2203 		/* Physical address may have changed. */
   2204 		ring->desc[ring->cur] =
   2205 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2206 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2207 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2208 		    BUS_DMASYNC_PREWRITE);
   2209 		if_statinc(ifp, if_ierrors);
   2210 		return;
   2211 	}
   2212 
   2213 	m = data->m;
   2214 	data->m = m1;
   2215 	/* Update RX descriptor. */
   2216 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2217 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2218 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2219 	    BUS_DMASYNC_PREWRITE);
   2220 
   2221 	/* Finalize mbuf. */
   2222 	m_set_rcvif(m, ifp);
   2223 	m->m_data = head;
   2224 	m->m_pkthdr.len = m->m_len = len;
   2225 
   2226 	s = splnet();
   2227 
   2228 	/* Grab a reference to the source node. */
   2229 	wh = mtod(m, struct ieee80211_frame *);
   2230 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2231 
   2232 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2233 	/* NetBSD does decryption in ieee80211_input. */
   2234 
   2235 	rssi = ops->get_rssi(stat);
   2236 
   2237 	/* XXX Added for NetBSD: scans never stop without it */
   2238 	if (ic->ic_state == IEEE80211_S_SCAN)
   2239 		iwn_fix_channel(ic, m, stat);
   2240 
   2241 	if (sc->sc_drvbpf != NULL) {
   2242 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2243 
   2244 		tap->wr_flags = 0;
   2245 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2246 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2247 		tap->wr_chan_freq =
   2248 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2249 		tap->wr_chan_flags =
   2250 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2251 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2252 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2253 		tap->wr_tsft = stat->tstamp;
   2254 		switch (stat->rate) {
   2255 		/* CCK rates. */
   2256 		case  10: tap->wr_rate =   2; break;
   2257 		case  20: tap->wr_rate =   4; break;
   2258 		case  55: tap->wr_rate =  11; break;
   2259 		case 110: tap->wr_rate =  22; break;
   2260 		/* OFDM rates. */
   2261 		case 0xd: tap->wr_rate =  12; break;
   2262 		case 0xf: tap->wr_rate =  18; break;
   2263 		case 0x5: tap->wr_rate =  24; break;
   2264 		case 0x7: tap->wr_rate =  36; break;
   2265 		case 0x9: tap->wr_rate =  48; break;
   2266 		case 0xb: tap->wr_rate =  72; break;
   2267 		case 0x1: tap->wr_rate =  96; break;
   2268 		case 0x3: tap->wr_rate = 108; break;
   2269 		/* Unknown rate: should not happen. */
   2270 		default:  tap->wr_rate =   0;
   2271 		}
   2272 
   2273 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   2274 	}
   2275 
   2276 	/*
   2277 	 * If it's a beacon and we're waiting, then do the wakeup.
   2278 	 */
   2279 	if (sc->sc_beacon_wait) {
   2280 		uint8_t type, subtype;
   2281 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2282 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2283 		/*
   2284 		 * This assumes at this point we've received our own
   2285 		 * beacon.
   2286 		 */
   2287 		if (type == IEEE80211_FC0_TYPE_MGT &&
   2288 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
   2289 			sc->sc_beacon_wait = 0;
   2290 			ifp->if_flags &= ~IFF_OACTIVE;
   2291 			iwn_start(ifp);
   2292 		}
   2293 	}
   2294 
   2295 	/* Send the frame to the 802.11 layer. */
   2296 	ieee80211_input(ic, m, ni, rssi, 0);
   2297 
   2298 	/* Node is no longer needed. */
   2299 	ieee80211_free_node(ni);
   2300 
   2301 	splx(s);
   2302 }
   2303 
   2304 #ifndef IEEE80211_NO_HT
   2305 /* Process an incoming Compressed BlockAck. */
   2306 static void
   2307 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2308     struct iwn_rx_data *data)
   2309 {
   2310 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2311 	struct iwn_tx_ring *txq;
   2312 
   2313 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2314 	    BUS_DMASYNC_POSTREAD);
   2315 
   2316 	txq = &sc->txq[le16toh(ba->qid)];
   2317 	/* XXX TBD */
   2318 }
   2319 #endif
   2320 
   2321 /*
   2322  * Process a CALIBRATION_RESULT notification sent by the initialization
   2323  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2324  */
   2325 static void
   2326 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2327     struct iwn_rx_data *data)
   2328 {
   2329 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2330 	int len, idx = -1;
   2331 
   2332 	/* Runtime firmware should not send such a notification. */
   2333 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2334 		return;
   2335 
   2336 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2337 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2338 	    BUS_DMASYNC_POSTREAD);
   2339 
   2340 	switch (calib->code) {
   2341 	case IWN5000_PHY_CALIB_DC:
   2342 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2343 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2344 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2345 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2346 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2347 			idx = 0;
   2348 		break;
   2349 	case IWN5000_PHY_CALIB_LO:
   2350 		idx = 1;
   2351 		break;
   2352 	case IWN5000_PHY_CALIB_TX_IQ:
   2353 		idx = 2;
   2354 		break;
   2355 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2356 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2357 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2358 			idx = 3;
   2359 		break;
   2360 	case IWN5000_PHY_CALIB_BASE_BAND:
   2361 		idx = 4;
   2362 		break;
   2363 	}
   2364 	if (idx == -1)	/* Ignore other results. */
   2365 		return;
   2366 
   2367 	/* Save calibration result. */
   2368 	if (sc->calibcmd[idx].buf != NULL)
   2369 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2370 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2371 	if (sc->calibcmd[idx].buf == NULL) {
   2372 		DPRINTF(("not enough memory for calibration result %d\n",
   2373 		    calib->code));
   2374 		return;
   2375 	}
   2376 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2377 	    calib->code, len));
   2378 	sc->calibcmd[idx].len = len;
   2379 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2380 }
   2381 
   2382 /*
   2383  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2384  * The latter is sent by the firmware after each received beacon.
   2385  */
   2386 static void
   2387 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2388     struct iwn_rx_data *data)
   2389 {
   2390 	struct iwn_ops *ops = &sc->ops;
   2391 	struct ieee80211com *ic = &sc->sc_ic;
   2392 	struct iwn_calib_state *calib = &sc->calib;
   2393 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2394 	int temp;
   2395 
   2396 	/* Ignore statistics received during a scan. */
   2397 	if (ic->ic_state != IEEE80211_S_RUN)
   2398 		return;
   2399 
   2400 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2401 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2402 
   2403 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2404 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2405 
   2406 	/* Test if temperature has changed. */
   2407 	if (stats->general.temp != sc->rawtemp) {
   2408 		/* Convert "raw" temperature to degC. */
   2409 		sc->rawtemp = stats->general.temp;
   2410 		temp = ops->get_temperature(sc);
   2411 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2412 
   2413 		/* Update TX power if need be (4965AGN only). */
   2414 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2415 			iwn4965_power_calibration(sc, temp);
   2416 	}
   2417 
   2418 	if (desc->type != IWN_BEACON_STATISTICS)
   2419 		return;	/* Reply to a statistics request. */
   2420 
   2421 	sc->noise = iwn_get_noise(&stats->rx.general);
   2422 
   2423 	/* Test that RSSI and noise are present in stats report. */
   2424 	if (le32toh(stats->rx.general.flags) != 1) {
   2425 		DPRINTF(("received statistics without RSSI\n"));
   2426 		return;
   2427 	}
   2428 
   2429 	/*
   2430 	 * XXX Differential gain calibration makes the 6005 firmware
   2431 	 * crap out, so skip it for now.  This effectively disables
   2432 	 * sensitivity tuning as well.
   2433 	 */
   2434 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2435 		return;
   2436 
   2437 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2438 		iwn_collect_noise(sc, &stats->rx.general);
   2439 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2440 		iwn_tune_sensitivity(sc, &stats->rx);
   2441 }
   2442 
   2443 /*
   2444  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2445  * and 5000 adapters have different incompatible TX status formats.
   2446  */
   2447 static void
   2448 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2449     struct iwn_rx_data *data)
   2450 {
   2451 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2452 
   2453 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2454 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2455 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2456 }
   2457 
   2458 static void
   2459 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2460     struct iwn_rx_data *data)
   2461 {
   2462 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2463 
   2464 #ifdef notyet
   2465 	/* Reset TX scheduler slot. */
   2466 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2467 #endif
   2468 
   2469 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2470 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2471 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2472 }
   2473 
   2474 /*
   2475  * Adapter-independent backend for TX_DONE firmware notifications.
   2476  */
   2477 static void
   2478 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2479     uint8_t status)
   2480 {
   2481 	struct ieee80211com *ic = &sc->sc_ic;
   2482 	struct ifnet *ifp = ic->ic_ifp;
   2483 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2484 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2485 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2486 	int s;
   2487 
   2488 	s = splnet();
   2489 
   2490 	/* Update rate control statistics. */
   2491 	wn->amn.amn_txcnt++;
   2492 	if (ackfailcnt > 0)
   2493 		wn->amn.amn_retrycnt++;
   2494 
   2495 	if (status != 1 && status != 2)
   2496 		if_statinc(ifp, if_oerrors);
   2497 	else
   2498 		if_statinc(ifp, if_opackets);
   2499 
   2500 	/* Unmap and free mbuf. */
   2501 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2502 	    BUS_DMASYNC_POSTWRITE);
   2503 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2504 	m_freem(data->m);
   2505 	data->m = NULL;
   2506 	ieee80211_free_node(data->ni);
   2507 	data->ni = NULL;
   2508 
   2509 	sc->sc_tx_timer = 0;
   2510 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2511 		sc->qfullmsk &= ~(1 << ring->qid);
   2512 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2513 			ifp->if_flags &= ~IFF_OACTIVE;
   2514 			iwn_start(ifp);
   2515 		}
   2516 	}
   2517 
   2518 	splx(s);
   2519 }
   2520 
   2521 /*
   2522  * Process a "command done" firmware notification.  This is where we wakeup
   2523  * processes waiting for a synchronous command completion.
   2524  */
   2525 static void
   2526 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2527 {
   2528 	struct iwn_tx_ring *ring = &sc->txq[4];
   2529 	struct iwn_tx_data *data;
   2530 
   2531 	if ((desc->qid & 0xf) != 4)
   2532 		return;	/* Not a command ack. */
   2533 
   2534 	data = &ring->data[desc->idx];
   2535 
   2536 	/* If the command was mapped in an mbuf, free it. */
   2537 	if (data->m != NULL) {
   2538 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2539 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2540 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2541 		m_freem(data->m);
   2542 		data->m = NULL;
   2543 	}
   2544 	wakeup(&ring->desc[desc->idx]);
   2545 }
   2546 
   2547 /*
   2548  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2549  */
   2550 static void
   2551 iwn_notif_intr(struct iwn_softc *sc)
   2552 {
   2553 	struct iwn_ops *ops = &sc->ops;
   2554 	struct ieee80211com *ic = &sc->sc_ic;
   2555 	struct ifnet *ifp = ic->ic_ifp;
   2556 	uint16_t hw;
   2557 	int s;
   2558 
   2559 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2560 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2561 
   2562 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2563 	while (sc->rxq.cur != hw) {
   2564 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2565 		struct iwn_rx_desc *desc;
   2566 
   2567 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2568 		    BUS_DMASYNC_POSTREAD);
   2569 		desc = mtod(data->m, struct iwn_rx_desc *);
   2570 
   2571 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2572 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2573 
   2574 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2575 			iwn_cmd_done(sc, desc);
   2576 
   2577 		switch (desc->type) {
   2578 		case IWN_RX_PHY:
   2579 			iwn_rx_phy(sc, desc, data);
   2580 			break;
   2581 
   2582 		case IWN_RX_DONE:		/* 4965AGN only. */
   2583 		case IWN_MPDU_RX_DONE:
   2584 			/* An 802.11 frame has been received. */
   2585 			iwn_rx_done(sc, desc, data);
   2586 			break;
   2587 #ifndef IEEE80211_NO_HT
   2588 		case IWN_RX_COMPRESSED_BA:
   2589 			/* A Compressed BlockAck has been received. */
   2590 			iwn_rx_compressed_ba(sc, desc, data);
   2591 			break;
   2592 #endif
   2593 		case IWN_TX_DONE:
   2594 			/* An 802.11 frame has been transmitted. */
   2595 			ops->tx_done(sc, desc, data);
   2596 			break;
   2597 
   2598 		case IWN_RX_STATISTICS:
   2599 		case IWN_BEACON_STATISTICS:
   2600 			iwn_rx_statistics(sc, desc, data);
   2601 			break;
   2602 
   2603 		case IWN_BEACON_MISSED:
   2604 		{
   2605 			struct iwn_beacon_missed *miss =
   2606 			    (struct iwn_beacon_missed *)(desc + 1);
   2607 
   2608 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2609 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2610 			/*
   2611 			 * If more than 5 consecutive beacons are missed,
   2612 			 * reinitialize the sensitivity state machine.
   2613 			 */
   2614 			DPRINTF(("beacons missed %d/%d\n",
   2615 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2616 			if (ic->ic_state == IEEE80211_S_RUN &&
   2617 			    le32toh(miss->consecutive) > 5)
   2618 				(void)iwn_init_sensitivity(sc);
   2619 			break;
   2620 		}
   2621 		case IWN_UC_READY:
   2622 		{
   2623 			struct iwn_ucode_info *uc =
   2624 			    (struct iwn_ucode_info *)(desc + 1);
   2625 
   2626 			/* The microcontroller is ready. */
   2627 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2628 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2629 			DPRINTF(("microcode alive notification version=%d.%d "
   2630 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2631 			    uc->subtype, le32toh(uc->valid)));
   2632 
   2633 			if (le32toh(uc->valid) != 1) {
   2634 				aprint_error_dev(sc->sc_dev,
   2635 				    "microcontroller initialization "
   2636 				    "failed\n");
   2637 				break;
   2638 			}
   2639 			if (uc->subtype == IWN_UCODE_INIT) {
   2640 				/* Save microcontroller report. */
   2641 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2642 			}
   2643 			/* Save the address of the error log in SRAM. */
   2644 			sc->errptr = le32toh(uc->errptr);
   2645 			break;
   2646 		}
   2647 		case IWN_STATE_CHANGED:
   2648 		{
   2649 			uint32_t *status = (uint32_t *)(desc + 1);
   2650 
   2651 			/* Enabled/disabled notification. */
   2652 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2653 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2654 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2655 
   2656 			if (le32toh(*status) & 1) {
   2657 				/* The radio button has to be pushed. */
   2658 				aprint_error_dev(sc->sc_dev,
   2659 				    "Radio transmitter is off\n");
   2660 				/* Turn the interface down. */
   2661 				s = splnet();
   2662 				ifp->if_flags &= ~IFF_UP;
   2663 				iwn_stop(ifp, 1);
   2664 				splx(s);
   2665 				return;	/* No further processing. */
   2666 			}
   2667 			break;
   2668 		}
   2669 		case IWN_START_SCAN:
   2670 		{
   2671 			struct iwn_start_scan *scan =
   2672 			    (struct iwn_start_scan *)(desc + 1);
   2673 
   2674 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2675 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2676 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2677 			    scan->chan, le32toh(scan->status)));
   2678 
   2679 			/* Fix current channel. */
   2680 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2681 			break;
   2682 		}
   2683 		case IWN_STOP_SCAN:
   2684 		{
   2685 			struct iwn_stop_scan *scan =
   2686 			    (struct iwn_stop_scan *)(desc + 1);
   2687 
   2688 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2689 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2690 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2691 			    scan->nchan, scan->status, scan->chan));
   2692 
   2693 			if (scan->status == 1 && scan->chan <= 14 &&
   2694 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2695 				/*
   2696 				 * We just finished scanning 2GHz channels,
   2697 				 * start scanning 5GHz ones.
   2698 				 */
   2699 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2700 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2701 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2702 					break;
   2703 			}
   2704 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2705 			ieee80211_end_scan(ic);
   2706 			break;
   2707 		}
   2708 		case IWN5000_CALIBRATION_RESULT:
   2709 			iwn5000_rx_calib_results(sc, desc, data);
   2710 			break;
   2711 
   2712 		case IWN5000_CALIBRATION_DONE:
   2713 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2714 			wakeup(sc);
   2715 			break;
   2716 		}
   2717 
   2718 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2719 	}
   2720 
   2721 	/* Tell the firmware what we have processed. */
   2722 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2723 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2724 }
   2725 
   2726 /*
   2727  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2728  * from power-down sleep mode.
   2729  */
   2730 static void
   2731 iwn_wakeup_intr(struct iwn_softc *sc)
   2732 {
   2733 	int qid;
   2734 
   2735 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2736 
   2737 	/* Wakeup RX and TX rings. */
   2738 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2739 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2740 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2741 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2742 	}
   2743 }
   2744 
   2745 /*
   2746  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2747  * we can't debug the firmware because it is neither open source nor free, it
   2748  * can help us to identify certain classes of problems.
   2749  */
   2750 static void
   2751 iwn_fatal_intr(struct iwn_softc *sc)
   2752 {
   2753 	struct iwn_fw_dump dump;
   2754 	int i;
   2755 
   2756 	/* Force a complete recalibration on next init. */
   2757 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2758 
   2759 	/* Check that the error log address is valid. */
   2760 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2761 	    sc->errptr + sizeof (dump) >
   2762 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2763 		aprint_error_dev(sc->sc_dev,
   2764 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2765 		return;
   2766 	}
   2767 	if (iwn_nic_lock(sc) != 0) {
   2768 		aprint_error_dev(sc->sc_dev,
   2769 		    "could not read firmware error log\n");
   2770 		return;
   2771 	}
   2772 	/* Read firmware error log from SRAM. */
   2773 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2774 	    sizeof (dump) / sizeof (uint32_t));
   2775 	iwn_nic_unlock(sc);
   2776 
   2777 	if (dump.valid == 0) {
   2778 		aprint_error_dev(sc->sc_dev,
   2779 		    "firmware error log is empty\n");
   2780 		return;
   2781 	}
   2782 	aprint_error("firmware error log:\n");
   2783 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2784 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2785 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2786 	    dump.id);
   2787 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2788 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2789 	aprint_error("  error data      = 0x%08X%08X\n",
   2790 	    dump.error_data[0], dump.error_data[1]);
   2791 	aprint_error("  branch link     = 0x%08X%08X\n",
   2792 	    dump.branch_link[0], dump.branch_link[1]);
   2793 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2794 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2795 	aprint_error("  time            = %u\n", dump.time[0]);
   2796 
   2797 	/* Dump driver status (TX and RX rings) while we're here. */
   2798 	aprint_error("driver status:\n");
   2799 	for (i = 0; i < sc->ntxqs; i++) {
   2800 		struct iwn_tx_ring *ring = &sc->txq[i];
   2801 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2802 		    i, ring->qid, ring->cur, ring->queued);
   2803 	}
   2804 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2805 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2806 }
   2807 
   2808 static int
   2809 iwn_intr(void *arg)
   2810 {
   2811 	struct iwn_softc *sc = arg;
   2812 
   2813 	/* Disable interrupts. */
   2814 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2815 
   2816 	softint_schedule(sc->sc_soft_ih);
   2817 	return 1;
   2818 }
   2819 
   2820 static void
   2821 iwn_softintr(void *arg)
   2822 {
   2823 	struct iwn_softc *sc = arg;
   2824 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2825 	uint32_t r1, r2, tmp;
   2826 	int s;
   2827 
   2828 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2829 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2830 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2831 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2832 		tmp = 0;
   2833 		while (sc->ict[sc->ict_cur] != 0) {
   2834 			tmp |= sc->ict[sc->ict_cur];
   2835 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2836 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2837 		}
   2838 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2839 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2840 		tmp = le32toh(tmp);
   2841 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2842 			tmp = 0;
   2843 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2844 			tmp |= 0x8000;
   2845 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2846 		r2 = 0;	/* Unused. */
   2847 	} else {
   2848 		r1 = IWN_READ(sc, IWN_INT);
   2849 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2850 			return;	/* Hardware gone! */
   2851 		r2 = IWN_READ(sc, IWN_FH_INT);
   2852 	}
   2853 	if (r1 == 0 && r2 == 0) {
   2854 		goto out;	/* Interrupt not for us. */
   2855 	}
   2856 
   2857 	/* Acknowledge interrupts. */
   2858 	IWN_WRITE(sc, IWN_INT, r1);
   2859 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2860 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2861 
   2862 	if (r1 & IWN_INT_RF_TOGGLED) {
   2863 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2864 		aprint_error_dev(sc->sc_dev,
   2865 		    "RF switch: radio %s\n",
   2866 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2867 	}
   2868 	if (r1 & IWN_INT_CT_REACHED) {
   2869 		aprint_error_dev(sc->sc_dev,
   2870 		    "critical temperature reached!\n");
   2871 	}
   2872 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2873 		aprint_error_dev(sc->sc_dev,
   2874 		    "fatal firmware error\n");
   2875 		/* Dump firmware error log and stop. */
   2876 		iwn_fatal_intr(sc);
   2877 		s = splnet();
   2878 		ifp->if_flags &= ~IFF_UP;
   2879 		iwn_stop(ifp, 1);
   2880 		splx(s);
   2881 		return;
   2882 	}
   2883 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2884 	    (r2 & IWN_FH_INT_RX)) {
   2885 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2886 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2887 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2888 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2889 			iwn_notif_intr(sc);
   2890 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2891 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2892 				    IWN_INT_PERIODIC_ENA);
   2893 			}
   2894 		} else
   2895 			iwn_notif_intr(sc);
   2896 	}
   2897 
   2898 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2899 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2900 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2901 		wakeup(sc);	/* FH DMA transfer completed. */
   2902 	}
   2903 
   2904 	if (r1 & IWN_INT_ALIVE)
   2905 		wakeup(sc);	/* Firmware is alive. */
   2906 
   2907 	if (r1 & IWN_INT_WAKEUP)
   2908 		iwn_wakeup_intr(sc);
   2909 
   2910 out:
   2911 	/* Re-enable interrupts. */
   2912 	if (ifp->if_flags & IFF_UP)
   2913 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2914 }
   2915 
   2916 /*
   2917  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2918  * 5000 adapters use a slightly different format).
   2919  */
   2920 static void
   2921 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2922     uint16_t len)
   2923 {
   2924 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2925 
   2926 	*w = htole16(len + 8);
   2927 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2928 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2929 	    sizeof (uint16_t),
   2930 	    BUS_DMASYNC_PREWRITE);
   2931 	if (idx < IWN_SCHED_WINSZ) {
   2932 		*(w + IWN_TX_RING_COUNT) = *w;
   2933 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2934 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2935 		    (char *)(void *)sc->sched_dma.vaddr,
   2936 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2937 	}
   2938 }
   2939 
   2940 static void
   2941 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2942     uint16_t len)
   2943 {
   2944 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2945 
   2946 	*w = htole16(id << 12 | (len + 8));
   2947 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2948 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2949 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2950 	if (idx < IWN_SCHED_WINSZ) {
   2951 		*(w + IWN_TX_RING_COUNT) = *w;
   2952 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2953 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2954 		    (char *)(void *)sc->sched_dma.vaddr,
   2955 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2956 	}
   2957 }
   2958 
   2959 #ifdef notyet
   2960 static void
   2961 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2962 {
   2963 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2964 
   2965 	*w = (*w & htole16(0xf000)) | htole16(1);
   2966 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2967 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2968 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2969 	if (idx < IWN_SCHED_WINSZ) {
   2970 		*(w + IWN_TX_RING_COUNT) = *w;
   2971 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2972 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2973 		    (char *)(void *)sc->sched_dma.vaddr,
   2974 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2975 	}
   2976 }
   2977 #endif
   2978 
   2979 static int
   2980 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2981 {
   2982 	struct ieee80211com *ic = &sc->sc_ic;
   2983 	struct iwn_node *wn = (void *)ni;
   2984 	struct iwn_tx_ring *ring;
   2985 	struct iwn_tx_desc *desc;
   2986 	struct iwn_tx_data *data;
   2987 	struct iwn_tx_cmd *cmd;
   2988 	struct iwn_cmd_data *tx;
   2989 	const struct iwn_rate *rinfo;
   2990 	struct ieee80211_frame *wh;
   2991 	struct ieee80211_key *k = NULL;
   2992 	struct mbuf *m1;
   2993 	uint32_t flags;
   2994 	u_int hdrlen;
   2995 	bus_dma_segment_t *seg;
   2996 	uint8_t tid, ridx, txant, type;
   2997 	int i, totlen, error, pad;
   2998 
   2999 	const struct chanAccParams *cap;
   3000 	int noack;
   3001 	int hdrlen2;
   3002 
   3003 	wh = mtod(m, struct ieee80211_frame *);
   3004 	hdrlen = ieee80211_anyhdrsize(wh);
   3005 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   3006 
   3007 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   3008 	    sizeof (struct ieee80211_qosframe) :
   3009 	    sizeof (struct ieee80211_frame);
   3010 
   3011 	if (hdrlen != hdrlen2)
   3012 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   3013 		hdrlen, hdrlen2);
   3014 
   3015 	/* XXX OpenBSD sets a different tid when using QOS */
   3016 	tid = 0;
   3017 	if (ieee80211_has_qos(wh)) {
   3018 		cap = &ic->ic_wme.wme_chanParams;
   3019 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   3020 	}
   3021 	else
   3022 		noack = 0;
   3023 
   3024 	ring = &sc->txq[ac];
   3025 	desc = &ring->desc[ring->cur];
   3026 	data = &ring->data[ring->cur];
   3027 
   3028 	/* Choose a TX rate index. */
   3029 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3030 	    type != IEEE80211_FC0_TYPE_DATA) {
   3031 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   3032 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   3033 	} else if (ic->ic_fixed_rate != -1) {
   3034 		ridx = sc->fixed_ridx;
   3035 	} else
   3036 		ridx = wn->ridx[ni->ni_txrate];
   3037 	rinfo = &iwn_rates[ridx];
   3038 
   3039 	/* Encrypt the frame if need be. */
   3040 	/*
   3041 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   3042 	 * in order to match old code and other drivers. Tests with
   3043 	 * tcpdump indicates that the order is irrelevant, however,
   3044 	 * as bpf produces unencrypted data for both ordering choices.
   3045 	 */
   3046 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   3047 		k = ieee80211_crypto_encap(ic, ni, m);
   3048 		if (k == NULL) {
   3049 			m_freem(m);
   3050 			return ENOBUFS;
   3051 		}
   3052 		/* Packet header may have moved, reset our local pointer. */
   3053 		wh = mtod(m, struct ieee80211_frame *);
   3054 	}
   3055 	totlen = m->m_pkthdr.len;
   3056 
   3057 	if (sc->sc_drvbpf != NULL) {
   3058 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   3059 
   3060 		tap->wt_flags = 0;
   3061 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   3062 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   3063 		tap->wt_rate = rinfo->rate;
   3064 		tap->wt_hwqueue = ac;
   3065 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   3066 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3067 
   3068 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
   3069 	}
   3070 
   3071 	/* Prepare TX firmware command. */
   3072 	cmd = &ring->cmd[ring->cur];
   3073 	cmd->code = IWN_CMD_TX_DATA;
   3074 	cmd->flags = 0;
   3075 	cmd->qid = ring->qid;
   3076 	cmd->idx = ring->cur;
   3077 
   3078 	tx = (struct iwn_cmd_data *)cmd->data;
   3079 	/* NB: No need to clear tx, all fields are reinitialized here. */
   3080 	tx->scratch = 0;	/* clear "scratch" area */
   3081 
   3082 	flags = 0;
   3083 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3084 		/* Unicast frame, check if an ACK is expected. */
   3085 		if (!noack)
   3086 			flags |= IWN_TX_NEED_ACK;
   3087 	}
   3088 
   3089 #ifdef notyet
   3090 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   3091 	if ((wh->i_fc[0] &
   3092 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   3093 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   3094 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   3095 #endif
   3096 
   3097 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   3098 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   3099 
   3100 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3101 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3102 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3103 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3104 			flags |= IWN_TX_NEED_RTS;
   3105 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3106 		    ridx >= IWN_RIDX_OFDM6) {
   3107 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3108 				flags |= IWN_TX_NEED_CTS;
   3109 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3110 				flags |= IWN_TX_NEED_RTS;
   3111 		}
   3112 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3113 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3114 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3115 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3116 				flags |= IWN_TX_NEED_PROTECTION;
   3117 			} else
   3118 				flags |= IWN_TX_FULL_TXOP;
   3119 		}
   3120 	}
   3121 
   3122 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3123 	    type != IEEE80211_FC0_TYPE_DATA)
   3124 		tx->id = sc->broadcast_id;
   3125 	else
   3126 		tx->id = wn->id;
   3127 
   3128 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3129 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3130 
   3131 #ifndef IEEE80211_STA_ONLY
   3132 		/* Tell HW to set timestamp in probe responses. */
   3133 		/* XXX NetBSD rev 1.11 added probe requests here but */
   3134 		/* probe requests do not take timestamps (from Bergamini). */
   3135 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3136 			flags |= IWN_TX_INSERT_TSTAMP;
   3137 #endif
   3138 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3139 		/* changes here. These are not needed (from Bergamini). */
   3140 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3141 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3142 			tx->timeout = htole16(3);
   3143 		else
   3144 			tx->timeout = htole16(2);
   3145 	} else
   3146 		tx->timeout = htole16(0);
   3147 
   3148 	if (hdrlen & 3) {
   3149 		/* First segment length must be a multiple of 4. */
   3150 		flags |= IWN_TX_NEED_PADDING;
   3151 		pad = 4 - (hdrlen & 3);
   3152 	} else
   3153 		pad = 0;
   3154 
   3155 	tx->len = htole16(totlen);
   3156 	tx->tid = tid;
   3157 	tx->rts_ntries = 60;
   3158 	tx->data_ntries = 15;
   3159 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3160 	tx->plcp = rinfo->plcp;
   3161 	tx->rflags = rinfo->flags;
   3162 	if (tx->id == sc->broadcast_id) {
   3163 		/* Group or management frame. */
   3164 		tx->linkq = 0;
   3165 		/* XXX Alternate between antenna A and B? */
   3166 		txant = IWN_LSB(sc->txchainmask);
   3167 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3168 	} else {
   3169 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3170 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3171 	}
   3172 	/* Set physical address of "scratch area". */
   3173 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3174 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3175 
   3176 	/* Copy 802.11 header in TX command. */
   3177 	/* XXX NetBSD changed this in rev 1.20 */
   3178 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3179 
   3180 	/* Trim 802.11 header. */
   3181 	m_adj(m, hdrlen);
   3182 	tx->security = 0;
   3183 	tx->flags = htole32(flags);
   3184 
   3185 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3186 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3187 	if (error != 0) {
   3188 		if (error != EFBIG) {
   3189 			aprint_error_dev(sc->sc_dev,
   3190 			    "can't map mbuf (error %d)\n", error);
   3191 			m_freem(m);
   3192 			return error;
   3193 		}
   3194 		/* Too many DMA segments, linearize mbuf. */
   3195 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3196 		if (m1 == NULL) {
   3197 			m_freem(m);
   3198 			return ENOBUFS;
   3199 		}
   3200 		MCLAIM(m1, &sc->sc_ec.ec_tx_mowner);
   3201 		if (m->m_pkthdr.len > MHLEN) {
   3202 			MCLGET(m1, M_DONTWAIT);
   3203 			if (!(m1->m_flags & M_EXT)) {
   3204 				m_freem(m);
   3205 				m_freem(m1);
   3206 				return ENOBUFS;
   3207 			}
   3208 		}
   3209 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3210 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3211 		m_freem(m);
   3212 		m = m1;
   3213 
   3214 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3215 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3216 		if (error != 0) {
   3217 			aprint_error_dev(sc->sc_dev,
   3218 			    "can't map mbuf (error %d)\n", error);
   3219 			m_freem(m);
   3220 			return error;
   3221 		}
   3222 	}
   3223 
   3224 	data->m = m;
   3225 	data->ni = ni;
   3226 
   3227 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3228 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3229 
   3230 	/* Fill TX descriptor. */
   3231 	desc->nsegs = 1 + data->map->dm_nsegs;
   3232 	/* First DMA segment is used by the TX command. */
   3233 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3234 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3235 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3236 	/* Other DMA segments are for data payload. */
   3237 	seg = data->map->dm_segs;
   3238 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3239 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3240 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3241 		    seg->ds_len << 4);
   3242 		seg++;
   3243 	}
   3244 
   3245 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3246 	    BUS_DMASYNC_PREWRITE);
   3247 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3248 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3249 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3250 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3251 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3252 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3253 
   3254 #ifdef notyet
   3255 	/* Update TX scheduler. */
   3256 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3257 #endif
   3258 
   3259 	/* Kick TX ring. */
   3260 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3261 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3262 
   3263 	/* Mark TX ring as full if we reach a certain threshold. */
   3264 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3265 		sc->qfullmsk |= 1 << ring->qid;
   3266 
   3267 	return 0;
   3268 }
   3269 
   3270 static void
   3271 iwn_start(struct ifnet *ifp)
   3272 {
   3273 	struct iwn_softc *sc = ifp->if_softc;
   3274 	struct ieee80211com *ic = &sc->sc_ic;
   3275 	struct ieee80211_node *ni;
   3276 	struct ether_header *eh;
   3277 	struct mbuf *m;
   3278 	int ac;
   3279 
   3280 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3281 		return;
   3282 
   3283 	for (;;) {
   3284 		if (sc->sc_beacon_wait == 1) {
   3285 			ifp->if_flags |= IFF_OACTIVE;
   3286 			break;
   3287 		}
   3288 
   3289 		if (sc->qfullmsk != 0) {
   3290 			ifp->if_flags |= IFF_OACTIVE;
   3291 			break;
   3292 		}
   3293 		/* Send pending management frames first. */
   3294 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3295 		if (m != NULL) {
   3296 			ni = M_GETCTX(m, struct ieee80211_node *);
   3297 			ac = 0;
   3298 			goto sendit;
   3299 		}
   3300 		if (ic->ic_state != IEEE80211_S_RUN)
   3301 			break;
   3302 
   3303 		/* Encapsulate and send data frames. */
   3304 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3305 		if (m == NULL)
   3306 			break;
   3307 		if (m->m_len < sizeof (*eh) &&
   3308 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3309 			if_statinc(ifp, if_oerrors);
   3310 			continue;
   3311 		}
   3312 		eh = mtod(m, struct ether_header *);
   3313 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3314 		if (ni == NULL) {
   3315 			m_freem(m);
   3316 			if_statinc(ifp, if_oerrors);
   3317 			continue;
   3318 		}
   3319 		/* classify mbuf so we can find which tx ring to use */
   3320 		if (ieee80211_classify(ic, m, ni) != 0) {
   3321 			m_freem(m);
   3322 			ieee80211_free_node(ni);
   3323 			if_statinc(ifp, if_oerrors);
   3324 			continue;
   3325 		}
   3326 
   3327 		/* No QoS encapsulation for EAPOL frames. */
   3328 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3329 		    M_WME_GETAC(m) : WME_AC_BE;
   3330 
   3331 		if (sc->sc_beacon_wait == 0)
   3332 			bpf_mtap(ifp, m, BPF_D_OUT);
   3333 
   3334 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3335 			ieee80211_free_node(ni);
   3336 			if_statinc(ifp, if_oerrors);
   3337 			continue;
   3338 		}
   3339 sendit:
   3340 		if (sc->sc_beacon_wait)
   3341 			continue;
   3342 
   3343 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   3344 
   3345 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3346 			ieee80211_free_node(ni);
   3347 			if_statinc(ifp, if_oerrors);
   3348 			continue;
   3349 		}
   3350 
   3351 		sc->sc_tx_timer = 5;
   3352 		ifp->if_timer = 1;
   3353 	}
   3354 
   3355 	if (sc->sc_beacon_wait > 1)
   3356 		sc->sc_beacon_wait = 0;
   3357 }
   3358 
   3359 static void
   3360 iwn_watchdog(struct ifnet *ifp)
   3361 {
   3362 	struct iwn_softc *sc = ifp->if_softc;
   3363 
   3364 	ifp->if_timer = 0;
   3365 
   3366 	if (sc->sc_tx_timer > 0) {
   3367 		if (--sc->sc_tx_timer == 0) {
   3368 			aprint_error_dev(sc->sc_dev,
   3369 			    "device timeout\n");
   3370 			ifp->if_flags &= ~IFF_UP;
   3371 			iwn_stop(ifp, 1);
   3372 			if_statinc(ifp, if_oerrors);
   3373 			return;
   3374 		}
   3375 		ifp->if_timer = 1;
   3376 	}
   3377 
   3378 	ieee80211_watchdog(&sc->sc_ic);
   3379 }
   3380 
   3381 static int
   3382 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3383 {
   3384 	struct iwn_softc *sc = ifp->if_softc;
   3385 	struct ieee80211com *ic = &sc->sc_ic;
   3386 	const struct sockaddr *sa;
   3387 	int s, error = 0;
   3388 
   3389 	s = splnet();
   3390 
   3391 	switch (cmd) {
   3392 	case SIOCSIFADDR:
   3393 		ifp->if_flags |= IFF_UP;
   3394 		/* FALLTHROUGH */
   3395 	case SIOCSIFFLAGS:
   3396 		/* XXX Added as it is in every NetBSD driver */
   3397 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3398 			break;
   3399 		if (ifp->if_flags & IFF_UP) {
   3400 			if (!(ifp->if_flags & IFF_RUNNING))
   3401 				error = iwn_init(ifp);
   3402 		} else {
   3403 			if (ifp->if_flags & IFF_RUNNING)
   3404 				iwn_stop(ifp, 1);
   3405 		}
   3406 		break;
   3407 
   3408 	case SIOCADDMULTI:
   3409 	case SIOCDELMULTI:
   3410 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3411 		error = (cmd == SIOCADDMULTI) ?
   3412 		    ether_addmulti(sa, &sc->sc_ec) :
   3413 		    ether_delmulti(sa, &sc->sc_ec);
   3414 
   3415 		if (error == ENETRESET)
   3416 			error = 0;
   3417 		break;
   3418 
   3419 	default:
   3420 		error = ieee80211_ioctl(ic, cmd, data);
   3421 	}
   3422 
   3423 	if (error == ENETRESET) {
   3424 		error = 0;
   3425 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3426 		    (IFF_UP | IFF_RUNNING)) {
   3427 			iwn_stop(ifp, 0);
   3428 			error = iwn_init(ifp);
   3429 		}
   3430 	}
   3431 
   3432 	splx(s);
   3433 	return error;
   3434 }
   3435 
   3436 /*
   3437  * Send a command to the firmware.
   3438  */
   3439 static int
   3440 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3441 {
   3442 	struct iwn_tx_ring *ring = &sc->txq[4];
   3443 	struct iwn_tx_desc *desc;
   3444 	struct iwn_tx_data *data;
   3445 	struct iwn_tx_cmd *cmd;
   3446 	struct mbuf *m;
   3447 	bus_addr_t paddr;
   3448 	int totlen, error;
   3449 
   3450 	desc = &ring->desc[ring->cur];
   3451 	data = &ring->data[ring->cur];
   3452 	totlen = 4 + size;
   3453 
   3454 	if (size > sizeof cmd->data) {
   3455 		/* Command is too large to fit in a descriptor. */
   3456 		if (totlen > MCLBYTES)
   3457 			return EINVAL;
   3458 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3459 		if (m == NULL)
   3460 			return ENOMEM;
   3461 		MCLAIM(m, &sc->sc_ec.ec_tx_mowner);
   3462 		if (totlen > MHLEN) {
   3463 			MCLGET(m, M_DONTWAIT);
   3464 			if (!(m->m_flags & M_EXT)) {
   3465 				m_freem(m);
   3466 				return ENOMEM;
   3467 			}
   3468 		}
   3469 		cmd = mtod(m, struct iwn_tx_cmd *);
   3470 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3471 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3472 		if (error != 0) {
   3473 			m_freem(m);
   3474 			return error;
   3475 		}
   3476 		data->m = m;
   3477 		paddr = data->map->dm_segs[0].ds_addr;
   3478 	} else {
   3479 		cmd = &ring->cmd[ring->cur];
   3480 		paddr = data->cmd_paddr;
   3481 	}
   3482 
   3483 	cmd->code = code;
   3484 	cmd->flags = 0;
   3485 	cmd->qid = ring->qid;
   3486 	cmd->idx = ring->cur;
   3487 	/*
   3488 	 * Coverity:[OUT_OF_BOUNDS]
   3489 	 * false positive since, allocated in mbuf if it does not fit
   3490 	 */
   3491 	memcpy(cmd->data, buf, size);
   3492 
   3493 	desc->nsegs = 1;
   3494 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3495 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3496 
   3497 	if (size > sizeof cmd->data) {
   3498 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3499 		    BUS_DMASYNC_PREWRITE);
   3500 	} else {
   3501 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3502 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3503 		    totlen, BUS_DMASYNC_PREWRITE);
   3504 	}
   3505 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3506 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3507 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3508 
   3509 #ifdef notyet
   3510 	/* Update TX scheduler. */
   3511 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3512 #endif
   3513 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3514 
   3515 	/* Kick command ring. */
   3516 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3517 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3518 
   3519 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3520 }
   3521 
   3522 static int
   3523 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3524 {
   3525 	struct iwn4965_node_info hnode;
   3526 	char *src, *dst;
   3527 
   3528 	/*
   3529 	 * We use the node structure for 5000 Series internally (it is
   3530 	 * a superset of the one for 4965AGN). We thus copy the common
   3531 	 * fields before sending the command.
   3532 	 */
   3533 	src = (char *)node;
   3534 	dst = (char *)&hnode;
   3535 	memcpy(dst, src, 48);
   3536 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3537 	memcpy(dst + 48, src + 72, 20);
   3538 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3539 }
   3540 
   3541 static int
   3542 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3543 {
   3544 	/* Direct mapping. */
   3545 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3546 }
   3547 
   3548 static int
   3549 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3550 {
   3551 	struct iwn_node *wn = (void *)ni;
   3552 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3553 	struct iwn_cmd_link_quality linkq;
   3554 	const struct iwn_rate *rinfo;
   3555 	uint8_t txant;
   3556 	int i, txrate;
   3557 
   3558 	/* Use the first valid TX antenna. */
   3559 	txant = IWN_LSB(sc->txchainmask);
   3560 
   3561 	memset(&linkq, 0, sizeof linkq);
   3562 	linkq.id = wn->id;
   3563 	linkq.antmsk_1stream = txant;
   3564 	linkq.antmsk_2stream = IWN_ANT_AB;
   3565 	linkq.ampdu_max = 31;
   3566 	linkq.ampdu_threshold = 3;
   3567 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3568 
   3569 	/* Start at highest available bit-rate. */
   3570 	txrate = rs->rs_nrates - 1;
   3571 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3572 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3573 		linkq.retry[i].plcp = rinfo->plcp;
   3574 		linkq.retry[i].rflags = rinfo->flags;
   3575 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3576 		/* Next retry at immediate lower bit-rate. */
   3577 		if (txrate > 0)
   3578 			txrate--;
   3579 	}
   3580 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3581 }
   3582 
   3583 /*
   3584  * Broadcast node is used to send group-addressed and management frames.
   3585  */
   3586 static int
   3587 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3588 {
   3589 	struct iwn_ops *ops = &sc->ops;
   3590 	struct iwn_node_info node;
   3591 	struct iwn_cmd_link_quality linkq;
   3592 	const struct iwn_rate *rinfo;
   3593 	uint8_t txant;
   3594 	int i, error;
   3595 
   3596 	memset(&node, 0, sizeof node);
   3597 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3598 	node.id = sc->broadcast_id;
   3599 	DPRINTF(("adding broadcast node\n"));
   3600 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3601 		return error;
   3602 
   3603 	/* Use the first valid TX antenna. */
   3604 	txant = IWN_LSB(sc->txchainmask);
   3605 
   3606 	memset(&linkq, 0, sizeof linkq);
   3607 	linkq.id = sc->broadcast_id;
   3608 	linkq.antmsk_1stream = txant;
   3609 	linkq.antmsk_2stream = IWN_ANT_AB;
   3610 	linkq.ampdu_max = 64;
   3611 	linkq.ampdu_threshold = 3;
   3612 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3613 
   3614 	/* Use lowest mandatory bit-rate. */
   3615 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3616 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3617 	linkq.retry[0].plcp = rinfo->plcp;
   3618 	linkq.retry[0].rflags = rinfo->flags;
   3619 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3620 	/* Use same bit-rate for all TX retries. */
   3621 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3622 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3623 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3624 	}
   3625 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3626 }
   3627 
   3628 static void
   3629 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3630 {
   3631 	struct iwn_cmd_led led;
   3632 
   3633 	/* Clear microcode LED ownership. */
   3634 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3635 
   3636 	led.which = which;
   3637 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3638 	led.off = off;
   3639 	led.on = on;
   3640 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3641 }
   3642 
   3643 /*
   3644  * Set the critical temperature at which the firmware will stop the radio
   3645  * and notify us.
   3646  */
   3647 static int
   3648 iwn_set_critical_temp(struct iwn_softc *sc)
   3649 {
   3650 	struct iwn_critical_temp crit;
   3651 	int32_t temp;
   3652 
   3653 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3654 
   3655 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3656 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3657 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3658 		temp = IWN_CTOK(110);
   3659 	else
   3660 		temp = 110;
   3661 	memset(&crit, 0, sizeof crit);
   3662 	crit.tempR = htole32(temp);
   3663 	DPRINTF(("setting critical temperature to %d\n", temp));
   3664 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3665 }
   3666 
   3667 static int
   3668 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3669 {
   3670 	struct iwn_cmd_timing cmd;
   3671 	uint64_t val, mod;
   3672 
   3673 	memset(&cmd, 0, sizeof cmd);
   3674 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3675 	cmd.bintval = htole16(ni->ni_intval);
   3676 	cmd.lintval = htole16(10);
   3677 
   3678 	/* Compute remaining time until next beacon. */
   3679 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3680 	mod = le64toh(cmd.tstamp) % val;
   3681 	cmd.binitval = htole32((uint32_t)(val - mod));
   3682 
   3683 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3684 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3685 
   3686 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3687 }
   3688 
   3689 static void
   3690 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3691 {
   3692 	/* Adjust TX power if need be (delta >= 3 degC). */
   3693 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3694 	if (abs(temp - sc->temp) >= 3) {
   3695 		/* Record temperature of last calibration. */
   3696 		sc->temp = temp;
   3697 		(void)iwn4965_set_txpower(sc, 1);
   3698 	}
   3699 }
   3700 
   3701 /*
   3702  * Set TX power for current channel (each rate has its own power settings).
   3703  * This function takes into account the regulatory information from EEPROM,
   3704  * the current temperature and the current voltage.
   3705  */
   3706 static int
   3707 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3708 {
   3709 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3710 #define fdivround(a, b, n)	\
   3711 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3712 /* Linear interpolation. */
   3713 #define interpolate(x, x1, y1, x2, y2, n)	\
   3714 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3715 
   3716 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3717 	struct ieee80211com *ic = &sc->sc_ic;
   3718 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3719 	struct ieee80211_channel *ch;
   3720 	struct iwn4965_cmd_txpower cmd;
   3721 	struct iwn4965_eeprom_chan_samples *chans;
   3722 	const uint8_t *rf_gain, *dsp_gain;
   3723 	int32_t vdiff, tdiff;
   3724 	int i, c, grp, maxpwr;
   3725 	uint8_t chan;
   3726 
   3727 	/* Retrieve current channel from last RXON. */
   3728 	chan = sc->rxon.chan;
   3729 	DPRINTF(("setting TX power for channel %d\n", chan));
   3730 	ch = &ic->ic_channels[chan];
   3731 
   3732 	memset(&cmd, 0, sizeof cmd);
   3733 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3734 	cmd.chan = chan;
   3735 
   3736 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3737 		maxpwr   = sc->maxpwr5GHz;
   3738 		rf_gain  = iwn4965_rf_gain_5ghz;
   3739 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3740 	} else {
   3741 		maxpwr   = sc->maxpwr2GHz;
   3742 		rf_gain  = iwn4965_rf_gain_2ghz;
   3743 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3744 	}
   3745 
   3746 	/* Compute voltage compensation. */
   3747 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3748 	if (vdiff > 0)
   3749 		vdiff *= 2;
   3750 	if (abs(vdiff) > 2)
   3751 		vdiff = 0;
   3752 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3753 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3754 
   3755 	/* Get channel attenuation group. */
   3756 	if (chan <= 20)		/* 1-20 */
   3757 		grp = 4;
   3758 	else if (chan <= 43)	/* 34-43 */
   3759 		grp = 0;
   3760 	else if (chan <= 70)	/* 44-70 */
   3761 		grp = 1;
   3762 	else if (chan <= 124)	/* 71-124 */
   3763 		grp = 2;
   3764 	else			/* 125-200 */
   3765 		grp = 3;
   3766 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3767 
   3768 	/* Get channel sub-band. */
   3769 	for (i = 0; i < IWN_NBANDS; i++)
   3770 		if (sc->bands[i].lo != 0 &&
   3771 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3772 			break;
   3773 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3774 		return EINVAL;
   3775 	chans = sc->bands[i].chans;
   3776 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3777 
   3778 	for (c = 0; c < 2; c++) {
   3779 		uint8_t power, gain, temp;
   3780 		int maxchpwr, pwr, ridx, idx;
   3781 
   3782 		power = interpolate(chan,
   3783 		    chans[0].num, chans[0].samples[c][1].power,
   3784 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3785 		gain  = interpolate(chan,
   3786 		    chans[0].num, chans[0].samples[c][1].gain,
   3787 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3788 		temp  = interpolate(chan,
   3789 		    chans[0].num, chans[0].samples[c][1].temp,
   3790 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3791 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3792 		    c, power, gain, temp));
   3793 
   3794 		/* Compute temperature compensation. */
   3795 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3796 		DPRINTF(("temperature compensation=%d (current=%d, "
   3797 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3798 
   3799 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3800 			/* Convert dBm to half-dBm. */
   3801 			maxchpwr = sc->maxpwr[chan] * 2;
   3802 			if ((ridx / 8) & 1)
   3803 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3804 
   3805 			pwr = maxpwr;
   3806 
   3807 			/* Adjust TX power based on rate. */
   3808 			if ((ridx % 8) == 5)
   3809 				pwr -= 15;	/* OFDM48: -7.5dB */
   3810 			else if ((ridx % 8) == 6)
   3811 				pwr -= 17;	/* OFDM54: -8.5dB */
   3812 			else if ((ridx % 8) == 7)
   3813 				pwr -= 20;	/* OFDM60: -10dB */
   3814 			else
   3815 				pwr -= 10;	/* Others: -5dB */
   3816 
   3817 			/* Do not exceed channel max TX power. */
   3818 			if (pwr > maxchpwr)
   3819 				pwr = maxchpwr;
   3820 
   3821 			idx = gain - (pwr - power) - tdiff - vdiff;
   3822 			if ((ridx / 8) & 1)	/* MIMO */
   3823 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3824 
   3825 			if (cmd.band == 0)
   3826 				idx += 9;	/* 5GHz */
   3827 			if (ridx == IWN_RIDX_MAX)
   3828 				idx += 5;	/* CCK */
   3829 
   3830 			/* Make sure idx stays in a valid range. */
   3831 			if (idx < 0)
   3832 				idx = 0;
   3833 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3834 				idx = IWN4965_MAX_PWR_INDEX;
   3835 
   3836 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3837 			    c, ridx, idx));
   3838 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3839 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3840 		}
   3841 	}
   3842 
   3843 	DPRINTF(("setting TX power for chan %d\n", chan));
   3844 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3845 
   3846 #undef interpolate
   3847 #undef fdivround
   3848 }
   3849 
   3850 static int
   3851 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3852 {
   3853 	struct iwn5000_cmd_txpower cmd;
   3854 	int cmdid;
   3855 
   3856 	/*
   3857 	 * TX power calibration is handled automatically by the firmware
   3858 	 * for 5000 Series.
   3859 	 */
   3860 	memset(&cmd, 0, sizeof cmd);
   3861 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3862 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3863 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3864 	DPRINTF(("setting TX power\n"));
   3865 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
   3866 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
   3867 	else
   3868 		cmdid = IWN_CMD_TXPOWER_DBM;
   3869 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
   3870 }
   3871 
   3872 /*
   3873  * Retrieve the maximum RSSI (in dBm) among receivers.
   3874  */
   3875 static int
   3876 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3877 {
   3878 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3879 	uint8_t mask, agc;
   3880 	int rssi;
   3881 
   3882 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3883 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3884 
   3885 	rssi = 0;
   3886 	if (mask & IWN_ANT_A)
   3887 		rssi = MAX(rssi, phy->rssi[0]);
   3888 	if (mask & IWN_ANT_B)
   3889 		rssi = MAX(rssi, phy->rssi[2]);
   3890 	if (mask & IWN_ANT_C)
   3891 		rssi = MAX(rssi, phy->rssi[4]);
   3892 
   3893 	return rssi - agc - IWN_RSSI_TO_DBM;
   3894 }
   3895 
   3896 static int
   3897 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3898 {
   3899 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3900 	uint8_t agc;
   3901 	int rssi;
   3902 
   3903 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3904 
   3905 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3906 		   le16toh(phy->rssi[1]) & 0xff);
   3907 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3908 
   3909 	return rssi - agc - IWN_RSSI_TO_DBM;
   3910 }
   3911 
   3912 /*
   3913  * Retrieve the average noise (in dBm) among receivers.
   3914  */
   3915 static int
   3916 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3917 {
   3918 	int i, total, nbant, noise;
   3919 
   3920 	total = nbant = 0;
   3921 	for (i = 0; i < 3; i++) {
   3922 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3923 			continue;
   3924 		total += noise;
   3925 		nbant++;
   3926 	}
   3927 	/* There should be at least one antenna but check anyway. */
   3928 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3929 }
   3930 
   3931 /*
   3932  * Compute temperature (in degC) from last received statistics.
   3933  */
   3934 static int
   3935 iwn4965_get_temperature(struct iwn_softc *sc)
   3936 {
   3937 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3938 	int32_t r1, r2, r3, r4, temp;
   3939 
   3940 	r1 = le32toh(uc->temp[0].chan20MHz);
   3941 	r2 = le32toh(uc->temp[1].chan20MHz);
   3942 	r3 = le32toh(uc->temp[2].chan20MHz);
   3943 	r4 = le32toh(sc->rawtemp);
   3944 
   3945 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3946 		return 0;
   3947 
   3948 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3949 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3950 	/* Compute temperature in Kelvin. */
   3951 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3952 	temp = (temp * 97) / 100 + 8;
   3953 
   3954 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3955 	return IWN_KTOC(temp);
   3956 }
   3957 
   3958 static int
   3959 iwn5000_get_temperature(struct iwn_softc *sc)
   3960 {
   3961 	int32_t temp;
   3962 
   3963 	/*
   3964 	 * Temperature is not used by the driver for 5000 Series because
   3965 	 * TX power calibration is handled by firmware.  We export it to
   3966 	 * users through the sensor framework though.
   3967 	 */
   3968 	temp = le32toh(sc->rawtemp);
   3969 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3970 		temp = (temp / -5) + sc->temp_off;
   3971 		temp = IWN_KTOC(temp);
   3972 	}
   3973 	return temp;
   3974 }
   3975 
   3976 /*
   3977  * Initialize sensitivity calibration state machine.
   3978  */
   3979 static int
   3980 iwn_init_sensitivity(struct iwn_softc *sc)
   3981 {
   3982 	struct iwn_ops *ops = &sc->ops;
   3983 	struct iwn_calib_state *calib = &sc->calib;
   3984 	uint32_t flags;
   3985 	int error;
   3986 
   3987 	/* Reset calibration state machine. */
   3988 	memset(calib, 0, sizeof (*calib));
   3989 	calib->state = IWN_CALIB_STATE_INIT;
   3990 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3991 	/* Set initial correlation values. */
   3992 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3993 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3994 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3995 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3996 	calib->cck_x4      = 125;
   3997 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3998 	calib->energy_cck  = sc->limits->energy_cck;
   3999 
   4000 	/* Write initial sensitivity. */
   4001 	if ((error = iwn_send_sensitivity(sc)) != 0)
   4002 		return error;
   4003 
   4004 	/* Write initial gains. */
   4005 	if ((error = ops->init_gains(sc)) != 0)
   4006 		return error;
   4007 
   4008 	/* Request statistics at each beacon interval. */
   4009 	flags = 0;
   4010 	DPRINTF(("sending request for statistics\n"));
   4011 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   4012 }
   4013 
   4014 /*
   4015  * Collect noise and RSSI statistics for the first 20 beacons received
   4016  * after association and use them to determine connected antennas and
   4017  * to set differential gains.
   4018  */
   4019 static void
   4020 iwn_collect_noise(struct iwn_softc *sc,
   4021     const struct iwn_rx_general_stats *stats)
   4022 {
   4023 	struct iwn_ops *ops = &sc->ops;
   4024 	struct iwn_calib_state *calib = &sc->calib;
   4025 	uint32_t val;
   4026 	int i;
   4027 
   4028 	/* Accumulate RSSI and noise for all 3 antennas. */
   4029 	for (i = 0; i < 3; i++) {
   4030 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   4031 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   4032 	}
   4033 	/* NB: We update differential gains only once after 20 beacons. */
   4034 	if (++calib->nbeacons < 20)
   4035 		return;
   4036 
   4037 	/* Determine highest average RSSI. */
   4038 	val = MAX(calib->rssi[0], calib->rssi[1]);
   4039 	val = MAX(calib->rssi[2], val);
   4040 
   4041 	/* Determine which antennas are connected. */
   4042 	sc->chainmask = sc->rxchainmask;
   4043 	for (i = 0; i < 3; i++)
   4044 		if (val - calib->rssi[i] > 15 * 20)
   4045 			sc->chainmask &= ~(1 << i);
   4046 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   4047 	    sc->rxchainmask, sc->chainmask));
   4048 
   4049 	/* If none of the TX antennas are connected, keep at least one. */
   4050 	if ((sc->chainmask & sc->txchainmask) == 0)
   4051 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   4052 
   4053 	(void)ops->set_gains(sc);
   4054 	calib->state = IWN_CALIB_STATE_RUN;
   4055 
   4056 #ifdef notyet
   4057 	/* XXX Disable RX chains with no antennas connected. */
   4058 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   4059 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4060 #endif
   4061 
   4062 	/* Enable power-saving mode if requested by user. */
   4063 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   4064 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   4065 }
   4066 
   4067 static int
   4068 iwn4965_init_gains(struct iwn_softc *sc)
   4069 {
   4070 	struct iwn_phy_calib_gain cmd;
   4071 
   4072 	memset(&cmd, 0, sizeof cmd);
   4073 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4074 	/* Differential gains initially set to 0 for all 3 antennas. */
   4075 	DPRINTF(("setting initial differential gains\n"));
   4076 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4077 }
   4078 
   4079 static int
   4080 iwn5000_init_gains(struct iwn_softc *sc)
   4081 {
   4082 	struct iwn_phy_calib cmd;
   4083 
   4084 	memset(&cmd, 0, sizeof cmd);
   4085 	cmd.code = sc->reset_noise_gain;
   4086 	cmd.ngroups = 1;
   4087 	cmd.isvalid = 1;
   4088 	DPRINTF(("setting initial differential gains\n"));
   4089 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4090 }
   4091 
   4092 static int
   4093 iwn4965_set_gains(struct iwn_softc *sc)
   4094 {
   4095 	struct iwn_calib_state *calib = &sc->calib;
   4096 	struct iwn_phy_calib_gain cmd;
   4097 	int i, delta, noise;
   4098 
   4099 	/* Get minimal noise among connected antennas. */
   4100 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   4101 	for (i = 0; i < 3; i++)
   4102 		if (sc->chainmask & (1 << i))
   4103 			noise = MIN(calib->noise[i], noise);
   4104 
   4105 	memset(&cmd, 0, sizeof cmd);
   4106 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4107 	/* Set differential gains for connected antennas. */
   4108 	for (i = 0; i < 3; i++) {
   4109 		if (sc->chainmask & (1 << i)) {
   4110 			/* Compute attenuation (in unit of 1.5dB). */
   4111 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4112 			/* NB: delta <= 0 */
   4113 			/* Limit to [-4.5dB,0]. */
   4114 			cmd.gain[i] = MIN(abs(delta), 3);
   4115 			if (delta < 0)
   4116 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4117 		}
   4118 	}
   4119 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4120 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4121 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4122 }
   4123 
   4124 static int
   4125 iwn5000_set_gains(struct iwn_softc *sc)
   4126 {
   4127 	struct iwn_calib_state *calib = &sc->calib;
   4128 	struct iwn_phy_calib_gain cmd;
   4129 	int i, ant, div, delta;
   4130 
   4131 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4132 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4133 
   4134 	memset(&cmd, 0, sizeof cmd);
   4135 	cmd.code = sc->noise_gain;
   4136 	cmd.ngroups = 1;
   4137 	cmd.isvalid = 1;
   4138 	/* Get first available RX antenna as referential. */
   4139 	ant = IWN_LSB(sc->rxchainmask);
   4140 	/* Set differential gains for other antennas. */
   4141 	for (i = ant + 1; i < 3; i++) {
   4142 		if (sc->chainmask & (1 << i)) {
   4143 			/* The delta is relative to antenna "ant". */
   4144 			delta = ((int32_t)calib->noise[ant] -
   4145 			    (int32_t)calib->noise[i]) / div;
   4146 			/* Limit to [-4.5dB,+4.5dB]. */
   4147 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4148 			if (delta < 0)
   4149 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4150 		}
   4151 	}
   4152 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4153 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4154 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4155 }
   4156 
   4157 /*
   4158  * Tune RF RX sensitivity based on the number of false alarms detected
   4159  * during the last beacon period.
   4160  */
   4161 static void
   4162 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4163 {
   4164 #define inc(val, inc, max)			\
   4165 	if ((val) < (max)) {			\
   4166 		if ((val) < (max) - (inc))	\
   4167 			(val) += (inc);		\
   4168 		else				\
   4169 			(val) = (max);		\
   4170 		needs_update = 1;		\
   4171 	}
   4172 #define dec(val, dec, min)			\
   4173 	if ((val) > (min)) {			\
   4174 		if ((val) > (min) + (dec))	\
   4175 			(val) -= (dec);		\
   4176 		else				\
   4177 			(val) = (min);		\
   4178 		needs_update = 1;		\
   4179 	}
   4180 
   4181 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4182 	struct iwn_calib_state *calib = &sc->calib;
   4183 	uint32_t val, rxena, fa;
   4184 	uint32_t energy[3], energy_min;
   4185 	uint8_t noise[3], noise_ref;
   4186 	int i, needs_update = 0;
   4187 
   4188 	/* Check that we've been enabled long enough. */
   4189 	if ((rxena = le32toh(stats->general.load)) == 0)
   4190 		return;
   4191 
   4192 	/* Compute number of false alarms since last call for OFDM. */
   4193 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4194 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4195 	fa *= 200 * 1024;	/* 200TU */
   4196 
   4197 	/* Save counters values for next call. */
   4198 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4199 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4200 
   4201 	if (fa > 50 * rxena) {
   4202 		/* High false alarm count, decrease sensitivity. */
   4203 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4204 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4205 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4206 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4207 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4208 
   4209 	} else if (fa < 5 * rxena) {
   4210 		/* Low false alarm count, increase sensitivity. */
   4211 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4212 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4213 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4214 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4215 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4216 	}
   4217 
   4218 	/* Compute maximum noise among 3 receivers. */
   4219 	for (i = 0; i < 3; i++)
   4220 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4221 	val = MAX(noise[0], noise[1]);
   4222 	val = MAX(noise[2], val);
   4223 	/* Insert it into our samples table. */
   4224 	calib->noise_samples[calib->cur_noise_sample] = val;
   4225 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4226 
   4227 	/* Compute maximum noise among last 20 samples. */
   4228 	noise_ref = calib->noise_samples[0];
   4229 	for (i = 1; i < 20; i++)
   4230 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4231 
   4232 	/* Compute maximum energy among 3 receivers. */
   4233 	for (i = 0; i < 3; i++)
   4234 		energy[i] = le32toh(stats->general.energy[i]);
   4235 	val = MIN(energy[0], energy[1]);
   4236 	val = MIN(energy[2], val);
   4237 	/* Insert it into our samples table. */
   4238 	calib->energy_samples[calib->cur_energy_sample] = val;
   4239 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4240 
   4241 	/* Compute minimum energy among last 10 samples. */
   4242 	energy_min = calib->energy_samples[0];
   4243 	for (i = 1; i < 10; i++)
   4244 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4245 	energy_min += 6;
   4246 
   4247 	/* Compute number of false alarms since last call for CCK. */
   4248 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4249 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4250 	fa *= 200 * 1024;	/* 200TU */
   4251 
   4252 	/* Save counters values for next call. */
   4253 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4254 	calib->fa_cck = le32toh(stats->cck.fa);
   4255 
   4256 	if (fa > 50 * rxena) {
   4257 		/* High false alarm count, decrease sensitivity. */
   4258 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4259 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4260 		calib->low_fa = 0;
   4261 
   4262 		if (calib->cck_x4 > 160) {
   4263 			calib->noise_ref = noise_ref;
   4264 			if (calib->energy_cck > 2)
   4265 				dec(calib->energy_cck, 2, energy_min);
   4266 		}
   4267 		if (calib->cck_x4 < 160) {
   4268 			calib->cck_x4 = 161;
   4269 			needs_update = 1;
   4270 		} else
   4271 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4272 
   4273 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4274 
   4275 	} else if (fa < 5 * rxena) {
   4276 		/* Low false alarm count, increase sensitivity. */
   4277 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4278 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4279 		calib->low_fa++;
   4280 
   4281 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4282 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4283 		     calib->low_fa > 100)) {
   4284 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4285 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4286 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4287 		}
   4288 	} else {
   4289 		/* Not worth to increase or decrease sensitivity. */
   4290 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4291 		calib->low_fa = 0;
   4292 		calib->noise_ref = noise_ref;
   4293 
   4294 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4295 			/* Previous interval had many false alarms. */
   4296 			dec(calib->energy_cck, 8, energy_min);
   4297 		}
   4298 		calib->cck_state = IWN_CCK_STATE_INIT;
   4299 	}
   4300 
   4301 	if (needs_update)
   4302 		(void)iwn_send_sensitivity(sc);
   4303 #undef dec
   4304 #undef inc
   4305 }
   4306 
   4307 static int
   4308 iwn_send_sensitivity(struct iwn_softc *sc)
   4309 {
   4310 	struct iwn_calib_state *calib = &sc->calib;
   4311 	struct iwn_enhanced_sensitivity_cmd cmd;
   4312 	int len;
   4313 
   4314 	memset(&cmd, 0, sizeof cmd);
   4315 	len = sizeof (struct iwn_sensitivity_cmd);
   4316 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4317 	/* OFDM modulation. */
   4318 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4319 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4320 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4321 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4322 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4323 	cmd.energy_ofdm_th   = htole16(62);
   4324 	/* CCK modulation. */
   4325 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4326 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4327 	cmd.energy_cck       = htole16(calib->energy_cck);
   4328 	/* Barker modulation: use default values. */
   4329 	cmd.corr_barker      = htole16(190);
   4330 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
   4331 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4332 		goto send;
   4333 	/* Enhanced sensitivity settings. */
   4334 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4335 	cmd.ofdm_det_slope_mrc = htole16(668);
   4336 	cmd.ofdm_det_icept_mrc = htole16(4);
   4337 	cmd.ofdm_det_slope     = htole16(486);
   4338 	cmd.ofdm_det_icept     = htole16(37);
   4339 	cmd.cck_det_slope_mrc  = htole16(853);
   4340 	cmd.cck_det_icept_mrc  = htole16(4);
   4341 	cmd.cck_det_slope      = htole16(476);
   4342 	cmd.cck_det_icept      = htole16(99);
   4343 send:
   4344 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4345 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4346 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4347 	    calib->energy_cck));
   4348 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4349 }
   4350 
   4351 /*
   4352  * Set STA mode power saving level (between 0 and 5).
   4353  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4354  */
   4355 static int
   4356 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4357 {
   4358 	struct iwn_pmgt_cmd cmd;
   4359 	const struct iwn_pmgt *pmgt;
   4360 	uint32_t maxp, skip_dtim;
   4361 	pcireg_t reg;
   4362 	int i;
   4363 
   4364 	/* Select which PS parameters to use. */
   4365 	if (dtim <= 2)
   4366 		pmgt = &iwn_pmgt[0][level];
   4367 	else if (dtim <= 10)
   4368 		pmgt = &iwn_pmgt[1][level];
   4369 	else
   4370 		pmgt = &iwn_pmgt[2][level];
   4371 
   4372 	memset(&cmd, 0, sizeof cmd);
   4373 	if (level != 0)	/* not CAM */
   4374 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4375 	if (level == 5)
   4376 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4377 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4378 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4379 	    sc->sc_cap_off + PCIE_LCSR);
   4380 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4381 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4382 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4383 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4384 
   4385 	if (dtim == 0) {
   4386 		dtim = 1;
   4387 		skip_dtim = 0;
   4388 	} else
   4389 		skip_dtim = pmgt->skip_dtim;
   4390 	if (skip_dtim != 0) {
   4391 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4392 		maxp = pmgt->intval[4];
   4393 		if (maxp == (uint32_t)-1)
   4394 			maxp = dtim * (skip_dtim + 1);
   4395 		else if (maxp > dtim)
   4396 			maxp = (maxp / dtim) * dtim;
   4397 	} else
   4398 		maxp = dtim;
   4399 	for (i = 0; i < 5; i++)
   4400 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4401 
   4402 	DPRINTF(("setting power saving level to %d\n", level));
   4403 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4404 }
   4405 
   4406 int
   4407 iwn5000_runtime_calib(struct iwn_softc *sc)
   4408 {
   4409 	struct iwn5000_calib_config cmd;
   4410 
   4411 	memset(&cmd, 0, sizeof cmd);
   4412 	cmd.ucode.once.enable = 0xffffffff;
   4413 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4414 	DPRINTF(("configuring runtime calibration\n"));
   4415 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4416 }
   4417 
   4418 static int
   4419 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4420 {
   4421 	struct iwn_bluetooth bluetooth;
   4422 
   4423 	memset(&bluetooth, 0, sizeof bluetooth);
   4424 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4425 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4426 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4427 
   4428 	DPRINTF(("configuring bluetooth coexistence\n"));
   4429 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4430 }
   4431 
   4432 static int
   4433 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4434 {
   4435 	uint8_t prio_table[16];
   4436 
   4437 	memset(&prio_table, 0, sizeof prio_table);
   4438 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4439 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4440 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4441 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4442 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4443 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4444 	prio_table[ 6] =  6;	/* dtim				*/
   4445 	prio_table[ 7] =  8;	/* scan52			*/
   4446 	prio_table[ 8] = 10;	/* scan24			*/
   4447 
   4448 	DPRINTF(("sending priority lookup table\n"));
   4449 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4450 	               &prio_table, sizeof prio_table, 0);
   4451 }
   4452 
   4453 static int
   4454 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4455     size_t len)
   4456 {
   4457 	struct iwn_btcoex_prot btprot;
   4458 	int error;
   4459 
   4460 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4461 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4462 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4463 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4464 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4465 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4466 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4467 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4468 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4469 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4470 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4471 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4472 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4473 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4474 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4475 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4476 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4477 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4478 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4479 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4480 	basic->reduce_txpower = 0; /* as not implemented */
   4481 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4482 
   4483 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4484 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4485 	if (error != 0) {
   4486 		aprint_error_dev(sc->sc_dev,
   4487 			"could not configure advanced bluetooth coexistence\n");
   4488 		return error;
   4489 	}
   4490 
   4491 	error = iwn_config_bt_coex_prio_table(sc);
   4492 	if (error != 0) {
   4493 		aprint_error_dev(sc->sc_dev,
   4494 			"could not configure send BT priority table\n");
   4495 		return error;
   4496 	}
   4497 
   4498 	/* Force BT state machine change */
   4499 	memset(&btprot, 0, sizeof btprot);
   4500 	btprot.open = 1;
   4501 	btprot.type = 1;
   4502 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4503 	if (error != 0) {
   4504 		aprint_error_dev(sc->sc_dev, "could not open BT protocol\n");
   4505 		return error;
   4506 	}
   4507 
   4508 	btprot.open = 0;
   4509 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4510 	if (error != 0) {
   4511 		aprint_error_dev(sc->sc_dev, "could not close BT protocol\n");
   4512 		return error;
   4513 	}
   4514 	return 0;
   4515 }
   4516 
   4517 static int
   4518 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4519 {
   4520 	struct iwn_bt_adv1 d;
   4521 
   4522 	memset(&d, 0, sizeof d);
   4523 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4524 	d.tx_prio_boost = 0;
   4525 	d.rx_prio_boost = 0;
   4526 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4527 }
   4528 
   4529 static int
   4530 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4531 {
   4532 	struct iwn_bt_adv2 d;
   4533 
   4534 	memset(&d, 0, sizeof d);
   4535 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4536 	d.tx_prio_boost = 0;
   4537 	d.rx_prio_boost = 0;
   4538 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4539 }
   4540 
   4541 static int
   4542 iwn_config(struct iwn_softc *sc)
   4543 {
   4544 	struct iwn_ops *ops = &sc->ops;
   4545 	struct ieee80211com *ic = &sc->sc_ic;
   4546 	struct ifnet *ifp = ic->ic_ifp;
   4547 	uint32_t txmask;
   4548 	uint16_t rxchain;
   4549 	int error;
   4550 
   4551 	error = ops->config_bt_coex(sc);
   4552 	if (error != 0) {
   4553 		aprint_error_dev(sc->sc_dev,
   4554 			"could not configure bluetooth coexistence\n");
   4555 		return error;
   4556 	}
   4557 
   4558 	/* Set radio temperature sensor offset. */
   4559 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4560 		error = iwn6000_temp_offset_calib(sc);
   4561 		if (error != 0) {
   4562 			aprint_error_dev(sc->sc_dev,
   4563 			    "could not set temperature offset\n");
   4564 			return error;
   4565 		}
   4566 	}
   4567 
   4568 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4569 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4570 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4571 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4572 		error = iwn2000_temp_offset_calib(sc);
   4573 		if (error != 0) {
   4574 			aprint_error_dev(sc->sc_dev,
   4575 			    "could not set temperature offset\n");
   4576 			return error;
   4577 		}
   4578 	}
   4579 
   4580 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4581 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4582 		/* Configure runtime DC calibration. */
   4583 		error = iwn5000_runtime_calib(sc);
   4584 		if (error != 0) {
   4585 			aprint_error_dev(sc->sc_dev,
   4586 			    "could not configure runtime calibration\n");
   4587 			return error;
   4588 		}
   4589 	}
   4590 
   4591 	/* Configure valid TX chains for 5000 Series. */
   4592 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4593 		txmask = htole32(sc->txchainmask);
   4594 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4595 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4596 		    sizeof txmask, 0);
   4597 		if (error != 0) {
   4598 			aprint_error_dev(sc->sc_dev,
   4599 			    "could not configure valid TX chains\n");
   4600 			return error;
   4601 		}
   4602 	}
   4603 
   4604 	/* Set mode, channel, RX filter and enable RX. */
   4605 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4606 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4607 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4608 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4609 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4610 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4611 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4612 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4613 	switch (ic->ic_opmode) {
   4614 	case IEEE80211_M_STA:
   4615 		sc->rxon.mode = IWN_MODE_STA;
   4616 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4617 		break;
   4618 	case IEEE80211_M_MONITOR:
   4619 		sc->rxon.mode = IWN_MODE_MONITOR;
   4620 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4621 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4622 		break;
   4623 	default:
   4624 		/* Should not get there. */
   4625 		break;
   4626 	}
   4627 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4628 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4629 	sc->rxon.ht_single_mask = 0xff;
   4630 	sc->rxon.ht_dual_mask = 0xff;
   4631 	sc->rxon.ht_triple_mask = 0xff;
   4632 	rxchain =
   4633 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4634 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4635 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4636 	sc->rxon.rxchain = htole16(rxchain);
   4637 	DPRINTF(("setting configuration\n"));
   4638 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4639 	if (error != 0) {
   4640 		aprint_error_dev(sc->sc_dev,
   4641 		    "RXON command failed\n");
   4642 		return error;
   4643 	}
   4644 
   4645 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4646 		aprint_error_dev(sc->sc_dev,
   4647 		    "could not add broadcast node\n");
   4648 		return error;
   4649 	}
   4650 
   4651 	/* Configuration has changed, set TX power accordingly. */
   4652 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4653 		aprint_error_dev(sc->sc_dev,
   4654 		    "could not set TX power\n");
   4655 		return error;
   4656 	}
   4657 
   4658 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4659 		aprint_error_dev(sc->sc_dev,
   4660 		    "could not set critical temperature\n");
   4661 		return error;
   4662 	}
   4663 
   4664 	/* Set power saving level to CAM during initialization. */
   4665 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4666 		aprint_error_dev(sc->sc_dev,
   4667 		    "could not set power saving level\n");
   4668 		return error;
   4669 	}
   4670 	return 0;
   4671 }
   4672 
   4673 static uint16_t
   4674 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4675     uint8_t n_probes)
   4676 {
   4677 	/* No channel? Default to 2GHz settings */
   4678 	if (flags & IEEE80211_CHAN_2GHZ)
   4679 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4680 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4681 
   4682 	/* 5GHz dwell time */
   4683 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4684 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4685 }
   4686 
   4687 /*
   4688  * Limit the total dwell time to 85% of the beacon interval.
   4689  *
   4690  * Returns the dwell time in milliseconds.
   4691  */
   4692 static uint16_t
   4693 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4694 {
   4695 	struct ieee80211com *ic = &sc->sc_ic;
   4696 	struct ieee80211_node *ni = ic->ic_bss;
   4697 	int bintval = 0;
   4698 
   4699 	/* bintval is in TU (1.024mS) */
   4700 	if (ni != NULL)
   4701 		bintval = ni->ni_intval;
   4702 
   4703 	/*
   4704 	 * If it's non-zero, we should calculate the minimum of
   4705 	 * it and the DWELL_BASE.
   4706 	 *
   4707 	 * XXX Yes, the math should take into account that bintval
   4708 	 * is 1.024mS, not 1mS..
   4709 	 */
   4710 	if (bintval > 0)
   4711 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4712 
   4713 	/* No association context? Default */
   4714 	return IWN_PASSIVE_DWELL_BASE;
   4715 }
   4716 
   4717 static uint16_t
   4718 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4719 {
   4720 	uint16_t passive;
   4721 	if (flags & IEEE80211_CHAN_2GHZ)
   4722 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4723 	else
   4724 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4725 
   4726 	/* Clamp to the beacon interval if we're associated */
   4727 	return iwn_limit_dwell(sc, passive);
   4728 }
   4729 
   4730 static int
   4731 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4732 {
   4733 	struct ieee80211com *ic = &sc->sc_ic;
   4734 	struct iwn_scan_hdr *hdr;
   4735 	struct iwn_cmd_data *tx;
   4736 	struct iwn_scan_essid *essid;
   4737 	struct iwn_scan_chan *chan;
   4738 	struct ieee80211_frame *wh;
   4739 	struct ieee80211_rateset *rs;
   4740 	struct ieee80211_channel *c;
   4741 	uint8_t *buf, *frm;
   4742 	uint16_t rxchain, dwell_active, dwell_passive;
   4743 	uint8_t txant;
   4744 	int buflen, error, is_active;
   4745 
   4746 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4747 	if (buf == NULL) {
   4748 		aprint_error_dev(sc->sc_dev,
   4749 		    "could not allocate buffer for scan command\n");
   4750 		return ENOMEM;
   4751 	}
   4752 	hdr = (struct iwn_scan_hdr *)buf;
   4753 	/*
   4754 	 * Move to the next channel if no frames are received within 10ms
   4755 	 * after sending the probe request.
   4756 	 */
   4757 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4758 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4759 
   4760 	/* Select antennas for scanning. */
   4761 	rxchain =
   4762 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4763 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4764 	    IWN_RXCHAIN_DRIVER_FORCE;
   4765 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4766 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4767 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4768 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4769 	} else	/* Use all available RX antennas. */
   4770 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4771 	hdr->rxchain = htole16(rxchain);
   4772 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4773 
   4774 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4775 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4776 	tx->id = sc->broadcast_id;
   4777 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4778 
   4779 	if (flags & IEEE80211_CHAN_5GHZ) {
   4780 		hdr->crc_threshold = 0xffff;
   4781 		/* Send probe requests at 6Mbps. */
   4782 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4783 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4784 	} else {
   4785 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4786 		/* Send probe requests at 1Mbps. */
   4787 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4788 		tx->rflags = IWN_RFLAG_CCK;
   4789 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4790 	}
   4791 	/* Use the first valid TX antenna. */
   4792 	txant = IWN_LSB(sc->txchainmask);
   4793 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4794 
   4795 	/*
   4796 	 * Only do active scanning if we're announcing a probe request
   4797 	 * for a given SSID (or more, if we ever add it to the driver.)
   4798 	 */
   4799 	is_active = 0;
   4800 
   4801 	essid = (struct iwn_scan_essid *)(tx + 1);
   4802 	if (ic->ic_des_esslen != 0) {
   4803 		essid[0].id = IEEE80211_ELEMID_SSID;
   4804 		essid[0].len = ic->ic_des_esslen;
   4805 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4806 
   4807 		is_active = 1;
   4808 	}
   4809 	/*
   4810 	 * Build a probe request frame.  Most of the following code is a
   4811 	 * copy & paste of what is done in net80211.
   4812 	 */
   4813 	wh = (struct ieee80211_frame *)(essid + 20);
   4814 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4815 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4816 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4817 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4818 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4819 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4820 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4821 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4822 
   4823 	frm = (uint8_t *)(wh + 1);
   4824 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4825 	frm = ieee80211_add_rates(frm, rs);
   4826 #ifndef IEEE80211_NO_HT
   4827 	if (ic->ic_flags & IEEE80211_F_HTON)
   4828 		frm = ieee80211_add_htcaps(frm, ic);
   4829 #endif
   4830 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4831 		frm = ieee80211_add_xrates(frm, rs);
   4832 
   4833 	/* Set length of probe request. */
   4834 	tx->len = htole16(frm - (uint8_t *)wh);
   4835 
   4836 
   4837 	/*
   4838 	 * If active scanning is requested but a certain channel is
   4839 	 * marked passive, we can do active scanning if we detect
   4840 	 * transmissions.
   4841 	 *
   4842 	 * There is an issue with some firmware versions that triggers
   4843 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4844 	 * on a radar channel even though this means that we should NOT
   4845 	 * send probes.
   4846 	 *
   4847 	 * The "good CRC threshold" is the number of frames that we
   4848 	 * need to receive during our dwell time on a channel before
   4849 	 * sending out probes -- setting this to a huge value will
   4850 	 * mean we never reach it, but at the same time work around
   4851 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4852 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4853 	 *
   4854 	 * This was fixed in later versions along with some other
   4855 	 * scan changes, and the threshold behaves as a flag in those
   4856 	 * versions.
   4857 	 */
   4858 
   4859 	/*
   4860 	 * If we're doing active scanning, set the crc_threshold
   4861 	 * to a suitable value.  This is different to active veruss
   4862 	 * passive scanning depending upon the channel flags; the
   4863 	 * firmware will obey that particular check for us.
   4864 	 */
   4865 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4866 		hdr->crc_threshold = is_active ?
   4867 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4868 	else
   4869 		hdr->crc_threshold = is_active ?
   4870 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4871 
   4872 	chan = (struct iwn_scan_chan *)frm;
   4873 	for (c  = &ic->ic_channels[1];
   4874 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4875 		if ((c->ic_flags & flags) != flags)
   4876 			continue;
   4877 
   4878 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4879 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4880 		chan->flags = 0;
   4881 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4882 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4883 		if (ic->ic_des_esslen != 0)
   4884 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4885 
   4886 		/*
   4887 		 * Calculate the active/passive dwell times.
   4888 		 */
   4889 
   4890 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4891 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4892 
   4893 		/* Make sure they're valid */
   4894 		if (dwell_passive <= dwell_active)
   4895 			dwell_passive = dwell_active + 1;
   4896 
   4897 		chan->active = htole16(dwell_active);
   4898 		chan->passive = htole16(dwell_passive);
   4899 
   4900 		chan->dsp_gain = 0x6e;
   4901 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4902 			chan->rf_gain = 0x3b;
   4903 		} else {
   4904 			chan->rf_gain = 0x28;
   4905 		}
   4906 		hdr->nchan++;
   4907 		chan++;
   4908 	}
   4909 
   4910 	buflen = (uint8_t *)chan - buf;
   4911 	hdr->len = htole16(buflen);
   4912 
   4913 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4914 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4915 	free(buf, M_DEVBUF);
   4916 	return error;
   4917 }
   4918 
   4919 static int
   4920 iwn_auth(struct iwn_softc *sc)
   4921 {
   4922 	struct iwn_ops *ops = &sc->ops;
   4923 	struct ieee80211com *ic = &sc->sc_ic;
   4924 	struct ieee80211_node *ni = ic->ic_bss;
   4925 	int error;
   4926 
   4927 	/* Update adapter configuration. */
   4928 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4929 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4930 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4931 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4932 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4933 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4934 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4935 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4936 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4937 	switch (ic->ic_curmode) {
   4938 	case IEEE80211_MODE_11A:
   4939 		sc->rxon.cck_mask  = 0;
   4940 		sc->rxon.ofdm_mask = 0x15;
   4941 		break;
   4942 	case IEEE80211_MODE_11B:
   4943 		sc->rxon.cck_mask  = 0x03;
   4944 		sc->rxon.ofdm_mask = 0;
   4945 		break;
   4946 	default:	/* Assume 802.11b/g. */
   4947 		sc->rxon.cck_mask  = 0x0f;
   4948 		sc->rxon.ofdm_mask = 0x15;
   4949 	}
   4950 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4951 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4952 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4953 	if (error != 0) {
   4954 		aprint_error_dev(sc->sc_dev,
   4955 		    "RXON command failed\n");
   4956 		return error;
   4957 	}
   4958 
   4959 	/* Configuration has changed, set TX power accordingly. */
   4960 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4961 		aprint_error_dev(sc->sc_dev,
   4962 		    "could not set TX power\n");
   4963 		return error;
   4964 	}
   4965 	/*
   4966 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4967 	 * add the broadcast node again.
   4968 	 */
   4969 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4970 		aprint_error_dev(sc->sc_dev,
   4971 		    "could not add broadcast node\n");
   4972 		return error;
   4973 	}
   4974 	return 0;
   4975 }
   4976 
   4977 static int
   4978 iwn_run(struct iwn_softc *sc)
   4979 {
   4980 	struct iwn_ops *ops = &sc->ops;
   4981 	struct ieee80211com *ic = &sc->sc_ic;
   4982 	struct ieee80211_node *ni = ic->ic_bss;
   4983 	struct iwn_node_info node;
   4984 	int error;
   4985 
   4986 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4987 		/* Link LED blinks while monitoring. */
   4988 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4989 		return 0;
   4990 	}
   4991 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4992 		aprint_error_dev(sc->sc_dev,
   4993 		    "could not set timing\n");
   4994 		return error;
   4995 	}
   4996 
   4997 	/* Update adapter configuration. */
   4998 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4999 	/* Short preamble and slot time are negotiated when associating. */
   5000 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   5001 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   5002 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   5003 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   5004 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   5005 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   5006 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   5007 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   5008 	if (error != 0) {
   5009 		aprint_error_dev(sc->sc_dev,
   5010 		    "could not update configuration\n");
   5011 		return error;
   5012 	}
   5013 
   5014 	/* Configuration has changed, set TX power accordingly. */
   5015 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   5016 		aprint_error_dev(sc->sc_dev,
   5017 		    "could not set TX power\n");
   5018 		return error;
   5019 	}
   5020 
   5021 	/* Fake a join to initialize the TX rate. */
   5022 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   5023 	iwn_newassoc(ni, 1);
   5024 
   5025 	/* Add BSS node. */
   5026 	memset(&node, 0, sizeof node);
   5027 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   5028 	node.id = IWN_ID_BSS;
   5029 #ifdef notyet
   5030 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   5031 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   5032 #endif
   5033 	DPRINTF(("adding BSS node\n"));
   5034 	error = ops->add_node(sc, &node, 1);
   5035 	if (error != 0) {
   5036 		aprint_error_dev(sc->sc_dev,
   5037 		    "could not add BSS node\n");
   5038 		return error;
   5039 	}
   5040 	DPRINTF(("setting link quality for node %d\n", node.id));
   5041 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   5042 		aprint_error_dev(sc->sc_dev,
   5043 		    "could not setup link quality for node %d\n", node.id);
   5044 		return error;
   5045 	}
   5046 
   5047 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   5048 		aprint_error_dev(sc->sc_dev,
   5049 		    "could not set sensitivity\n");
   5050 		return error;
   5051 	}
   5052 	/* Start periodic calibration timer. */
   5053 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   5054 	sc->calib_cnt = 0;
   5055 	callout_schedule(&sc->calib_to, hz/2);
   5056 
   5057 	/* Link LED always on while associated. */
   5058 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   5059 	return 0;
   5060 }
   5061 
   5062 #ifdef IWN_HWCRYPTO
   5063 /*
   5064  * We support CCMP hardware encryption/decryption of unicast frames only.
   5065  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   5066  */
   5067 static int
   5068 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   5069     struct ieee80211_key *k)
   5070 {
   5071 	struct iwn_softc *sc = ic->ic_softc;
   5072 	struct iwn_ops *ops = &sc->ops;
   5073 	struct iwn_node *wn = (void *)ni;
   5074 	struct iwn_node_info node;
   5075 	uint16_t kflags;
   5076 
   5077 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5078 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   5079 		return ieee80211_set_key(ic, ni, k);
   5080 
   5081 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   5082 	if (k->k_flags & IEEE80211_KEY_GROUP)
   5083 		kflags |= IWN_KFLAG_GROUP;
   5084 
   5085 	memset(&node, 0, sizeof node);
   5086 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5087 	    sc->broadcast_id : wn->id;
   5088 	node.control = IWN_NODE_UPDATE;
   5089 	node.flags = IWN_FLAG_SET_KEY;
   5090 	node.kflags = htole16(kflags);
   5091 	node.kid = k->k_id;
   5092 	memcpy(node.key, k->k_key, k->k_len);
   5093 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   5094 	return ops->add_node(sc, &node, 1);
   5095 }
   5096 
   5097 static void
   5098 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   5099     struct ieee80211_key *k)
   5100 {
   5101 	struct iwn_softc *sc = ic->ic_softc;
   5102 	struct iwn_ops *ops = &sc->ops;
   5103 	struct iwn_node *wn = (void *)ni;
   5104 	struct iwn_node_info node;
   5105 
   5106 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5107 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   5108 		/* See comment about other ciphers above. */
   5109 		ieee80211_delete_key(ic, ni, k);
   5110 		return;
   5111 	}
   5112 	if (ic->ic_state != IEEE80211_S_RUN)
   5113 		return;	/* Nothing to do. */
   5114 	memset(&node, 0, sizeof node);
   5115 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5116 	    sc->broadcast_id : wn->id;
   5117 	node.control = IWN_NODE_UPDATE;
   5118 	node.flags = IWN_FLAG_SET_KEY;
   5119 	node.kflags = htole16(IWN_KFLAG_INVALID);
   5120 	node.kid = 0xff;
   5121 	DPRINTF(("delete keys for node %d\n", node.id));
   5122 	(void)ops->add_node(sc, &node, 1);
   5123 }
   5124 #endif
   5125 
   5126 /* XXX Added for NetBSD (copied from rev 1.39). */
   5127 
   5128 static int
   5129 iwn_wme_update(struct ieee80211com *ic)
   5130 {
   5131 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   5132 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   5133 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   5134 	const struct wmeParams *wmep;
   5135 	struct iwn_edca_params cmd;
   5136 	int ac;
   5137 
   5138 	/* don't override default WME values if WME is not actually enabled */
   5139 	if (!(ic->ic_flags & IEEE80211_F_WME))
   5140 		return 0;
   5141 	cmd.flags = 0;
   5142 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   5143 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   5144 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   5145 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   5146 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   5147 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   5148 
   5149 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   5150 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   5151 					cmd.ac[ac].cwmin,
   5152 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   5153 	}
   5154 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   5155 #undef IWN_USEC
   5156 #undef IWN_EXP2
   5157 }
   5158 
   5159 #ifndef IEEE80211_NO_HT
   5160 /*
   5161  * This function is called by upper layer when an ADDBA request is received
   5162  * from another STA and before the ADDBA response is sent.
   5163  */
   5164 static int
   5165 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5166     uint8_t tid)
   5167 {
   5168 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5169 	struct iwn_softc *sc = ic->ic_softc;
   5170 	struct iwn_ops *ops = &sc->ops;
   5171 	struct iwn_node *wn = (void *)ni;
   5172 	struct iwn_node_info node;
   5173 
   5174 	memset(&node, 0, sizeof node);
   5175 	node.id = wn->id;
   5176 	node.control = IWN_NODE_UPDATE;
   5177 	node.flags = IWN_FLAG_SET_ADDBA;
   5178 	node.addba_tid = tid;
   5179 	node.addba_ssn = htole16(ba->ba_winstart);
   5180 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5181 	    ba->ba_winstart));
   5182 	return ops->add_node(sc, &node, 1);
   5183 }
   5184 
   5185 /*
   5186  * This function is called by upper layer on teardown of an HT-immediate
   5187  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5188  */
   5189 static void
   5190 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5191     uint8_t tid)
   5192 {
   5193 	struct iwn_softc *sc = ic->ic_softc;
   5194 	struct iwn_ops *ops = &sc->ops;
   5195 	struct iwn_node *wn = (void *)ni;
   5196 	struct iwn_node_info node;
   5197 
   5198 	memset(&node, 0, sizeof node);
   5199 	node.id = wn->id;
   5200 	node.control = IWN_NODE_UPDATE;
   5201 	node.flags = IWN_FLAG_SET_DELBA;
   5202 	node.delba_tid = tid;
   5203 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5204 	(void)ops->add_node(sc, &node, 1);
   5205 }
   5206 
   5207 /*
   5208  * This function is called by upper layer when an ADDBA response is received
   5209  * from another STA.
   5210  */
   5211 static int
   5212 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5213     uint8_t tid)
   5214 {
   5215 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5216 	struct iwn_softc *sc = ic->ic_softc;
   5217 	struct iwn_ops *ops = &sc->ops;
   5218 	struct iwn_node *wn = (void *)ni;
   5219 	struct iwn_node_info node;
   5220 	int error;
   5221 
   5222 	/* Enable TX for the specified RA/TID. */
   5223 	wn->disable_tid &= ~(1 << tid);
   5224 	memset(&node, 0, sizeof node);
   5225 	node.id = wn->id;
   5226 	node.control = IWN_NODE_UPDATE;
   5227 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5228 	node.disable_tid = htole16(wn->disable_tid);
   5229 	error = ops->add_node(sc, &node, 1);
   5230 	if (error != 0)
   5231 		return error;
   5232 
   5233 	if ((error = iwn_nic_lock(sc)) != 0)
   5234 		return error;
   5235 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5236 	iwn_nic_unlock(sc);
   5237 	return 0;
   5238 }
   5239 
   5240 static void
   5241 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5242     uint8_t tid)
   5243 {
   5244 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5245 	struct iwn_softc *sc = ic->ic_softc;
   5246 	struct iwn_ops *ops = &sc->ops;
   5247 
   5248 	if (iwn_nic_lock(sc) != 0)
   5249 		return;
   5250 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5251 	iwn_nic_unlock(sc);
   5252 }
   5253 
   5254 static void
   5255 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5256     uint8_t tid, uint16_t ssn)
   5257 {
   5258 	struct iwn_node *wn = (void *)ni;
   5259 	int qid = 7 + tid;
   5260 
   5261 	/* Stop TX scheduler while we're changing its configuration. */
   5262 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5263 	    IWN4965_TXQ_STATUS_CHGACT);
   5264 
   5265 	/* Assign RA/TID translation to the queue. */
   5266 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5267 	    wn->id << 4 | tid);
   5268 
   5269 	/* Enable chain-building mode for the queue. */
   5270 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5271 
   5272 	/* Set starting sequence number from the ADDBA request. */
   5273 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5274 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5275 
   5276 	/* Set scheduler window size. */
   5277 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5278 	    IWN_SCHED_WINSZ);
   5279 	/* Set scheduler frame limit. */
   5280 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5281 	    IWN_SCHED_LIMIT << 16);
   5282 
   5283 	/* Enable interrupts for the queue. */
   5284 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5285 
   5286 	/* Mark the queue as active. */
   5287 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5288 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5289 	    iwn_tid2fifo[tid] << 1);
   5290 }
   5291 
   5292 static void
   5293 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5294 {
   5295 	int qid = 7 + tid;
   5296 
   5297 	/* Stop TX scheduler while we're changing its configuration. */
   5298 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5299 	    IWN4965_TXQ_STATUS_CHGACT);
   5300 
   5301 	/* Set starting sequence number from the ADDBA request. */
   5302 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5303 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5304 
   5305 	/* Disable interrupts for the queue. */
   5306 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5307 
   5308 	/* Mark the queue as inactive. */
   5309 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5310 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5311 }
   5312 
   5313 static void
   5314 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5315     uint8_t tid, uint16_t ssn)
   5316 {
   5317 	struct iwn_node *wn = (void *)ni;
   5318 	int qid = 10 + tid;
   5319 
   5320 	/* Stop TX scheduler while we're changing its configuration. */
   5321 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5322 	    IWN5000_TXQ_STATUS_CHGACT);
   5323 
   5324 	/* Assign RA/TID translation to the queue. */
   5325 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5326 	    wn->id << 4 | tid);
   5327 
   5328 	/* Enable chain-building mode for the queue. */
   5329 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5330 
   5331 	/* Enable aggregation for the queue. */
   5332 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5333 
   5334 	/* Set starting sequence number from the ADDBA request. */
   5335 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5336 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5337 
   5338 	/* Set scheduler window size and frame limit. */
   5339 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5340 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5341 
   5342 	/* Enable interrupts for the queue. */
   5343 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5344 
   5345 	/* Mark the queue as active. */
   5346 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5347 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5348 }
   5349 
   5350 static void
   5351 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5352 {
   5353 	int qid = 10 + tid;
   5354 
   5355 	/* Stop TX scheduler while we're changing its configuration. */
   5356 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5357 	    IWN5000_TXQ_STATUS_CHGACT);
   5358 
   5359 	/* Disable aggregation for the queue. */
   5360 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5361 
   5362 	/* Set starting sequence number from the ADDBA request. */
   5363 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5364 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5365 
   5366 	/* Disable interrupts for the queue. */
   5367 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5368 
   5369 	/* Mark the queue as inactive. */
   5370 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5371 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5372 }
   5373 #endif	/* !IEEE80211_NO_HT */
   5374 
   5375 /*
   5376  * Query calibration tables from the initialization firmware.  We do this
   5377  * only once at first boot.  Called from a process context.
   5378  */
   5379 static int
   5380 iwn5000_query_calibration(struct iwn_softc *sc)
   5381 {
   5382 	struct iwn5000_calib_config cmd;
   5383 	int error;
   5384 
   5385 	memset(&cmd, 0, sizeof cmd);
   5386 	cmd.ucode.once.enable = 0xffffffff;
   5387 	cmd.ucode.once.start  = 0xffffffff;
   5388 	cmd.ucode.once.send   = 0xffffffff;
   5389 	cmd.ucode.flags       = 0xffffffff;
   5390 	DPRINTF(("sending calibration query\n"));
   5391 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5392 	if (error != 0)
   5393 		return error;
   5394 
   5395 	/* Wait at most two seconds for calibration to complete. */
   5396 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5397 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5398 	return error;
   5399 }
   5400 
   5401 /*
   5402  * Send calibration results to the runtime firmware.  These results were
   5403  * obtained on first boot from the initialization firmware.
   5404  */
   5405 static int
   5406 iwn5000_send_calibration(struct iwn_softc *sc)
   5407 {
   5408 	int idx, error;
   5409 
   5410 	for (idx = 0; idx < 5; idx++) {
   5411 		if (sc->calibcmd[idx].buf == NULL)
   5412 			continue;	/* No results available. */
   5413 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5414 		    idx, sc->calibcmd[idx].len));
   5415 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5416 		    sc->calibcmd[idx].len, 0);
   5417 		if (error != 0) {
   5418 			aprint_error_dev(sc->sc_dev,
   5419 			    "could not send calibration result\n");
   5420 			return error;
   5421 		}
   5422 	}
   5423 	return 0;
   5424 }
   5425 
   5426 static int
   5427 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5428 {
   5429 	struct iwn5000_wimax_coex wimax;
   5430 
   5431 #ifdef notyet
   5432 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5433 		/* Enable WiMAX coexistence for combo adapters. */
   5434 		wimax.flags =
   5435 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5436 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5437 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5438 		    IWN_WIMAX_COEX_ENABLE;
   5439 		memcpy(wimax.events, iwn6050_wimax_events,
   5440 		    sizeof iwn6050_wimax_events);
   5441 	} else
   5442 #endif
   5443 	{
   5444 		/* Disable WiMAX coexistence. */
   5445 		wimax.flags = 0;
   5446 		memset(wimax.events, 0, sizeof wimax.events);
   5447 	}
   5448 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5449 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5450 }
   5451 
   5452 static int
   5453 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5454 {
   5455 	struct iwn6000_phy_calib_temp_offset cmd;
   5456 
   5457 	memset(&cmd, 0, sizeof cmd);
   5458 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5459 	cmd.ngroups = 1;
   5460 	cmd.isvalid = 1;
   5461 	if (sc->eeprom_temp != 0)
   5462 		cmd.offset = htole16(sc->eeprom_temp);
   5463 	else
   5464 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5465 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5466 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5467 }
   5468 
   5469 static int
   5470 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5471 {
   5472 	struct iwn2000_phy_calib_temp_offset cmd;
   5473 
   5474 	memset(&cmd, 0, sizeof cmd);
   5475 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5476 	cmd.ngroups = 1;
   5477 	cmd.isvalid = 1;
   5478 	if (sc->eeprom_rawtemp != 0) {
   5479 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5480 		cmd.offset_high = htole16(sc->eeprom_temp);
   5481 	} else {
   5482 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5483 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5484 	}
   5485 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5486 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5487 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5488 	    le16toh(cmd.burnt_voltage_ref)));
   5489 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5490 }
   5491 
   5492 /*
   5493  * This function is called after the runtime firmware notifies us of its
   5494  * readiness (called in a process context).
   5495  */
   5496 static int
   5497 iwn4965_post_alive(struct iwn_softc *sc)
   5498 {
   5499 	int error, qid;
   5500 
   5501 	if ((error = iwn_nic_lock(sc)) != 0)
   5502 		return error;
   5503 
   5504 	/* Clear TX scheduler state in SRAM. */
   5505 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5506 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5507 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5508 
   5509 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5510 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5511 
   5512 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5513 
   5514 	/* Disable chain mode for all our 16 queues. */
   5515 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5516 
   5517 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5518 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5519 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5520 
   5521 		/* Set scheduler window size. */
   5522 		iwn_mem_write(sc, sc->sched_base +
   5523 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5524 		/* Set scheduler frame limit. */
   5525 		iwn_mem_write(sc, sc->sched_base +
   5526 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5527 		    IWN_SCHED_LIMIT << 16);
   5528 	}
   5529 
   5530 	/* Enable interrupts for all our 16 queues. */
   5531 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5532 	/* Identify TX FIFO rings (0-7). */
   5533 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5534 
   5535 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5536 	for (qid = 0; qid < 7; qid++) {
   5537 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5538 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5539 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5540 	}
   5541 	iwn_nic_unlock(sc);
   5542 	return 0;
   5543 }
   5544 
   5545 /*
   5546  * This function is called after the initialization or runtime firmware
   5547  * notifies us of its readiness (called in a process context).
   5548  */
   5549 static int
   5550 iwn5000_post_alive(struct iwn_softc *sc)
   5551 {
   5552 	int error, qid;
   5553 
   5554 	/* Switch to using ICT interrupt mode. */
   5555 	iwn5000_ict_reset(sc);
   5556 
   5557 	if ((error = iwn_nic_lock(sc)) != 0)
   5558 		return error;
   5559 
   5560 	/* Clear TX scheduler state in SRAM. */
   5561 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5562 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5563 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5564 
   5565 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5566 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5567 
   5568 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5569 
   5570 	/* Enable chain mode for all queues, except command queue. */
   5571 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5572 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5573 
   5574 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5575 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5576 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5577 
   5578 		iwn_mem_write(sc, sc->sched_base +
   5579 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5580 		/* Set scheduler window size and frame limit. */
   5581 		iwn_mem_write(sc, sc->sched_base +
   5582 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5583 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5584 	}
   5585 
   5586 	/* Enable interrupts for all our 20 queues. */
   5587 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5588 	/* Identify TX FIFO rings (0-7). */
   5589 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5590 
   5591 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5592 	for (qid = 0; qid < 7; qid++) {
   5593 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5594 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5595 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5596 	}
   5597 	iwn_nic_unlock(sc);
   5598 
   5599 	/* Configure WiMAX coexistence for combo adapters. */
   5600 	error = iwn5000_send_wimax_coex(sc);
   5601 	if (error != 0) {
   5602 		aprint_error_dev(sc->sc_dev,
   5603 		    "could not configure WiMAX coexistence\n");
   5604 		return error;
   5605 	}
   5606 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5607 		struct iwn5000_phy_calib_crystal cmd;
   5608 
   5609 		/* Perform crystal calibration. */
   5610 		memset(&cmd, 0, sizeof cmd);
   5611 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5612 		cmd.ngroups = 1;
   5613 		cmd.isvalid = 1;
   5614 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5615 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5616 		DPRINTF(("sending crystal calibration %d, %d\n",
   5617 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5618 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5619 		if (error != 0) {
   5620 			aprint_error_dev(sc->sc_dev,
   5621 			    "crystal calibration failed\n");
   5622 			return error;
   5623 		}
   5624 	}
   5625 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5626 		/* Query calibration from the initialization firmware. */
   5627 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5628 			aprint_error_dev(sc->sc_dev,
   5629 			    "could not query calibration\n");
   5630 			return error;
   5631 		}
   5632 		/*
   5633 		 * We have the calibration results now, reboot with the
   5634 		 * runtime firmware (call ourselves recursively!)
   5635 		 */
   5636 		iwn_hw_stop(sc);
   5637 		error = iwn_hw_init(sc);
   5638 	} else {
   5639 		/* Send calibration results to runtime firmware. */
   5640 		error = iwn5000_send_calibration(sc);
   5641 	}
   5642 	return error;
   5643 }
   5644 
   5645 /*
   5646  * The firmware boot code is small and is intended to be copied directly into
   5647  * the NIC internal memory (no DMA transfer).
   5648  */
   5649 static int
   5650 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5651 {
   5652 	int error, ntries;
   5653 
   5654 	size /= sizeof (uint32_t);
   5655 
   5656 	if ((error = iwn_nic_lock(sc)) != 0)
   5657 		return error;
   5658 
   5659 	/* Copy microcode image into NIC memory. */
   5660 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5661 	    (const uint32_t *)ucode, size);
   5662 
   5663 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5664 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5665 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5666 
   5667 	/* Start boot load now. */
   5668 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5669 
   5670 	/* Wait for transfer to complete. */
   5671 	for (ntries = 0; ntries < 1000; ntries++) {
   5672 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5673 		    IWN_BSM_WR_CTRL_START))
   5674 			break;
   5675 		DELAY(10);
   5676 	}
   5677 	if (ntries == 1000) {
   5678 		aprint_error_dev(sc->sc_dev,
   5679 		    "could not load boot firmware\n");
   5680 		iwn_nic_unlock(sc);
   5681 		return ETIMEDOUT;
   5682 	}
   5683 
   5684 	/* Enable boot after power up. */
   5685 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5686 
   5687 	iwn_nic_unlock(sc);
   5688 	return 0;
   5689 }
   5690 
   5691 static int
   5692 iwn4965_load_firmware(struct iwn_softc *sc)
   5693 {
   5694 	struct iwn_fw_info *fw = &sc->fw;
   5695 	struct iwn_dma_info *dma = &sc->fw_dma;
   5696 	int error;
   5697 
   5698 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5699 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5700 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5701 	    BUS_DMASYNC_PREWRITE);
   5702 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5703 	    fw->init.text, fw->init.textsz);
   5704 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5705 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5706 
   5707 	/* Tell adapter where to find initialization sections. */
   5708 	if ((error = iwn_nic_lock(sc)) != 0)
   5709 		return error;
   5710 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5711 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5712 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5713 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5714 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5715 	iwn_nic_unlock(sc);
   5716 
   5717 	/* Load firmware boot code. */
   5718 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5719 	if (error != 0) {
   5720 		aprint_error_dev(sc->sc_dev,
   5721 		    "could not load boot firmware\n");
   5722 		return error;
   5723 	}
   5724 	/* Now press "execute". */
   5725 	IWN_WRITE(sc, IWN_RESET, 0);
   5726 
   5727 	/* Wait at most one second for first alive notification. */
   5728 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5729 		aprint_error_dev(sc->sc_dev,
   5730 		    "timeout waiting for adapter to initialize\n");
   5731 		return error;
   5732 	}
   5733 
   5734 	/* Retrieve current temperature for initial TX power calibration. */
   5735 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5736 	sc->temp = iwn4965_get_temperature(sc);
   5737 
   5738 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5739 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5740 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5741 	    BUS_DMASYNC_PREWRITE);
   5742 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5743 	    fw->main.text, fw->main.textsz);
   5744 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5745 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5746 
   5747 	/* Tell adapter where to find runtime sections. */
   5748 	if ((error = iwn_nic_lock(sc)) != 0)
   5749 		return error;
   5750 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5751 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5752 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5753 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5754 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5755 	    IWN_FW_UPDATED | fw->main.textsz);
   5756 	iwn_nic_unlock(sc);
   5757 
   5758 	return 0;
   5759 }
   5760 
   5761 static int
   5762 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5763     const uint8_t *section, int size)
   5764 {
   5765 	struct iwn_dma_info *dma = &sc->fw_dma;
   5766 	int error;
   5767 
   5768 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5769 	memcpy(dma->vaddr, section, size);
   5770 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5771 
   5772 	if ((error = iwn_nic_lock(sc)) != 0)
   5773 		return error;
   5774 
   5775 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5776 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5777 
   5778 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5779 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5780 	    IWN_LOADDR(dma->paddr));
   5781 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5782 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5783 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5784 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5785 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5786 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5787 
   5788 	/* Kick Flow Handler to start DMA transfer. */
   5789 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5790 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5791 
   5792 	iwn_nic_unlock(sc);
   5793 
   5794 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5795 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5796 }
   5797 
   5798 static int
   5799 iwn5000_load_firmware(struct iwn_softc *sc)
   5800 {
   5801 	struct iwn_fw_part *fw;
   5802 	int error;
   5803 
   5804 	/* Load the initialization firmware on first boot only. */
   5805 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5806 	    &sc->fw.main : &sc->fw.init;
   5807 
   5808 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5809 	    fw->text, fw->textsz);
   5810 	if (error != 0) {
   5811 		aprint_error_dev(sc->sc_dev,
   5812 		    "could not load firmware %s section\n", ".text");
   5813 		return error;
   5814 	}
   5815 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5816 	    fw->data, fw->datasz);
   5817 	if (error != 0) {
   5818 		aprint_error_dev(sc->sc_dev,
   5819 		    "could not load firmware %s section\n", ".data");
   5820 		return error;
   5821 	}
   5822 
   5823 	/* Now press "execute". */
   5824 	IWN_WRITE(sc, IWN_RESET, 0);
   5825 	return 0;
   5826 }
   5827 
   5828 /*
   5829  * Extract text and data sections from a legacy firmware image.
   5830  */
   5831 static int
   5832 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5833 {
   5834 	const uint32_t *ptr;
   5835 	size_t hdrlen = 24;
   5836 	uint32_t rev;
   5837 
   5838 	ptr = (const uint32_t *)fw->data;
   5839 	rev = le32toh(*ptr++);
   5840 
   5841 	sc->ucode_rev = rev;
   5842 
   5843 	/* Check firmware API version. */
   5844 	if (IWN_FW_API(rev) <= 1) {
   5845 		aprint_error_dev(sc->sc_dev,
   5846 		    "bad firmware, need API version >=2\n");
   5847 		return EINVAL;
   5848 	}
   5849 	if (IWN_FW_API(rev) >= 3) {
   5850 		/* Skip build number (version 2 header). */
   5851 		hdrlen += 4;
   5852 		ptr++;
   5853 	}
   5854 	if (fw->size < hdrlen) {
   5855 		aprint_error_dev(sc->sc_dev,
   5856 		    "firmware too short: %zd bytes\n", fw->size);
   5857 		return EINVAL;
   5858 	}
   5859 	fw->main.textsz = le32toh(*ptr++);
   5860 	fw->main.datasz = le32toh(*ptr++);
   5861 	fw->init.textsz = le32toh(*ptr++);
   5862 	fw->init.datasz = le32toh(*ptr++);
   5863 	fw->boot.textsz = le32toh(*ptr++);
   5864 
   5865 	/* Check that all firmware sections fit. */
   5866 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5867 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5868 		aprint_error_dev(sc->sc_dev,
   5869 		    "firmware too short: %zd bytes\n", fw->size);
   5870 		return EINVAL;
   5871 	}
   5872 
   5873 	/* Get pointers to firmware sections. */
   5874 	fw->main.text = (const uint8_t *)ptr;
   5875 	fw->main.data = fw->main.text + fw->main.textsz;
   5876 	fw->init.text = fw->main.data + fw->main.datasz;
   5877 	fw->init.data = fw->init.text + fw->init.textsz;
   5878 	fw->boot.text = fw->init.data + fw->init.datasz;
   5879 	return 0;
   5880 }
   5881 
   5882 /*
   5883  * Extract text and data sections from a TLV firmware image.
   5884  */
   5885 static int
   5886 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5887     uint16_t alt)
   5888 {
   5889 	const struct iwn_fw_tlv_hdr *hdr;
   5890 	const struct iwn_fw_tlv *tlv;
   5891 	const uint8_t *ptr, *end;
   5892 	uint64_t altmask;
   5893 	uint32_t len;
   5894 
   5895 	if (fw->size < sizeof (*hdr)) {
   5896 		aprint_error_dev(sc->sc_dev,
   5897 		    "firmware too short: %zd bytes\n", fw->size);
   5898 		return EINVAL;
   5899 	}
   5900 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5901 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5902 		aprint_error_dev(sc->sc_dev,
   5903 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5904 		return EINVAL;
   5905 	}
   5906 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5907 	    le32toh(hdr->build)));
   5908 	sc->ucode_rev = le32toh(hdr->rev);
   5909 
   5910 	/*
   5911 	 * Select the closest supported alternative that is less than
   5912 	 * or equal to the specified one.
   5913 	 */
   5914 	altmask = le64toh(hdr->altmask);
   5915 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5916 		alt--;	/* Downgrade. */
   5917 	DPRINTF(("using alternative %d\n", alt));
   5918 
   5919 	ptr = (const uint8_t *)(hdr + 1);
   5920 	end = (const uint8_t *)(fw->data + fw->size);
   5921 
   5922 	/* Parse type-length-value fields. */
   5923 	while (ptr + sizeof (*tlv) <= end) {
   5924 		tlv = (const struct iwn_fw_tlv *)ptr;
   5925 		len = le32toh(tlv->len);
   5926 
   5927 		ptr += sizeof (*tlv);
   5928 		if (ptr + len > end) {
   5929 			aprint_error_dev(sc->sc_dev,
   5930 			    "firmware too short: %zd bytes\n", fw->size);
   5931 			return EINVAL;
   5932 		}
   5933 		/* Skip other alternatives. */
   5934 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5935 			goto next;
   5936 
   5937 		switch (le16toh(tlv->type)) {
   5938 		case IWN_FW_TLV_MAIN_TEXT:
   5939 			fw->main.text = ptr;
   5940 			fw->main.textsz = len;
   5941 			break;
   5942 		case IWN_FW_TLV_MAIN_DATA:
   5943 			fw->main.data = ptr;
   5944 			fw->main.datasz = len;
   5945 			break;
   5946 		case IWN_FW_TLV_INIT_TEXT:
   5947 			fw->init.text = ptr;
   5948 			fw->init.textsz = len;
   5949 			break;
   5950 		case IWN_FW_TLV_INIT_DATA:
   5951 			fw->init.data = ptr;
   5952 			fw->init.datasz = len;
   5953 			break;
   5954 		case IWN_FW_TLV_BOOT_TEXT:
   5955 			fw->boot.text = ptr;
   5956 			fw->boot.textsz = len;
   5957 			break;
   5958 		case IWN_FW_TLV_ENH_SENS:
   5959 			if (len != 0) {
   5960 				aprint_error_dev(sc->sc_dev,
   5961 				    "TLV type %d has invalid size %u\n",
   5962 				    le16toh(tlv->type), len);
   5963 				goto next;
   5964 			}
   5965 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5966 			break;
   5967 		case IWN_FW_TLV_PHY_CALIB:
   5968 			if (len != sizeof(uint32_t)) {
   5969 				aprint_error_dev(sc->sc_dev,
   5970 				    "TLV type %d has invalid size %u\n",
   5971 				    le16toh(tlv->type), len);
   5972 				goto next;
   5973 			}
   5974 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5975 				sc->reset_noise_gain = le32toh(*ptr);
   5976 				sc->noise_gain = le32toh(*ptr) + 1;
   5977 			}
   5978 			break;
   5979 		case IWN_FW_TLV_FLAGS:
   5980 			if (len < sizeof(uint32_t))
   5981 				break;
   5982 			if (len % sizeof(uint32_t))
   5983 				break;
   5984 			sc->tlv_feature_flags = le32toh(*ptr);
   5985 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5986 			break;
   5987 		default:
   5988 			DPRINTF(("TLV type %d not handled\n",
   5989 			    le16toh(tlv->type)));
   5990 			break;
   5991 		}
   5992  next:		/* TLV fields are 32-bit aligned. */
   5993 		ptr += (len + 3) & ~3;
   5994 	}
   5995 	return 0;
   5996 }
   5997 
   5998 static int
   5999 iwn_read_firmware(struct iwn_softc *sc)
   6000 {
   6001 	struct iwn_fw_info *fw = &sc->fw;
   6002 	firmware_handle_t fwh;
   6003 	int error;
   6004 
   6005 	/*
   6006 	 * Some PHY calibration commands are firmware-dependent; these
   6007 	 * are the default values that will be overridden if
   6008 	 * necessary.
   6009 	 */
   6010 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   6011 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   6012 
   6013 	/* Initialize for error returns */
   6014 	fw->data = NULL;
   6015 	fw->size = 0;
   6016 
   6017 	/* Open firmware image. */
   6018 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   6019 		aprint_error_dev(sc->sc_dev,
   6020 		    "could not get firmware handle %s\n", sc->fwname);
   6021 		return error;
   6022 	}
   6023 	fw->size = firmware_get_size(fwh);
   6024 	if (fw->size < sizeof (uint32_t)) {
   6025 		aprint_error_dev(sc->sc_dev,
   6026 		    "firmware too short: %zd bytes\n", fw->size);
   6027 		firmware_close(fwh);
   6028 		return EINVAL;
   6029 	}
   6030 
   6031 	/* Read the firmware. */
   6032 	fw->data = firmware_malloc(fw->size);
   6033 	if (fw->data == NULL) {
   6034 		aprint_error_dev(sc->sc_dev,
   6035 		    "not enough memory to stock firmware %s\n", sc->fwname);
   6036 		firmware_close(fwh);
   6037 		return ENOMEM;
   6038 	}
   6039 	error = firmware_read(fwh, 0, fw->data, fw->size);
   6040 	firmware_close(fwh);
   6041 	if (error != 0) {
   6042 		aprint_error_dev(sc->sc_dev,
   6043 		    "could not read firmware %s\n", sc->fwname);
   6044 		goto out;
   6045 	}
   6046 
   6047 	/* Retrieve text and data sections. */
   6048 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   6049 		error = iwn_read_firmware_leg(sc, fw);
   6050 	else
   6051 		error = iwn_read_firmware_tlv(sc, fw, 1);
   6052 	if (error != 0) {
   6053 		aprint_error_dev(sc->sc_dev,
   6054 		    "could not read firmware sections\n");
   6055 		goto out;
   6056 	}
   6057 
   6058 	/* Make sure text and data sections fit in hardware memory. */
   6059 	if (fw->main.textsz > sc->fw_text_maxsz ||
   6060 	    fw->main.datasz > sc->fw_data_maxsz ||
   6061 	    fw->init.textsz > sc->fw_text_maxsz ||
   6062 	    fw->init.datasz > sc->fw_data_maxsz ||
   6063 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   6064 	    (fw->boot.textsz & 3) != 0) {
   6065 		aprint_error_dev(sc->sc_dev,
   6066 		    "firmware sections too large\n");
   6067 		goto out;
   6068 	}
   6069 
   6070 	/* We can proceed with loading the firmware. */
   6071 	return 0;
   6072 out:
   6073 	firmware_free(fw->data, fw->size);
   6074 	fw->data = NULL;
   6075 	fw->size = 0;
   6076 	return error ? error : EINVAL;
   6077 }
   6078 
   6079 static int
   6080 iwn_clock_wait(struct iwn_softc *sc)
   6081 {
   6082 	int ntries;
   6083 
   6084 	/* Set "initialization complete" bit. */
   6085 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6086 
   6087 	/* Wait for clock stabilization. */
   6088 	for (ntries = 0; ntries < 2500; ntries++) {
   6089 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   6090 			return 0;
   6091 		DELAY(10);
   6092 	}
   6093 	aprint_error_dev(sc->sc_dev,
   6094 	    "timeout waiting for clock stabilization\n");
   6095 	return ETIMEDOUT;
   6096 }
   6097 
   6098 static int
   6099 iwn_apm_init(struct iwn_softc *sc)
   6100 {
   6101 	pcireg_t reg;
   6102 	int error;
   6103 
   6104 	/* Disable L0s exit timer (NMI bug workaround). */
   6105 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   6106 	/* Don't wait for ICH L0s (ICH bug workaround). */
   6107 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   6108 
   6109 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   6110 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   6111 
   6112 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   6113 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   6114 
   6115 	/* Retrieve PCIe Active State Power Management (ASPM). */
   6116 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   6117 	    sc->sc_cap_off + PCIE_LCSR);
   6118 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   6119 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   6120 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6121 	else
   6122 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6123 
   6124 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   6125 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   6126 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   6127 
   6128 	/* Wait for clock stabilization before accessing prph. */
   6129 	if ((error = iwn_clock_wait(sc)) != 0)
   6130 		return error;
   6131 
   6132 	if ((error = iwn_nic_lock(sc)) != 0)
   6133 		return error;
   6134 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   6135 		/* Enable DMA and BSM (Bootstrap State Machine). */
   6136 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6137 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   6138 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   6139 	} else {
   6140 		/* Enable DMA. */
   6141 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6142 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6143 	}
   6144 	DELAY(20);
   6145 	/* Disable L1-Active. */
   6146 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   6147 	iwn_nic_unlock(sc);
   6148 
   6149 	return 0;
   6150 }
   6151 
   6152 static void
   6153 iwn_apm_stop_master(struct iwn_softc *sc)
   6154 {
   6155 	int ntries;
   6156 
   6157 	/* Stop busmaster DMA activity. */
   6158 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   6159 	for (ntries = 0; ntries < 100; ntries++) {
   6160 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   6161 			return;
   6162 		DELAY(10);
   6163 	}
   6164 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6165 }
   6166 
   6167 static void
   6168 iwn_apm_stop(struct iwn_softc *sc)
   6169 {
   6170 	iwn_apm_stop_master(sc);
   6171 
   6172 	/* Reset the entire device. */
   6173 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6174 	DELAY(10);
   6175 	/* Clear "initialization complete" bit. */
   6176 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6177 }
   6178 
   6179 static int
   6180 iwn4965_nic_config(struct iwn_softc *sc)
   6181 {
   6182 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6183 		/*
   6184 		 * I don't believe this to be correct but this is what the
   6185 		 * vendor driver is doing. Probably the bits should not be
   6186 		 * shifted in IWN_RFCFG_*.
   6187 		 */
   6188 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6189 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6190 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6191 		    IWN_RFCFG_DASH(sc->rfcfg));
   6192 	}
   6193 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6194 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6195 	return 0;
   6196 }
   6197 
   6198 static int
   6199 iwn5000_nic_config(struct iwn_softc *sc)
   6200 {
   6201 	uint32_t tmp;
   6202 	int error;
   6203 
   6204 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6205 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6206 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6207 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6208 		    IWN_RFCFG_DASH(sc->rfcfg));
   6209 	}
   6210 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6211 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6212 
   6213 	if ((error = iwn_nic_lock(sc)) != 0)
   6214 		return error;
   6215 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6216 
   6217 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6218 		/*
   6219 		 * Select first Switching Voltage Regulator (1.32V) to
   6220 		 * solve a stability issue related to noisy DC2DC line
   6221 		 * in the silicon of 1000 Series.
   6222 		 */
   6223 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6224 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6225 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6226 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6227 	}
   6228 	iwn_nic_unlock(sc);
   6229 
   6230 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6231 		/* Use internal power amplifier only. */
   6232 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6233 	}
   6234 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6235 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6236 		/* Indicate that ROM calibration version is >=6. */
   6237 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6238 	}
   6239 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6240 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6241 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6242 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6243 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6244 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6245 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6246 	return 0;
   6247 }
   6248 
   6249 /*
   6250  * Take NIC ownership over Intel Active Management Technology (AMT).
   6251  */
   6252 static int
   6253 iwn_hw_prepare(struct iwn_softc *sc)
   6254 {
   6255 	int ntries;
   6256 
   6257 	/* Check if hardware is ready. */
   6258 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6259 	for (ntries = 0; ntries < 5; ntries++) {
   6260 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6261 		    IWN_HW_IF_CONFIG_NIC_READY)
   6262 			return 0;
   6263 		DELAY(10);
   6264 	}
   6265 
   6266 	/* Hardware not ready, force into ready state. */
   6267 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6268 	for (ntries = 0; ntries < 15000; ntries++) {
   6269 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6270 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6271 			break;
   6272 		DELAY(10);
   6273 	}
   6274 	if (ntries == 15000)
   6275 		return ETIMEDOUT;
   6276 
   6277 	/* Hardware should be ready now. */
   6278 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6279 	for (ntries = 0; ntries < 5; ntries++) {
   6280 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6281 		    IWN_HW_IF_CONFIG_NIC_READY)
   6282 			return 0;
   6283 		DELAY(10);
   6284 	}
   6285 	return ETIMEDOUT;
   6286 }
   6287 
   6288 static int
   6289 iwn_hw_init(struct iwn_softc *sc)
   6290 {
   6291 	struct iwn_ops *ops = &sc->ops;
   6292 	int error, chnl, qid;
   6293 
   6294 	/* Clear pending interrupts. */
   6295 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6296 
   6297 	if ((error = iwn_apm_init(sc)) != 0) {
   6298 		aprint_error_dev(sc->sc_dev,
   6299 		    "could not power ON adapter\n");
   6300 		return error;
   6301 	}
   6302 
   6303 	/* Select VMAIN power source. */
   6304 	if ((error = iwn_nic_lock(sc)) != 0)
   6305 		return error;
   6306 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6307 	iwn_nic_unlock(sc);
   6308 
   6309 	/* Perform adapter-specific initialization. */
   6310 	if ((error = ops->nic_config(sc)) != 0)
   6311 		return error;
   6312 
   6313 	/* Initialize RX ring. */
   6314 	if ((error = iwn_nic_lock(sc)) != 0)
   6315 		return error;
   6316 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6317 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6318 	/* Set physical address of RX ring (256-byte aligned). */
   6319 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6320 	/* Set physical address of RX status (16-byte aligned). */
   6321 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6322 	/* Enable RX. */
   6323 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6324 	    IWN_FH_RX_CONFIG_ENA           |
   6325 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6326 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6327 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6328 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6329 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6330 	iwn_nic_unlock(sc);
   6331 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6332 
   6333 	if ((error = iwn_nic_lock(sc)) != 0)
   6334 		return error;
   6335 
   6336 	/* Initialize TX scheduler. */
   6337 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6338 
   6339 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6340 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6341 
   6342 	/* Initialize TX rings. */
   6343 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6344 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6345 
   6346 		/* Set physical address of TX ring (256-byte aligned). */
   6347 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6348 		    txq->desc_dma.paddr >> 8);
   6349 	}
   6350 	iwn_nic_unlock(sc);
   6351 
   6352 	/* Enable DMA channels. */
   6353 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6354 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6355 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6356 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6357 	}
   6358 
   6359 	/* Clear "radio off" and "commands blocked" bits. */
   6360 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6361 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6362 
   6363 	/* Clear pending interrupts. */
   6364 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6365 	/* Enable interrupt coalescing. */
   6366 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6367 	/* Enable interrupts. */
   6368 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6369 
   6370 	/* _Really_ make sure "radio off" bit is cleared! */
   6371 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6372 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6373 
   6374 	/* Enable shadow registers. */
   6375 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6376 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6377 
   6378 	if ((error = ops->load_firmware(sc)) != 0) {
   6379 		aprint_error_dev(sc->sc_dev,
   6380 		    "could not load firmware\n");
   6381 		return error;
   6382 	}
   6383 	/* Wait at most one second for firmware alive notification. */
   6384 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6385 		aprint_error_dev(sc->sc_dev,
   6386 		    "timeout waiting for adapter to initialize\n");
   6387 		return error;
   6388 	}
   6389 	/* Do post-firmware initialization. */
   6390 	return ops->post_alive(sc);
   6391 }
   6392 
   6393 static void
   6394 iwn_hw_stop(struct iwn_softc *sc)
   6395 {
   6396 	int chnl, qid, ntries;
   6397 
   6398 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6399 
   6400 	/* Disable interrupts. */
   6401 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6402 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6403 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6404 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6405 
   6406 	/* Make sure we no longer hold the NIC lock. */
   6407 	iwn_nic_unlock(sc);
   6408 
   6409 	/* Stop TX scheduler. */
   6410 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6411 
   6412 	/* Stop all DMA channels. */
   6413 	if (iwn_nic_lock(sc) == 0) {
   6414 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6415 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6416 			for (ntries = 0; ntries < 200; ntries++) {
   6417 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6418 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6419 					break;
   6420 				DELAY(10);
   6421 			}
   6422 		}
   6423 		iwn_nic_unlock(sc);
   6424 	}
   6425 
   6426 	/* Stop RX ring. */
   6427 	iwn_reset_rx_ring(sc, &sc->rxq);
   6428 
   6429 	/* Reset all TX rings. */
   6430 	for (qid = 0; qid < sc->ntxqs; qid++)
   6431 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6432 
   6433 	if (iwn_nic_lock(sc) == 0) {
   6434 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6435 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6436 		iwn_nic_unlock(sc);
   6437 	}
   6438 	DELAY(5);
   6439 	/* Power OFF adapter. */
   6440 	iwn_apm_stop(sc);
   6441 }
   6442 
   6443 static int
   6444 iwn_init(struct ifnet *ifp)
   6445 {
   6446 	struct iwn_softc *sc = ifp->if_softc;
   6447 	struct ieee80211com *ic = &sc->sc_ic;
   6448 	int error;
   6449 
   6450 	mutex_enter(&sc->sc_mtx);
   6451 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6452 		goto out;
   6453 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6454 		aprint_error_dev(sc->sc_dev,
   6455 		    "hardware not ready\n");
   6456 		goto fail;
   6457 	}
   6458 
   6459 	/* Check that the radio is not disabled by hardware switch. */
   6460 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6461 		aprint_error_dev(sc->sc_dev,
   6462 		    "radio is disabled by hardware switch\n");
   6463 		error = EPERM;	/* :-) */
   6464 		goto fail;
   6465 	}
   6466 
   6467 	/* Read firmware images from the filesystem. */
   6468 	if ((error = iwn_read_firmware(sc)) != 0) {
   6469 		aprint_error_dev(sc->sc_dev,
   6470 		    "could not read firmware\n");
   6471 		goto fail;
   6472 	}
   6473 
   6474 	/* Initialize interrupt mask to default value. */
   6475 	sc->int_mask = IWN_INT_MASK_DEF;
   6476 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6477 
   6478 	/* Initialize hardware and upload firmware. */
   6479 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6480 	error = iwn_hw_init(sc);
   6481 	firmware_free(sc->fw.data, sc->fw.size);
   6482 	sc->fw.data = NULL;
   6483 	sc->fw.size = 0;
   6484 	if (error != 0) {
   6485 		aprint_error_dev(sc->sc_dev,
   6486 		    "could not initialize hardware\n");
   6487 		goto fail;
   6488 	}
   6489 
   6490 	/* Configure adapter now that it is ready. */
   6491 	if ((error = iwn_config(sc)) != 0) {
   6492 		aprint_error_dev(sc->sc_dev,
   6493 		    "could not configure device\n");
   6494 		goto fail;
   6495 	}
   6496 
   6497 	sc->sc_beacon_wait = 0;
   6498 
   6499 	ifp->if_flags &= ~IFF_OACTIVE;
   6500 	ifp->if_flags |= IFF_RUNNING;
   6501 
   6502 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6503 		ieee80211_begin_scan(ic, 0);
   6504 	else
   6505 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6506 
   6507 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6508 out:
   6509 	mutex_exit(&sc->sc_mtx);
   6510 	return 0;
   6511 
   6512 fail:	mutex_exit(&sc->sc_mtx);
   6513 	iwn_stop(ifp, 1);
   6514 	return error;
   6515 }
   6516 
   6517 static void
   6518 iwn_stop(struct ifnet *ifp, int disable)
   6519 {
   6520 	struct iwn_softc *sc = ifp->if_softc;
   6521 	struct ieee80211com *ic = &sc->sc_ic;
   6522 
   6523 	if (!disable)
   6524 		mutex_enter(&sc->sc_mtx);
   6525 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6526 	ifp->if_timer = sc->sc_tx_timer = 0;
   6527 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6528 
   6529 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6530 
   6531 	/* Power OFF hardware. */
   6532 	iwn_hw_stop(sc);
   6533 
   6534 	if (!disable)
   6535 		mutex_exit(&sc->sc_mtx);
   6536 }
   6537 
   6538 /*
   6539  * XXX MCLGETI alternative
   6540  *
   6541  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6542  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6543  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6544  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6545  */
   6546 
   6547 static struct mbuf *
   6548 MCLGETIalt(struct iwn_softc *sc, int how,
   6549     struct ifnet *ifp __unused, u_int size)
   6550 {
   6551 	struct mbuf *m;
   6552 #ifdef IWN_USE_RBUF
   6553 	struct iwn_rbuf *rbuf;
   6554 #endif
   6555 
   6556 	MGETHDR(m, how, MT_DATA);
   6557 	if (m == NULL)
   6558 		return NULL;
   6559 
   6560 #ifdef IWN_USE_RBUF
   6561 	if (sc->rxq.nb_free_entries > 0 &&
   6562 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6563 		/* Attach buffer to mbuf header. */
   6564 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6565 		m->m_flags |= M_EXT_RW;
   6566 	}
   6567 	else {
   6568 		MEXTMALLOC(m, size, how);
   6569 		if ((m->m_flags & M_EXT) == 0) {
   6570 			m_freem(m);
   6571 			return NULL;
   6572 		}
   6573 	}
   6574 
   6575 #else
   6576 #ifdef MCLGET4K
   6577 	if (size == 4096)
   6578 		MCLGET4K(m, how);
   6579 	else
   6580 		panic("size must be 4k");
   6581 #else
   6582 	MEXTMALLOC(m, size, how);
   6583 #endif
   6584 	if ((m->m_flags & M_EXT) == 0) {
   6585 		m_freem(m);
   6586 		return NULL;
   6587 	}
   6588 #endif
   6589 
   6590 	return m;
   6591 }
   6592 
   6593 #ifdef IWN_USE_RBUF
   6594 static struct iwn_rbuf *
   6595 iwn_alloc_rbuf(struct iwn_softc *sc)
   6596 {
   6597 	struct iwn_rbuf *rbuf;
   6598 	mutex_enter(&sc->rxq.freelist_mtx);
   6599 
   6600 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6601 	if (rbuf != NULL) {
   6602 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6603 		sc->rxq.nb_free_entries --;
   6604 	}
   6605 	mutex_exit(&sc->rxq.freelist_mtx);
   6606 	return rbuf;
   6607 }
   6608 
   6609 /*
   6610  * This is called automatically by the network stack when the mbuf to which
   6611  * our RX buffer is attached is freed.
   6612  */
   6613 static void
   6614 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6615 {
   6616 	struct iwn_rbuf *rbuf = arg;
   6617 	struct iwn_softc *sc = rbuf->sc;
   6618 
   6619 	/* Put the RX buffer back in the free list. */
   6620 	mutex_enter(&sc->rxq.freelist_mtx);
   6621 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6622 	mutex_exit(&sc->rxq.freelist_mtx);
   6623 
   6624 	sc->rxq.nb_free_entries ++;
   6625 	if (__predict_true(m != NULL))
   6626 		pool_cache_put(mb_cache, m);
   6627 }
   6628 
   6629 static int
   6630 iwn_alloc_rpool(struct iwn_softc *sc)
   6631 {
   6632 	struct iwn_rx_ring *ring = &sc->rxq;
   6633 	struct iwn_rbuf *rbuf;
   6634 	int i, error;
   6635 
   6636 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6637 
   6638 	/* Allocate a big chunk of DMA'able memory... */
   6639 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6640 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6641 	if (error != 0) {
   6642 		aprint_error_dev(sc->sc_dev,
   6643 		    "could not allocate RX buffers DMA memory\n");
   6644 		return error;
   6645 	}
   6646 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6647 	SLIST_INIT(&ring->freelist);
   6648 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6649 		rbuf = &ring->rbuf[i];
   6650 
   6651 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6652 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6653 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6654 
   6655 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6656 	}
   6657 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6658 	return 0;
   6659 }
   6660 
   6661 static void
   6662 iwn_free_rpool(struct iwn_softc *sc)
   6663 {
   6664 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6665 }
   6666 #endif
   6667 
   6668 /*
   6669  * XXX: Hack to set the current channel to the value advertised in beacons or
   6670  * probe responses. Only used during AP detection.
   6671  * XXX: Duplicated from if_iwi.c
   6672  */
   6673 static void
   6674 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6675     struct iwn_rx_stat *stat)
   6676 {
   6677 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6678 	struct ieee80211_frame *wh;
   6679 	uint8_t subtype;
   6680 	uint8_t *frm, *efrm;
   6681 
   6682 	wh = mtod(m, struct ieee80211_frame *);
   6683 
   6684 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6685 		return;
   6686 
   6687 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6688 
   6689 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6690 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6691 		return;
   6692 
   6693 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6694 		int chan = le16toh(stat->chan);
   6695 		if (chan < __arraycount(ic->ic_channels))
   6696 			ic->ic_curchan = &ic->ic_channels[chan];
   6697 		return;
   6698 	}
   6699 
   6700 	frm = (uint8_t *)(wh + 1);
   6701 	efrm = mtod(m, uint8_t *) + m->m_len;
   6702 
   6703 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6704 	while (frm + 2 < efrm) {
   6705 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
   6706 #if IEEE80211_CHAN_MAX < 255
   6707 			if (frm[2] <= IEEE80211_CHAN_MAX)
   6708 #endif
   6709 				ic->ic_curchan = &ic->ic_channels[frm[2]];
   6710 		}
   6711 
   6712 		frm += frm[1] + 2;
   6713 	}
   6714 }
   6715 
   6716 #ifdef notyetMODULE
   6717 
   6718 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6719 
   6720 #ifdef _MODULE
   6721 #include "ioconf.c"
   6722 #endif
   6723 
   6724 static int
   6725 if_iwn_modcmd(modcmd_t cmd, void *data)
   6726 {
   6727 	int error = 0;
   6728 
   6729 	switch (cmd) {
   6730 	case MODULE_CMD_INIT:
   6731 #ifdef _MODULE
   6732 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6733 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6734 #endif
   6735 		return error;
   6736 	case MODULE_CMD_FINI:
   6737 #ifdef _MODULE
   6738 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6739 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6740 #endif
   6741 		return error;
   6742 	case MODULE_CMD_AUTOUNLOAD:
   6743 #ifdef _MODULE
   6744 		/* XXX This is not optional! */
   6745 #endif
   6746 		return error;
   6747 	default:
   6748 		return ENOTTY;
   6749 	}
   6750 }
   6751 #endif
   6752