Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $");
     36 
     37 #ifdef _KERNEL_OPT
     38 #include "opt_lockdebug.h"
     39 #endif
     40 
     41 #include <sys/param.h>
     42 #include <sys/proc.h>
     43 #include <sys/lock.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/lockdebug.h>
     47 #include <sys/cpu.h>
     48 #include <sys/syslog.h>
     49 #include <sys/atomic.h>
     50 #include <sys/lwp.h>
     51 #include <sys/pserialize.h>
     52 
     53 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
     54 #include <sys/ksyms.h>
     55 #endif
     56 
     57 #include <machine/lock.h>
     58 
     59 #include <dev/lockstat.h>
     60 
     61 #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     62 
     63 bool	kernel_lock_dodebug;
     64 
     65 __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     66     __cacheline_aligned;
     67 
     68 void
     69 assert_sleepable(void)
     70 {
     71 	const char *reason;
     72 	long pctr;
     73 	bool idle;
     74 
     75 	if (__predict_false(panicstr != NULL)) {
     76 		return;
     77 	}
     78 
     79 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     80 
     81 	/*
     82 	 * Avoid disabling/re-enabling preemption here since this
     83 	 * routine may be called in delicate situations.
     84 	 */
     85 	do {
     86 		pctr = lwp_pctr();
     87 		idle = CURCPU_IDLE_P();
     88 	} while (__predict_false(pctr != lwp_pctr()));
     89 
     90 	reason = NULL;
     91 	if (__predict_false(idle) && !cold) {
     92 		reason = "idle";
     93 		goto panic;
     94 	}
     95 	if (__predict_false(cpu_intr_p())) {
     96 		reason = "interrupt";
     97 		goto panic;
     98 	}
     99 	if (__predict_false(cpu_softintr_p())) {
    100 		reason = "softint";
    101 		goto panic;
    102 	}
    103 	if (__predict_false(!pserialize_not_in_read_section())) {
    104 		reason = "pserialize";
    105 		goto panic;
    106 	}
    107 	return;
    108 
    109 panic:	panic("%s: %s caller=%p", __func__, reason, (void *)RETURN_ADDRESS);
    110 }
    111 
    112 /*
    113  * Functions for manipulating the kernel_lock.  We put them here
    114  * so that they show up in profiles.
    115  */
    116 
    117 #define	_KERNEL_LOCK_ABORT(msg)						\
    118     LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
    119 
    120 #ifdef LOCKDEBUG
    121 #define	_KERNEL_LOCK_ASSERT(cond)					\
    122 do {									\
    123 	if (!(cond))							\
    124 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    125 } while (/* CONSTCOND */ 0)
    126 #else
    127 #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    128 #endif
    129 
    130 static void	_kernel_lock_dump(const volatile void *, lockop_printer_t);
    131 
    132 lockops_t _kernel_lock_ops = {
    133 	.lo_name = "Kernel lock",
    134 	.lo_type = LOCKOPS_SPIN,
    135 	.lo_dump = _kernel_lock_dump,
    136 };
    137 
    138 #ifdef LOCKDEBUG
    139 
    140 #ifdef DDB
    141 #include <ddb/ddb.h>
    142 #endif
    143 
    144 static void
    145 kernel_lock_trace_ipi(void *cookie)
    146 {
    147 
    148 	printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
    149 	    curlwp->l_lid,
    150 	    curlwp->l_name ? curlwp->l_name : curproc->p_comm);
    151 #ifdef DDB
    152 	db_stacktrace();
    153 #endif
    154 }
    155 
    156 #endif
    157 
    158 /*
    159  * Initialize the kernel lock.
    160  */
    161 void
    162 kernel_lock_init(void)
    163 {
    164 
    165 	__cpu_simple_lock_init(kernel_lock);
    166 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    167 	    RETURN_ADDRESS);
    168 }
    169 CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    170 
    171 /*
    172  * Print debugging information about the kernel lock.
    173  */
    174 static void
    175 _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
    176 {
    177 	struct cpu_info *ci = curcpu();
    178 
    179 	(void)junk;
    180 
    181 	pr("curcpu holds : %18d wanted by: %#018lx\n",
    182 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    183 }
    184 
    185 /*
    186  * Acquire 'nlocks' holds on the kernel lock.
    187  *
    188  * Although it may not look it, this is one of the most central, intricate
    189  * routines in the kernel, and tons of code elsewhere depends on its exact
    190  * behaviour.  If you change something in here, expect it to bite you in the
    191  * rear.
    192  */
    193 void
    194 _kernel_lock(int nlocks)
    195 {
    196 	struct cpu_info *ci;
    197 	LOCKSTAT_TIMER(spintime);
    198 	LOCKSTAT_FLAG(lsflag);
    199 	struct lwp *owant;
    200 #ifdef LOCKDEBUG
    201 	static struct cpu_info *kernel_lock_holder;
    202 	u_int spins = 0;
    203 	u_int starttime = getticks();
    204 #endif
    205 	int s;
    206 	struct lwp *l = curlwp;
    207 
    208 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    209 
    210 	s = splvm();
    211 	ci = curcpu();
    212 	if (ci->ci_biglock_count != 0) {
    213 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    214 		ci->ci_biglock_count += nlocks;
    215 		l->l_blcnt += nlocks;
    216 		splx(s);
    217 		return;
    218 	}
    219 
    220 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    221 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    222 	    0);
    223 
    224 	if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
    225 #ifdef LOCKDEBUG
    226 		kernel_lock_holder = curcpu();
    227 #endif
    228 		ci->ci_biglock_count = nlocks;
    229 		l->l_blcnt = nlocks;
    230 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    231 		    RETURN_ADDRESS, 0);
    232 		splx(s);
    233 		return;
    234 	}
    235 
    236 	/*
    237 	 * To remove the ordering constraint between adaptive mutexes
    238 	 * and kernel_lock we must make it appear as if this thread is
    239 	 * blocking.  For non-interlocked mutex release, a store fence
    240 	 * is required to ensure that the result of any mutex_exit()
    241 	 * by the current LWP becomes visible on the bus before the set
    242 	 * of ci->ci_biglock_wanted becomes visible.
    243 	 *
    244 	 * This membar_producer matches the membar_consumer in
    245 	 * mutex_vector_enter.
    246 	 *
    247 	 * That way, if l has just released a mutex, mutex_vector_enter
    248 	 * can't see this store ci->ci_biglock_wanted := l until it
    249 	 * will also see the mutex_exit store mtx->mtx_owner := 0 which
    250 	 * clears the has-waiters bit.
    251 	 */
    252 	membar_producer();
    253 	owant = ci->ci_biglock_wanted;
    254 	atomic_store_relaxed(&ci->ci_biglock_wanted, l);
    255 #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
    256 	l->l_ld_wanted = __builtin_return_address(0);
    257 #endif
    258 
    259 	/*
    260 	 * Spin until we acquire the lock.  Once we have it, record the
    261 	 * time spent with lockstat.
    262 	 */
    263 	LOCKSTAT_ENTER(lsflag);
    264 	LOCKSTAT_START_TIMER(lsflag, spintime);
    265 
    266 	do {
    267 		splx(s);
    268 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    269 #ifdef LOCKDEBUG
    270 			if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
    271 			    (getticks() - starttime) > 10*hz) {
    272 				ipi_msg_t msg = {
    273 					.func = kernel_lock_trace_ipi,
    274 				};
    275 				kpreempt_disable();
    276 				ipi_unicast(&msg, kernel_lock_holder);
    277 				ipi_wait(&msg);
    278 				kpreempt_enable();
    279 				_KERNEL_LOCK_ABORT("spinout");
    280 			}
    281 #endif
    282 			SPINLOCK_BACKOFF_HOOK;
    283 			SPINLOCK_SPIN_HOOK;
    284 		}
    285 		s = splvm();
    286 	} while (!__cpu_simple_lock_try(kernel_lock));
    287 
    288 	ci->ci_biglock_count = nlocks;
    289 	l->l_blcnt = nlocks;
    290 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    291 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    292 	    RETURN_ADDRESS, 0);
    293 	if (owant == NULL) {
    294 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    295 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    296 	}
    297 	LOCKSTAT_EXIT(lsflag);
    298 	splx(s);
    299 
    300 	/*
    301 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    302 	 * store must be visible on other CPUs before a mutex_exit() on
    303 	 * this CPU can test the has-waiters bit.
    304 	 *
    305 	 * This membar_enter matches the membar_enter in
    306 	 * mutex_vector_enter.  (Yes, not membar_exit -- the legacy
    307 	 * naming is confusing, but store-before-load usually pairs
    308 	 * with store-before-load, in the extremely rare cases where it
    309 	 * is used at all.)
    310 	 *
    311 	 * That way, mutex_vector_enter can't see this store
    312 	 * ci->ci_biglock_wanted := owant until it has set the
    313 	 * has-waiters bit.
    314 	 */
    315 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    316 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    317 	membar_enter();
    318 #endif
    319 
    320 #ifdef LOCKDEBUG
    321 	kernel_lock_holder = curcpu();
    322 #endif
    323 }
    324 
    325 /*
    326  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    327  * all holds.
    328  */
    329 void
    330 _kernel_unlock(int nlocks, int *countp)
    331 {
    332 	struct cpu_info *ci;
    333 	u_int olocks;
    334 	int s;
    335 	struct lwp *l = curlwp;
    336 
    337 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    338 
    339 	olocks = l->l_blcnt;
    340 
    341 	if (olocks == 0) {
    342 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    343 		if (countp != NULL)
    344 			*countp = 0;
    345 		return;
    346 	}
    347 
    348 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    349 
    350 	if (nlocks == 0)
    351 		nlocks = olocks;
    352 	else if (nlocks == -1) {
    353 		nlocks = 1;
    354 		_KERNEL_LOCK_ASSERT(olocks == 1);
    355 	}
    356 	s = splvm();
    357 	ci = curcpu();
    358 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    359 	if (ci->ci_biglock_count == nlocks) {
    360 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    361 		    RETURN_ADDRESS, 0);
    362 		ci->ci_biglock_count = 0;
    363 		__cpu_simple_unlock(kernel_lock);
    364 		l->l_blcnt -= nlocks;
    365 		splx(s);
    366 		if (l->l_dopreempt)
    367 			kpreempt(0);
    368 	} else {
    369 		ci->ci_biglock_count -= nlocks;
    370 		l->l_blcnt -= nlocks;
    371 		splx(s);
    372 	}
    373 
    374 	if (countp != NULL)
    375 		*countp = olocks;
    376 }
    377 
    378 bool
    379 _kernel_locked_p(void)
    380 {
    381 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    382 }
    383