1 /* $NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 5 * Written by Hiroyuki Bessho for Genetec Corporation. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of Genetec Corporation may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Machine dependent functions for kernel setup for 32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock). 33 * Based on iq80310_machhdep.c 34 */ 35 /* 36 * Copyright (c) 2001 Wasabi Systems, Inc. 37 * All rights reserved. 38 * 39 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed for the NetBSD Project by 52 * Wasabi Systems, Inc. 53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 54 * or promote products derived from this software without specific prior 55 * written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 * POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70 /* 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation 104 * boards using RedBoot firmware. 105 */ 106 107 /* 108 * DIP switches: 109 * 110 * S19: no-dot: set RB_KDB. enter kgdb session. 111 * S20: no-dot: set RB_SINGLE. don't go multi user mode. 112 */ 113 114 #include <sys/cdefs.h> 115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $"); 116 117 #include "opt_arm_debug.h" 118 #include "opt_console.h" 119 #include "opt_ddb.h" 120 #include "opt_kgdb.h" 121 #include "opt_md.h" 122 #include "opt_com.h" 123 #include "lcd.h" 124 125 #include <sys/param.h> 126 #include <sys/device.h> 127 #include <sys/systm.h> 128 #include <sys/kernel.h> 129 #include <sys/exec.h> 130 #include <sys/proc.h> 131 #include <sys/msgbuf.h> 132 #include <sys/reboot.h> 133 #include <sys/termios.h> 134 #include <sys/ksyms.h> 135 #include <sys/bus.h> 136 #include <sys/cpu.h> 137 #include <sys/conf.h> 138 139 #include <uvm/uvm_extern.h> 140 141 #include <dev/cons.h> 142 #include <dev/md.h> 143 #include <dev/ic/smc91cxxreg.h> 144 145 #include <machine/db_machdep.h> 146 #include <ddb/db_sym.h> 147 #include <ddb/db_extern.h> 148 #ifdef KGDB 149 #include <sys/kgdb.h> 150 #endif 151 152 #include <machine/bootconfig.h> 153 #include <arm/locore.h> 154 #include <arm/undefined.h> 155 156 #include <arm/arm32/machdep.h> 157 158 #include <arm/xscale/pxa2x0reg.h> 159 #include <arm/xscale/pxa2x0var.h> 160 #include <arm/xscale/pxa2x0_gpio.h> 161 #include <arm/sa11x0/sa1111_reg.h> 162 #include <evbarm/lubbock/lubbock_reg.h> 163 #include <evbarm/lubbock/lubbock_var.h> 164 165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 167 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 168 169 /* 170 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 171 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 172 */ 173 #define KERNEL_VM_SIZE 0x0C000000 174 175 BootConfig bootconfig; /* Boot config storage */ 176 char *boot_args = NULL; 177 char *boot_file = NULL; 178 179 vaddr_t physical_start; 180 vaddr_t physical_freestart; 181 vaddr_t physical_freeend; 182 vaddr_t physical_end; 183 u_int free_pages; 184 185 /*int debug_flags;*/ 186 #ifndef PMAP_STATIC_L1S 187 int max_processes = 64; /* Default number */ 188 #endif /* !PMAP_STATIC_L1S */ 189 190 /* Physical and virtual addresses for some global pages */ 191 pv_addr_t minidataclean; 192 193 paddr_t msgbufphys; 194 195 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 196 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 197 #define KERNEL_PT_KERNEL_NUM 4 198 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 199 /* Page tables for mapping kernel VM */ 200 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 201 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 202 203 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 204 205 /* Prototypes */ 206 207 #if 0 208 void process_kernel_args(char *); 209 #endif 210 211 void consinit(void); 212 void kgdb_port_init(void); 213 void change_clock(uint32_t v); 214 215 bs_protos(bs_notimpl); 216 217 #include "com.h" 218 #if NCOM > 0 219 #include <dev/ic/comreg.h> 220 #include <dev/ic/comvar.h> 221 #endif 222 223 #ifndef CONSPEED 224 #define CONSPEED B115200 /* What RedBoot uses */ 225 #endif 226 #ifndef CONMODE 227 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 228 #endif 229 230 int comcnspeed = CONSPEED; 231 int comcnmode = CONMODE; 232 233 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 234 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 235 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 236 237 { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */ 238 239 { -1 } 240 }; 241 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = { 242 pxa25x_com_btuart_gpioconf, 243 pxa25x_com_ffuart_gpioconf, 244 #if 0 245 pxa25x_com_stuart_gpioconf, 246 #endif 247 pxa25x_pcic_gpioconf, 248 pxa25x_pxaacu_gpioconf, 249 boarddep_gpioconf, 250 NULL 251 }; 252 253 /* 254 * void cpu_reboot(int howto, char *bootstr) 255 * 256 * Reboots the system 257 * 258 * Deal with any syncing, unmounting, dumping and shutdown hooks, 259 * then reset the CPU. 260 */ 261 void 262 cpu_reboot(int howto, char *bootstr) 263 { 264 #ifdef DIAGNOSTIC 265 /* info */ 266 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 267 #endif 268 269 /* 270 * If we are still cold then hit the air brakes 271 * and crash to earth fast 272 */ 273 if (cold) { 274 doshutdownhooks(); 275 pmf_system_shutdown(boothowto); 276 printf("The operating system has halted.\n"); 277 printf("Please press any key to reboot.\n\n"); 278 cngetc(); 279 printf("rebooting...\n"); 280 cpu_reset(); 281 /*NOTREACHED*/ 282 } 283 284 /* Disable console buffering */ 285 /* cnpollc(1);*/ 286 287 /* 288 * If RB_NOSYNC was not specified sync the discs. 289 * Note: Unless cold is set to 1 here, syslogd will die during the 290 * unmount. It looks like syslogd is getting woken up only to find 291 * that it cannot page part of the binary in as the filesystem has 292 * been unmounted. 293 */ 294 if (!(howto & RB_NOSYNC)) 295 bootsync(); 296 297 /* Say NO to interrupts */ 298 splhigh(); 299 300 /* Do a dump if requested. */ 301 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 302 dumpsys(); 303 304 /* Run any shutdown hooks */ 305 doshutdownhooks(); 306 307 pmf_system_shutdown(boothowto); 308 309 /* Make sure IRQ's are disabled */ 310 IRQdisable; 311 312 if (howto & RB_HALT) { 313 printf("The operating system has halted.\n"); 314 printf("Please press any key to reboot.\n\n"); 315 cngetc(); 316 } 317 318 printf("rebooting...\n"); 319 cpu_reset(); 320 /*NOTREACHED*/ 321 } 322 323 static inline 324 pd_entry_t * 325 read_ttb(void) 326 { 327 long ttb; 328 329 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 330 331 332 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 333 } 334 335 /* 336 * Static device mappings. These peripheral registers are mapped at 337 * fixed virtual addresses very early in initarm() so that we can use 338 * them while booting the kernel, and stay at the same address 339 * throughout whole kernel's life time. 340 * 341 * We use this table twice; once with bootstrap page table, and once 342 * with kernel's page table which we build up in initarm(). 343 * 344 * Since we map these registers into the bootstrap page table using 345 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 346 * registers segment-aligned and segment-rounded in order to avoid 347 * using the 2nd page tables. 348 */ 349 350 static const struct pmap_devmap lubbock_devmap[] = { 351 DEVMAP_ENTRY( 352 LUBBOCK_OBIO_VBASE, 353 LUBBOCK_OBIO_PBASE, 354 LUBBOCK_OBIO_SIZE 355 ), 356 DEVMAP_ENTRY( 357 LUBBOCK_GPIO_VBASE, 358 PXA2X0_GPIO_BASE, 359 PXA250_GPIO_SIZE 360 ), 361 DEVMAP_ENTRY( 362 LUBBOCK_CLKMAN_VBASE, 363 PXA2X0_CLKMAN_BASE, 364 PXA2X0_CLKMAN_SIZE 365 ), 366 DEVMAP_ENTRY( 367 LUBBOCK_INTCTL_VBASE, 368 PXA2X0_INTCTL_BASE, 369 PXA2X0_INTCTL_SIZE 370 ), 371 DEVMAP_ENTRY( 372 LUBBOCK_FFUART_VBASE, 373 PXA2X0_FFUART_BASE, 374 4 * COM_NPORTS 375 ), 376 DEVMAP_ENTRY( 377 LUBBOCK_BTUART_VBASE, 378 PXA2X0_BTUART_BASE, 379 4 * COM_NPORTS 380 ), 381 382 DEVMAP_ENTRY_END 383 }; 384 385 /* 386 * vaddr_t initarm(...) 387 * 388 * Initial entry point on startup. This gets called before main() is 389 * entered. 390 * It should be responsible for setting up everything that must be 391 * in place when main is called. 392 * This includes 393 * Taking a copy of the boot configuration structure. 394 * Initialising the physical console so characters can be printed. 395 * Setting up page tables for the kernel 396 * Relocating the kernel to the bottom of physical memory 397 */ 398 vaddr_t 399 initarm(void *arg) 400 { 401 int loop; 402 int loop1; 403 u_int l1pagetable; 404 paddr_t memstart; 405 psize_t memsize; 406 int led_data = 0; 407 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++) 408 #define LEDSTEP() hex_led(led_data++) 409 410 /* use physical address until pagetable is set */ 411 LEDSTEP_P(); 412 413 /* map some peripheral registers at static I/O area */ 414 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap); 415 416 LEDSTEP_P(); 417 418 /* start 32.768 kHz OSC */ 419 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2); 420 /* Get ready for splfoo() */ 421 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE); 422 423 LEDSTEP(); 424 425 /* 426 * Heads up ... Setup the CPU / MMU / TLB functions 427 */ 428 if (set_cpufuncs()) 429 panic("cpu not recognized!"); 430 431 LEDSTEP(); 432 433 434 #if 0 435 /* Calibrate the delay loop. */ 436 #endif 437 438 /* 439 * Okay, RedBoot has provided us with the following memory map: 440 * 441 * Physical Address Range Description 442 * ----------------------- ---------------------------------- 443 * 0x00000000 - 0x01ffffff flash Memory (32MB) 444 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 445 * 0x08000000 - 0x080000ff I/O baseboard registers 446 * 0x0a000000 - 0x0a0fffff SRAM (1MB) 447 * 0x0c000000 - 0x0c0fffff Ethernet Controller 448 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute) 449 * 0x10000000 - 0x103fffff SA-1111 Companion Chip 450 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 451 * 0x40000000 - 0x480fffff Processor Registers 452 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 453 * 454 * 455 * Virtual Address Range X C B Description 456 * ----------------------- - - - ---------------------------------- 457 * 0x00000000 - 0x00003fff N Y Y SDRAM 458 * 0x00004000 - 0x000fffff N Y N Boot ROM 459 * 0x00100000 - 0x01ffffff N N N Application Flash 460 * 0x04000000 - 0x05ffffff N N N Exp Application Flash 461 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 462 * 0x0a000000 - 0x0a0fffff N N N SRAM 463 * 0x40000000 - 0x480fffff N N N Processor Registers 464 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 465 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 466 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 467 * (done by this routine) 468 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 469 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 470 * 0xfd400000 - 0xfd4fffff N N N FF-UART 471 * 0xfd500000 - 0xfd5fffff N N N BT-UART 472 * 473 * RedBoot's first level page table is at 0xa0004000. There 474 * are also 2 second-level tables at 0xa0008000 and 475 * 0xa0008400. We will continue to use them until we switch to 476 * our pagetable by cpu_setttb(). 477 * 478 */ 479 480 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 481 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE); 482 pxa2x0_gpio_config(lubbock_gpioconf); 483 484 /* turn on clock to UART block. 485 XXX: this should not be done here. */ 486 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | 487 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN)); 488 489 LEDSTEP(); 490 491 consinit(); 492 LEDSTEP(); 493 #ifdef KGDB 494 kgdb_port_init(); 495 LEDSTEP(); 496 #endif 497 498 499 /* Talk to the user */ 500 printf("\nNetBSD/evbarm (lubbock) booting ...\n"); 501 502 /* Tweak memory controller */ 503 { 504 /* Modify access timing for CS3 (91c96) */ 505 506 uint32_t tmp = 507 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1); 508 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1, 509 (tmp & 0xffff) | (0x3881<<16)); 510 /* RRR=3, RDN=8, RDF=8 511 * XXX: can be faster? 512 */ 513 } 514 515 516 /* Initialize for PCMCIA/CF sockets */ 517 { 518 uint32_t tmp; 519 520 /* Activate two sockets. 521 XXX: This code segment should be moved to 522 pcmcia MD attach routine. 523 XXX: These bits should be toggled based on 524 existene of PCMCIA/CF cards 525 */ 526 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR, 527 MECR_NOS|MECR_CIT); 528 529 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR); 530 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR, 531 (tmp & ~(1<<4)) | (1<<0)); 532 } 533 534 #if 0 535 /* 536 * Examine the boot args string for options we need to know about 537 * now. 538 */ 539 process_kernel_args((char *)nwbootinfo.bt_args); 540 #endif 541 542 { 543 int processor_card_id; 544 545 processor_card_id = 0x000f & 546 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD); 547 switch(processor_card_id){ 548 case 0: 549 /* Cotulla */ 550 memstart = 0xa0000000; 551 memsize = 0x04000000; /* 64MB */ 552 break; 553 case 1: 554 /* XXX: Sabiani */ 555 memstart = 0xa0000000; 556 memsize = 0x04000000; /* 64MB */ 557 break; 558 default: 559 /* XXX: Unknown */ 560 memstart = 0xa0000000; 561 memsize = 0x04000000; /* 64MB */ 562 } 563 } 564 565 printf("initarm: Configuring system ...\n"); 566 567 /* Fake bootconfig structure for the benefit of pmap.c */ 568 /* XXX must make the memory description h/w independent */ 569 bootconfig.dramblocks = 1; 570 bootconfig.dram[0].address = memstart; 571 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 572 573 /* 574 * Set up the variables that define the availability of 575 * physical memory. For now, we're going to set 576 * physical_freestart to 0xa0200000 (where the kernel 577 * was loaded), and allocate the memory we need downwards. 578 * If we get too close to the page tables that RedBoot 579 * set up, we will panic. We will update physical_freestart 580 * and physical_freeend later to reflect what pmap_bootstrap() 581 * wants to see. 582 * 583 * XXX pmap_bootstrap() needs an enema. 584 */ 585 physical_start = bootconfig.dram[0].address; 586 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 587 588 physical_freestart = 0xa0009000UL; 589 physical_freeend = 0xa0200000UL; 590 591 physmem = (physical_end - physical_start) / PAGE_SIZE; 592 593 #ifdef VERBOSE_INIT_ARM 594 /* Tell the user about the memory */ 595 printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem, 596 physical_start, physical_end - 1); 597 #endif 598 599 /* 600 * Okay, the kernel starts 2MB in from the bottom of physical 601 * memory. We are going to allocate our bootstrap pages downwards 602 * from there. 603 * 604 * We need to allocate some fixed page tables to get the kernel 605 * going. We allocate one page directory and a number of page 606 * tables and store the physical addresses in the kernel_pt_table 607 * array. 608 * 609 * The kernel page directory must be on a 16K boundary. The page 610 * tables must be on 4K boundaries. What we do is allocate the 611 * page directory on the first 16K boundary that we encounter, and 612 * the page tables on 4K boundaries otherwise. Since we allocate 613 * at least 3 L2 page tables, we are guaranteed to encounter at 614 * least one 16K aligned region. 615 */ 616 617 #ifdef VERBOSE_INIT_ARM 618 printf("Allocating page tables\n"); 619 #endif 620 621 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 622 623 #ifdef VERBOSE_INIT_ARM 624 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 625 physical_freestart, free_pages, free_pages); 626 #endif 627 628 /* Define a macro to simplify memory allocation */ 629 #define valloc_pages(var, np) \ 630 alloc_pages((var).pv_pa, (np)); \ 631 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 632 633 #define alloc_pages(var, np) \ 634 physical_freeend -= ((np) * PAGE_SIZE); \ 635 if (physical_freeend < physical_freestart) \ 636 panic("initarm: out of memory"); \ 637 (var) = physical_freeend; \ 638 free_pages -= (np); \ 639 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 640 641 loop1 = 0; 642 kernel_l1pt.pv_pa = 0; 643 kernel_l1pt.pv_va = 0; 644 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 645 /* Are we 16KB aligned for an L1 ? */ 646 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 647 && kernel_l1pt.pv_pa == 0) { 648 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 649 } else { 650 valloc_pages(kernel_pt_table[loop1], 651 L2_TABLE_SIZE / PAGE_SIZE); 652 ++loop1; 653 } 654 } 655 656 /* This should never be able to happen but better confirm that. */ 657 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 658 panic("initarm: Failed to align the kernel page directory"); 659 660 LEDSTEP(); 661 662 /* 663 * Allocate a page for the system page mapped to V0x00000000 664 * This page will just contain the system vectors and can be 665 * shared by all processes. 666 */ 667 alloc_pages(systempage.pv_pa, 1); 668 669 /* Allocate stacks for all modes */ 670 valloc_pages(irqstack, IRQ_STACK_SIZE); 671 valloc_pages(abtstack, ABT_STACK_SIZE); 672 valloc_pages(undstack, UND_STACK_SIZE); 673 valloc_pages(kernelstack, UPAGES); 674 675 /* Allocate enough pages for cleaning the Mini-Data cache. */ 676 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 677 valloc_pages(minidataclean, 1); 678 679 #ifdef VERBOSE_INIT_ARM 680 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 681 irqstack.pv_va); 682 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 683 abtstack.pv_va); 684 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 685 undstack.pv_va); 686 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 687 kernelstack.pv_va); 688 #endif 689 690 /* 691 * XXX Defer this to later so that we can reclaim the memory 692 * XXX used by the RedBoot page tables. 693 */ 694 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 695 696 /* 697 * Ok we have allocated physical pages for the primary kernel 698 * page tables 699 */ 700 701 #ifdef VERBOSE_INIT_ARM 702 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 703 #endif 704 705 /* 706 * Now we start construction of the L1 page table 707 * We start by mapping the L2 page tables into the L1. 708 * This means that we can replace L1 mappings later on if necessary 709 */ 710 l1pagetable = kernel_l1pt.pv_pa; 711 712 /* Map the L2 pages tables in the L1 page table */ 713 pmap_link_l2pt(l1pagetable, 0x00000000, 714 &kernel_pt_table[KERNEL_PT_SYS]); 715 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 716 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 717 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 718 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 719 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 720 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 721 722 /* update the top of the kernel VM */ 723 pmap_curmaxkvaddr = 724 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 725 726 #ifdef VERBOSE_INIT_ARM 727 printf("Mapping kernel\n"); 728 #endif 729 730 /* Now we fill in the L2 pagetable for the kernel static code/data */ 731 { 732 extern char etext[], _end[]; 733 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 734 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 735 u_int logical; 736 737 textsize = (textsize + PGOFSET) & ~PGOFSET; 738 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 739 740 logical = 0x00200000; /* offset of kernel in RAM */ 741 742 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 743 physical_start + logical, textsize, 744 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 745 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 746 physical_start + logical, totalsize - textsize, 747 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 748 } 749 750 #ifdef VERBOSE_INIT_ARM 751 printf("Constructing L2 page tables\n"); 752 #endif 753 754 /* Map the stack pages */ 755 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 756 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 757 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 758 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 759 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 760 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 761 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 762 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 763 764 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 765 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 766 767 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 768 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 769 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 770 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 771 } 772 773 /* Map the Mini-Data cache clean area. */ 774 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 775 minidataclean.pv_pa); 776 777 /* Map the vector page. */ 778 #if 1 779 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 780 * cache-clean code there. */ 781 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 782 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 783 #else 784 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 785 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 786 #endif 787 788 /* 789 * map integrated peripherals at same address in l1pagetable 790 * so that we can continue to use console. 791 */ 792 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap); 793 794 /* 795 * Give the XScale global cache clean code an appropriately 796 * sized chunk of unmapped VA space starting at 0xff000000 797 * (our device mappings end before this address). 798 */ 799 xscale_cache_clean_addr = 0xff000000U; 800 801 /* 802 * Now we have the real page tables in place so we can switch to them. 803 * Once this is done we will be running with the REAL kernel page 804 * tables. 805 */ 806 807 /* 808 * Update the physical_freestart/physical_freeend/free_pages 809 * variables. 810 */ 811 { 812 extern char _end[]; 813 814 physical_freestart = physical_start + 815 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 816 KERNEL_BASE); 817 physical_freeend = physical_end; 818 free_pages = 819 (physical_freeend - physical_freestart) / PAGE_SIZE; 820 } 821 822 /* Switch tables */ 823 #ifdef VERBOSE_INIT_ARM 824 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 825 physical_freestart, free_pages, free_pages); 826 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 827 #endif 828 829 LEDSTEP(); 830 831 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 832 cpu_setttb(kernel_l1pt.pv_pa, true); 833 cpu_tlb_flushID(); 834 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 835 LEDSTEP(); 836 837 /* 838 * Moved from cpu_startup() as data_abort_handler() references 839 * this during uvm init 840 */ 841 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 842 843 #ifdef VERBOSE_INIT_ARM 844 printf("bootstrap done.\n"); 845 #endif 846 847 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 848 849 /* 850 * Pages were allocated during the secondary bootstrap for the 851 * stacks for different CPU modes. 852 * We must now set the r13 registers in the different CPU modes to 853 * point to these stacks. 854 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 855 * of the stack memory. 856 */ 857 printf("init subsystems: stacks "); 858 859 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 860 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 861 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 862 863 /* 864 * Well we should set a data abort handler. 865 * Once things get going this will change as we will need a proper 866 * handler. 867 * Until then we will use a handler that just panics but tells us 868 * why. 869 * Initialisation of the vectors will just panic on a data abort. 870 * This just fills in a slightly better one. 871 */ 872 printf("vectors "); 873 data_abort_handler_address = (u_int)data_abort_handler; 874 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 875 undefined_handler_address = (u_int)undefinedinstruction_bounce; 876 877 /* Initialise the undefined instruction handlers */ 878 printf("undefined "); 879 undefined_init(); 880 881 /* Load memory into UVM. */ 882 printf("page "); 883 uvm_md_init(); 884 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 885 atop(physical_freestart), atop(physical_freeend), 886 VM_FREELIST_DEFAULT); 887 888 /* Boot strap pmap telling it where managed kernel virtual memory is */ 889 printf("pmap "); 890 LEDSTEP(); 891 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 892 LEDSTEP(); 893 894 #ifdef __HAVE_MEMORY_DISK__ 895 md_root_setconf(memory_disk, sizeof memory_disk); 896 #endif 897 898 { 899 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW); 900 901 if (0 == (sw & (1<<13))) /* check S19 */ 902 boothowto |= RB_KDB; 903 if (0 == (sw & (1<<12))) /* S20 */ 904 boothowto |= RB_SINGLE; 905 } 906 907 LEDSTEP(); 908 909 #ifdef KGDB 910 if (boothowto & RB_KDB) { 911 kgdb_debug_init = 1; 912 kgdb_connect(1); 913 } 914 #endif 915 916 #ifdef DDB 917 db_machine_init(); 918 919 /* Firmware doesn't load symbols. */ 920 ddb_init(0, NULL, NULL); 921 922 if (boothowto & RB_KDB) 923 Debugger(); 924 #endif 925 926 /* We return the new stack pointer address */ 927 return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 928 } 929 930 #if 0 931 void 932 process_kernel_args(char *args) 933 { 934 935 boothowto = 0; 936 937 /* Make a local copy of the bootargs */ 938 strncpy(bootargs, args, MAX_BOOT_STRING); 939 940 args = bootargs; 941 boot_file = bootargs; 942 943 /* Skip the kernel image filename */ 944 while (*args != ' ' && *args != 0) 945 ++args; 946 947 if (*args != 0) 948 *args++ = 0; 949 950 while (*args == ' ') 951 ++args; 952 953 boot_args = args; 954 955 printf("bootfile: %s\n", boot_file); 956 printf("bootargs: %s\n", boot_args); 957 958 parse_mi_bootargs(boot_args); 959 } 960 #endif 961 962 #ifdef KGDB 963 #ifndef KGDB_DEVNAME 964 #define KGDB_DEVNAME "ffuart" 965 #endif 966 const char kgdb_devname[] = KGDB_DEVNAME; 967 968 #if (NCOM > 0) 969 #ifndef KGDB_DEVMODE 970 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 971 #endif 972 int comkgdbmode = KGDB_DEVMODE; 973 #endif /* NCOM */ 974 975 #endif /* KGDB */ 976 977 978 void 979 consinit(void) 980 { 981 static int consinit_called = 0; 982 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 983 #if 0 984 char *console = CONSDEVNAME; 985 #endif 986 987 if (consinit_called != 0) 988 return; 989 990 consinit_called = 1; 991 992 #if NCOM > 0 993 994 #ifdef FFUARTCONSOLE 995 /* Check switch. */ 996 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) { 997 /* We don't use FF serial when S17=no-dot position */ 998 } 999 #ifdef KGDB 1000 else if (0 == strcmp(kgdb_devname, "ffuart")) { 1001 /* port is reserved for kgdb */ 1002 } 1003 #endif 1004 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 1005 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1006 #if 0 1007 /* XXX: can't call pxa2x0_clkman_config yet */ 1008 pxa2x0_clkman_config(CKEN_FFUART, 1); 1009 #else 1010 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1011 ckenreg|CKEN_FFUART); 1012 #endif 1013 1014 return; 1015 } 1016 #endif /* FFUARTCONSOLE */ 1017 1018 #ifdef BTUARTCONSOLE 1019 #ifdef KGDB 1020 if (0 == strcmp(kgdb_devname, "btuart")) { 1021 /* port is reserved for kgdb */ 1022 } else 1023 #endif 1024 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 1025 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1026 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1027 ckenreg|CKEN_BTUART); 1028 return; 1029 } 1030 #endif /* BTUARTCONSOLE */ 1031 1032 1033 #endif /* NCOM */ 1034 1035 } 1036 1037 #ifdef KGDB 1038 void 1039 kgdb_port_init(void) 1040 { 1041 #if (NCOM > 0) && defined(COM_PXA2X0) 1042 paddr_t paddr = 0; 1043 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 1044 1045 if (0 == strcmp(kgdb_devname, "ffuart")) { 1046 paddr = PXA2X0_FFUART_BASE; 1047 ckenreg |= CKEN_FFUART; 1048 } 1049 else if (0 == strcmp(kgdb_devname, "btuart")) { 1050 paddr = PXA2X0_BTUART_BASE; 1051 ckenreg |= CKEN_BTUART; 1052 } 1053 1054 if (paddr && 1055 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1056 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1057 1058 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1059 } 1060 #endif 1061 } 1062 #endif 1063 1064 #if 0 1065 /* 1066 * display a number in hex LED. 1067 * a digit is blank when the corresponding bit in arg blank is 1 1068 */ 1069 unsigned short led_control_value = 0; 1070 1071 void 1072 hex_led_blank(uint32_t value, int blank) 1073 { 1074 int save = disable_interrupts(I32_bit); 1075 1076 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value); 1077 led_control_value = (led_control_value & 0xff) 1078 | ((blank & 0xff)<<8); 1079 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value); 1080 restore_interrupts(save); 1081 } 1082 #endif 1083