Home | History | Annotate | Line # | Download | only in ep93xx
      1 /*	$NetBSD: epe.c,v 1.51 2024/07/05 04:31:49 rin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2004 Jesse Off
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.51 2024/07/05 04:31:49 rin Exp $");
     31 
     32 #include <sys/types.h>
     33 #include <sys/param.h>
     34 #include <sys/systm.h>
     35 #include <sys/ioctl.h>
     36 #include <sys/kernel.h>
     37 #include <sys/proc.h>
     38 #include <sys/time.h>
     39 #include <sys/device.h>
     40 #include <uvm/uvm_extern.h>
     41 
     42 #include <sys/bus.h>
     43 #include <machine/intr.h>
     44 
     45 #include <arm/cpufunc.h>
     46 
     47 #include <arm/ep93xx/epsocvar.h>
     48 #include <arm/ep93xx/ep93xxvar.h>
     49 
     50 #include <net/if.h>
     51 #include <net/if_dl.h>
     52 #include <net/if_types.h>
     53 #include <net/if_media.h>
     54 #include <net/if_ether.h>
     55 #include <net/bpf.h>
     56 
     57 #include <dev/mii/mii.h>
     58 #include <dev/mii/miivar.h>
     59 
     60 #ifdef INET
     61 #include <netinet/in.h>
     62 #include <netinet/in_systm.h>
     63 #include <netinet/in_var.h>
     64 #include <netinet/ip.h>
     65 #include <netinet/if_inarp.h>
     66 #endif
     67 
     68 #include <arm/ep93xx/ep93xxreg.h>
     69 #include <arm/ep93xx/epereg.h>
     70 #include <arm/ep93xx/epevar.h>
     71 
     72 #define DEFAULT_MDCDIV	32
     73 
     74 #ifndef EPE_FAST
     75 #define EPE_FAST
     76 #endif
     77 
     78 #ifndef EPE_FAST
     79 #define EPE_READ(x) \
     80 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
     81 #define EPE_WRITE(x, y) \
     82 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
     83 #define CTRLPAGE_DMASYNC(x, y, z) \
     84 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
     85 #else
     86 #define EPE_READ(x) *(volatile uint32_t *) \
     87 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
     88 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
     89 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
     90 #define CTRLPAGE_DMASYNC(x, y, z)
     91 #endif /* ! EPE_FAST */
     92 
     93 static int	epe_match(device_t , cfdata_t, void *);
     94 static void	epe_attach(device_t, device_t, void *);
     95 static void	epe_init(struct epe_softc *);
     96 static int	epe_intr(void* arg);
     97 static int	epe_gctx(struct epe_softc *);
     98 int		epe_mii_readreg (device_t, int, int, uint16_t *);
     99 int		epe_mii_writereg (device_t, int, int, uint16_t);
    100 void		epe_statchg (struct ifnet *);
    101 void		epe_tick (void *);
    102 static int	epe_ifioctl (struct ifnet *, u_long, void *);
    103 static void	epe_ifstart (struct ifnet *);
    104 static void	epe_ifwatchdog (struct ifnet *);
    105 static int	epe_ifinit (struct ifnet *);
    106 static void	epe_ifstop (struct ifnet *, int);
    107 static void	epe_setaddr (struct ifnet *);
    108 
    109 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
    110     epe_match, epe_attach, NULL, NULL);
    111 
    112 static int
    113 epe_match(device_t parent, cfdata_t match, void *aux)
    114 {
    115 	return 2;
    116 }
    117 
    118 static void
    119 epe_attach(device_t parent, device_t self, void *aux)
    120 {
    121 	struct epe_softc		*sc = device_private(self);
    122 	struct epsoc_attach_args	*sa;
    123 	prop_data_t			 enaddr;
    124 
    125 	aprint_normal("\n");
    126 	sa = aux;
    127 	sc->sc_dev = self;
    128 	sc->sc_iot = sa->sa_iot;
    129 	sc->sc_intr = sa->sa_intr;
    130 	sc->sc_dmat = sa->sa_dmat;
    131 
    132 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
    133 		0, &sc->sc_ioh))
    134 		panic("%s: Cannot map registers", device_xname(self));
    135 
    136 	/* Fetch the Ethernet address from property if set. */
    137 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
    138 	if (enaddr != NULL) {
    139 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
    140 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
    141 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
    142 		       ETHER_ADDR_LEN);
    143 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
    144 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    145 					 sc->sc_enaddr, ETHER_ADDR_LEN);
    146 	}
    147 
    148 	ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
    149 	epe_init(sc);
    150 }
    151 
    152 static int
    153 epe_gctx(struct epe_softc *sc)
    154 {
    155 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    156 	uint32_t *cur, ndq = 0;
    157 
    158 	/* Handle transmit completions */
    159 	cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
    160 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
    161 
    162 	if (sc->TXStsQ_cur != cur) {
    163 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
    164 			TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
    165 	} else
    166 		return 0;
    167 
    168 	do {
    169 		uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
    170 		struct mbuf *m = sc->txq[tbi].m;
    171 
    172 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0)
    173 			if_statinc(ifp, if_oerrors);
    174 
    175 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
    176 		m_freem(m);
    177 		do {
    178 			sc->txq[tbi].m = NULL;
    179 			ndq++;
    180 			tbi = (tbi + 1) % TX_QLEN;
    181 		} while (sc->txq[tbi].m == m);
    182 
    183 		if_statinc(ifp, if_opackets);
    184 		sc->TXStsQ_cur++;
    185 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
    186 			sc->TXStsQ_cur = sc->TXStsQ;
    187 		}
    188 	} while (sc->TXStsQ_cur != cur);
    189 
    190 	sc->TXDQ_avail += ndq;
    191 	if (sc->tx_busy) {
    192 		sc->tx_busy = false;
    193 		/* Disable end-of-tx-chain interrupt */
    194 		EPE_WRITE(IntEn, IntEn_REOFIE);
    195 	}
    196 	return ndq;
    197 }
    198 
    199 static int
    200 epe_intr(void *arg)
    201 {
    202 	struct epe_softc *sc = (struct epe_softc *)arg;
    203 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    204 	uint32_t ndq = 0, irq, *cur;
    205 
    206 	irq = EPE_READ(IntStsC);
    207 begin:
    208 	cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
    209 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
    210 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
    211 		RX_QLEN * 4 * sizeof(uint32_t),
    212 		BUS_DMASYNC_PREREAD);
    213 	while (sc->RXStsQ_cur != cur) {
    214 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE | RXStsQ_RFP |RXStsQ_EOB))
    215 		    == (RXStsQ_RWE | RXStsQ_RFP | RXStsQ_EOB)) {
    216 			uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
    217 			uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
    218 			struct mbuf *m;
    219 
    220 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    221 			if (m != NULL) MCLGET(m, M_DONTWAIT);
    222 			if (m != NULL && (m->m_flags & M_EXT)) {
    223 				bus_dmamap_unload(sc->sc_dmat,
    224 					sc->rxq[bi].m_dmamap);
    225 				m_set_rcvif(sc->rxq[bi].m, ifp);
    226 				sc->rxq[bi].m->m_pkthdr.len =
    227 					sc->rxq[bi].m->m_len = fl;
    228 				if_percpuq_enqueue(ifp->if_percpuq,
    229 				    sc->rxq[bi].m);
    230 				sc->rxq[bi].m = m;
    231 				bus_dmamap_load(sc->sc_dmat,
    232 					sc->rxq[bi].m_dmamap,
    233 					m->m_ext.ext_buf, MCLBYTES,
    234 					NULL, BUS_DMA_NOWAIT);
    235 				sc->RXDQ[bi * 2] =
    236 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
    237 			} else {
    238 				/* Drop packets until we can get replacement
    239 				 * empty mbufs for the RXDQ.
    240 				 */
    241 				m_freem(m);
    242 
    243 				if_statinc(ifp, if_ierrors);
    244 			}
    245 		} else
    246 			if_statinc(ifp, if_ierrors);
    247 
    248 		ndq++;
    249 
    250 		sc->RXStsQ_cur += 2;
    251 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2))
    252 			sc->RXStsQ_cur = sc->RXStsQ;
    253 	}
    254 
    255 	if (ndq > 0) {
    256 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
    257 			RX_QLEN * 4 * sizeof(uint32_t),
    258 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    259 		EPE_WRITE(RXStsEnq, ndq);
    260 		EPE_WRITE(RXDEnq, ndq);
    261 		ndq = 0;
    262 	}
    263 
    264 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
    265 		if_schedule_deferred_start(ifp);
    266 	}
    267 
    268 	irq = EPE_READ(IntStsC);
    269 	if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
    270 		goto begin;
    271 
    272 	return 1;
    273 }
    274 
    275 
    276 static void
    277 epe_init(struct epe_softc *sc)
    278 {
    279 	bus_dma_segment_t segs;
    280 	char *addr;
    281 	int rsegs, err, i;
    282 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    283 	struct mii_data *mii = &sc->sc_mii;
    284 	int mdcdiv = DEFAULT_MDCDIV;
    285 
    286 	callout_init(&sc->epe_tick_ch, 0);
    287 
    288 	/* Select primary Individual Address in Address Filter Pointer */
    289 	EPE_WRITE(AFP, 0);
    290 	/* Read ethernet MAC, should already be set by bootrom */
    291 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    292 		sc->sc_enaddr, ETHER_ADDR_LEN);
    293 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
    294 		ether_sprintf(sc->sc_enaddr));
    295 
    296 	/* Soft Reset the MAC */
    297 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
    298 	while (EPE_READ(SelfCtl) & SelfCtl_RESET)
    299 		;
    300 
    301 	/* suggested magic initialization values from datasheet */
    302 	EPE_WRITE(RXBufThrshld, 0x800040);
    303 	EPE_WRITE(TXBufThrshld, 0x200010);
    304 	EPE_WRITE(RXStsThrshld, 0x40002);
    305 	EPE_WRITE(TXStsThrshld, 0x40002);
    306 	EPE_WRITE(RXDThrshld, 0x40002);
    307 	EPE_WRITE(TXDThrshld, 0x40002);
    308 
    309 	/* Allocate a page of memory for descriptor and status queues */
    310 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
    311 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
    312 	if (err == 0) {
    313 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
    314 			&sc->ctrlpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
    315 	}
    316 	if (err == 0) {
    317 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    318 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
    319 	}
    320 	if (err == 0) {
    321 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
    322 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
    323 	}
    324 	if (err != 0) {
    325 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
    326 	}
    327 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
    328 	memset(sc->ctrlpage, 0, PAGE_SIZE);
    329 
    330 	/* Set up pointers to start of each queue in kernel addr space.
    331 	 * Each descriptor queue or status queue entry uses 2 words
    332 	 */
    333 	sc->TXDQ = (uint32_t *)sc->ctrlpage;
    334 	sc->TXDQ_cur = sc->TXDQ;
    335 	sc->TXDQ_avail = TX_QLEN - 1;
    336 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
    337 	sc->TXStsQ_cur = sc->TXStsQ;
    338 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
    339 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
    340 	sc->RXStsQ_cur = sc->RXStsQ;
    341 
    342 	/* Program each queue's start addr, cur addr, and len registers
    343 	 * with the physical addresses.
    344 	 */
    345 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
    346 	EPE_WRITE(TXDQBAdd, (uint32_t)addr);
    347 	EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
    348 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
    349 
    350 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
    351 	EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
    352 	EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
    353 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
    354 
    355 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
    356 	EPE_WRITE(RXDQBAdd, (uint32_t)addr);
    357 	EPE_WRITE(RXDCurAdd, (uint32_t)addr);
    358 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
    359 
    360 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
    361 	EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
    362 	EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
    363 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
    364 
    365 	/* Populate the RXDQ with mbufs */
    366 	for (i = 0; i < RX_QLEN; i++) {
    367 		struct mbuf *m;
    368 
    369 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES,
    370 		    0, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
    371 		MGETHDR(m, M_WAIT, MT_DATA);
    372 		MCLGET(m, M_WAIT);
    373 		sc->rxq[i].m = m;
    374 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
    375 			m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_WAITOK);
    376 
    377 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
    378 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
    379 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
    380 			MCLBYTES, BUS_DMASYNC_PREREAD);
    381 	}
    382 
    383 	for (i = 0; i < TX_QLEN; i++) {
    384 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    385 			(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
    386 			&sc->txq[i].m_dmamap);
    387 		sc->txq[i].m = NULL;
    388 		sc->TXDQ[i * 2 + 1] = (i << 16);
    389 	}
    390 
    391 	/* Divide HCLK by 32 for MDC clock */
    392 	if (device_cfdata(sc->sc_dev)->cf_flags)
    393 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
    394 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv) | SelfCtl_PSPRS));
    395 
    396 	mii->mii_ifp = ifp;
    397 	mii->mii_readreg = epe_mii_readreg;
    398 	mii->mii_writereg = epe_mii_writereg;
    399 	mii->mii_statchg = epe_statchg;
    400 	sc->sc_ec.ec_mii = mii;
    401 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    402 		ether_mediastatus);
    403 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    404 	    MII_OFFSET_ANY, 0);
    405 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    406 
    407 	EPE_WRITE(BMCtl, BMCtl_RxEn | BMCtl_TxEn);
    408 	EPE_WRITE(IntEn, IntEn_REOFIE);
    409 	/* maximum valid max frame length */
    410 	EPE_WRITE(MaxFrmLen, (0x7ff << 16) | MHLEN);
    411 	/* wait for receiver ready */
    412 	while ((EPE_READ(BMSts) & BMSts_RxAct) == 0)
    413 		continue;
    414 	/* enqueue the entries in RXStsQ and RXDQ */
    415 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
    416 		BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    417 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
    418 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
    419 
    420 	/*
    421 	 * We can support 802.1Q VLAN-sized frames.
    422 	 */
    423 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    424 
    425 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    426 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    427 	ifp->if_ioctl = epe_ifioctl;
    428 	ifp->if_start = epe_ifstart;
    429 	ifp->if_watchdog = epe_ifwatchdog;
    430 	ifp->if_init = epe_ifinit;
    431 	ifp->if_stop = epe_ifstop;
    432 	ifp->if_timer = 0;
    433 	ifp->if_softc = sc;
    434 	IFQ_SET_READY(&ifp->if_snd);
    435 	if_attach(ifp);
    436 	if_deferred_start_init(ifp, NULL);
    437 	ether_ifattach(ifp, (sc)->sc_enaddr);
    438 }
    439 
    440 int
    441 epe_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    442 {
    443 	uint32_t d;
    444 
    445 	d = EPE_READ(SelfCtl);
    446 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
    447 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
    448 	while (EPE_READ(MIISts) & MIISts_BUSY)
    449 		;
    450 	*val = EPE_READ(MIIData) & 0xffff;
    451 	EPE_WRITE(SelfCtl, d); /* restore old value */
    452 	return 0;
    453 }
    454 
    455 int
    456 epe_mii_writereg(device_t self, int phy, int reg, uint16_t val)
    457 {
    458 	uint32_t d;
    459 
    460 	d = EPE_READ(SelfCtl);
    461 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
    462 	EPE_WRITE(MIIData, val);
    463 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
    464 	while (EPE_READ(MIISts) & MIISts_BUSY)
    465 		;
    466 	EPE_WRITE(SelfCtl, d); /* restore old value */
    467 
    468 	return 0;
    469 }
    470 
    471 void
    472 epe_statchg(struct ifnet *ifp)
    473 {
    474 	struct epe_softc *sc = ifp->if_softc;
    475 	uint32_t reg;
    476 
    477 	/*
    478 	 * We must keep the MAC and the PHY in sync as
    479 	 * to the status of full-duplex!
    480 	 */
    481 	reg = EPE_READ(TestCtl);
    482 	if (sc->sc_mii.mii_media_active & IFM_FDX)
    483 		reg |= TestCtl_MFDX;
    484 	else
    485 		reg &= ~TestCtl_MFDX;
    486 	EPE_WRITE(TestCtl, reg);
    487 }
    488 
    489 void
    490 epe_tick(void *arg)
    491 {
    492 	struct epe_softc* sc = (struct epe_softc *)arg;
    493 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    494 	int s;
    495 	uint32_t misses;
    496 
    497 	if_statadd(ifp, if_collisions, EPE_READ(TXCollCnt));
    498 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
    499 	misses = EPE_READ(RXMissCnt);
    500 	if (misses > 0)
    501 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
    502 
    503 	s = splnet();
    504 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
    505 		epe_ifstart(ifp);
    506 	}
    507 	splx(s);
    508 
    509 	mii_tick(&sc->sc_mii);
    510 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
    511 }
    512 
    513 
    514 static int
    515 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    516 {
    517 	int s, error;
    518 
    519 	s = splnet();
    520 	error = ether_ioctl(ifp, cmd, data);
    521 	if (error == ENETRESET) {
    522 		if (ifp->if_flags & IFF_RUNNING)
    523 			epe_setaddr(ifp);
    524 		error = 0;
    525 	}
    526 	splx(s);
    527 	return error;
    528 }
    529 
    530 static void
    531 epe_ifstart(struct ifnet *ifp)
    532 {
    533 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
    534 	struct mbuf *m;
    535 	bus_dma_segment_t *segs;
    536 	int s, bi, err, nsegs, ndq;
    537 
    538 	s = splnet();
    539 start:
    540 	ndq = 0;
    541 	if (sc->TXDQ_avail == 0) {
    542 		if (epe_gctx(sc) == 0) {
    543 			/* Enable End-Of-TX-Chain interrupt */
    544 			EPE_WRITE(IntEn, IntEn_REOFIE | IntEn_ECIE);
    545 			sc->tx_busy = true;
    546 			ifp->if_timer = 10;
    547 			splx(s);
    548 			return;
    549 		}
    550 	}
    551 
    552 	bi = sc->TXDQ_cur - sc->TXDQ;
    553 
    554 	IFQ_POLL(&ifp->if_snd, m);
    555 	if (m == NULL) {
    556 		splx(s);
    557 		return;
    558 	}
    559 more:
    560 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
    561 		BUS_DMA_NOWAIT)) ||
    562 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
    563 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
    564 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
    565 		struct mbuf *mn;
    566 
    567 		if (err == 0)
    568 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
    569 
    570 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
    571 		if (mn == NULL) goto stop;
    572 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
    573 			MCLGET(mn, M_DONTWAIT);
    574 			if ((mn->m_flags & M_EXT) == 0) {
    575 				m_freem(mn);
    576 				goto stop;
    577 			}
    578 		}
    579 		mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
    580 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
    581 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
    582 		IFQ_DEQUEUE(&ifp->if_snd, m);
    583 		m_freem(m);
    584 		m = mn;
    585 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
    586 			BUS_DMA_NOWAIT);
    587 	} else {
    588 		IFQ_DEQUEUE(&ifp->if_snd, m);
    589 	}
    590 
    591 	bpf_mtap(ifp, m, BPF_D_OUT);
    592 
    593 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
    594 	segs = sc->txq[bi].m_dmamap->dm_segs;
    595 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
    596 		sc->txq[bi].m_dmamap->dm_mapsize,
    597 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    598 
    599 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
    600 	while (nsegs > 0) {
    601 		nsegs--;
    602 		sc->txq[bi].m = m;
    603 		sc->TXDQ[bi * 2] = segs->ds_addr;
    604 		if (nsegs == 0)
    605 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
    606 				(1 << 31);
    607 		else
    608 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
    609 		segs++;
    610 		bi = (bi + 1) % TX_QLEN;
    611 		ndq++;
    612 	}
    613 
    614 
    615 	/*
    616 	 * Enqueue another.  Don't do more than half the available
    617 	 * descriptors before telling the MAC about them
    618 	 */
    619 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
    620 		IFQ_POLL(&ifp->if_snd, m);
    621 		if (m != NULL)
    622 			goto more;
    623 	}
    624 stop:
    625 	if (ndq > 0) {
    626 		sc->TXDQ_avail -= ndq;
    627 		sc->TXDQ_cur = &sc->TXDQ[bi];
    628 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
    629 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    630 		EPE_WRITE(TXDEnq, ndq);
    631 	}
    632 
    633 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
    634 		goto start;
    635 
    636 	splx(s);
    637 	return;
    638 }
    639 
    640 static void
    641 epe_ifwatchdog(struct ifnet *ifp)
    642 {
    643 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
    644 
    645 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    646 		return;
    647 	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
    648 		device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
    649 }
    650 
    651 static int
    652 epe_ifinit(struct ifnet *ifp)
    653 {
    654 	struct epe_softc *sc = ifp->if_softc;
    655 	int rc, s = splnet();
    656 
    657 	callout_stop(&sc->epe_tick_ch);
    658 	EPE_WRITE(RXCtl, RXCtl_IA0 | RXCtl_BA | RXCtl_RCRCA | RXCtl_SRxON);
    659 	EPE_WRITE(TXCtl, TXCtl_STxON);
    660 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
    661 
    662 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
    663 		rc = 0;
    664 	else if (rc != 0)
    665 		goto out;
    666 
    667 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
    668 	ifp->if_flags |= IFF_RUNNING;
    669 out:
    670 	splx(s);
    671 	return 0;
    672 }
    673 
    674 static void
    675 epe_ifstop(struct ifnet *ifp, int disable)
    676 {
    677 	struct epe_softc *sc = ifp->if_softc;
    678 
    679 
    680 	EPE_WRITE(RXCtl, 0);
    681 	EPE_WRITE(TXCtl, 0);
    682 	EPE_WRITE(GIIntMsk, 0);
    683 	callout_stop(&sc->epe_tick_ch);
    684 
    685 	/* Down the MII. */
    686 	mii_down(&sc->sc_mii);
    687 
    688 	ifp->if_flags &= ~IFF_RUNNING;
    689 	ifp->if_timer = 0;
    690 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
    691 }
    692 
    693 static void
    694 epe_setaddr(struct ifnet *ifp)
    695 {
    696 	struct epe_softc *sc = ifp->if_softc;
    697 	struct ethercom *ec = &sc->sc_ec;
    698 	struct ether_multi *enm;
    699 	struct ether_multistep step;
    700 	uint8_t ias[2][ETHER_ADDR_LEN];
    701 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
    702 	uint32_t rxctl = EPE_READ(RXCtl);
    703 
    704 	/* disable receiver temporarily */
    705 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
    706 
    707 	rxctl &= ~(RXCtl_MA | RXCtl_PA | RXCtl_IA2 | RXCtl_IA3);
    708 
    709 	if (ifp->if_flags & IFF_PROMISC)
    710 		rxctl |= RXCtl_PA;
    711 
    712 	ifp->if_flags &= ~IFF_ALLMULTI;
    713 
    714 	ETHER_LOCK(ec);
    715 	ETHER_FIRST_MULTI(step, ec, enm);
    716 	while (enm != NULL) {
    717 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    718 			/*
    719 			 * We must listen to a range of multicast addresses.
    720 			 * For now, just accept all multicasts, rather than
    721 			 * trying to set only those filter bits needed to match
    722 			 * the range.  (At this time, the only use of address
    723 			 * ranges is for IP multicast routing, for which the
    724 			 * range is big enough to require all bits set.)
    725 			 */
    726 			rxctl &= ~(RXCtl_IA2 | RXCtl_IA3);
    727 			rxctl |= RXCtl_MA;
    728 			hashes[0] = 0xffffffffUL;
    729 			hashes[1] = 0xffffffffUL;
    730 			ifp->if_flags |= IFF_ALLMULTI;
    731 			break;
    732 		}
    733 
    734 		if (nma < 2) {
    735 			/* We can program 2 perfect address filters for mcast */
    736 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
    737 			rxctl |= (1 << (nma + 2));
    738 		} else {
    739 			/*
    740 			 * XXX: Datasheet is not very clear here, I'm not sure
    741 			 * if I'm doing this right.  --joff
    742 			 */
    743 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
    744 
    745 			/* Just want the 6 most-significant bits. */
    746 			h = h >> 26;
    747 
    748 			hashes[ h / 32 ] |=  (1 << (h % 32));
    749 			rxctl |= RXCtl_MA;
    750 		}
    751 		ETHER_NEXT_MULTI(step, enm);
    752 		nma++;
    753 	}
    754 	ETHER_UNLOCK(ec);
    755 
    756 	EPE_WRITE(AFP, 0);
    757 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    758 		sc->sc_enaddr, ETHER_ADDR_LEN);
    759 	if (rxctl & RXCtl_IA2) {
    760 		EPE_WRITE(AFP, 2);
    761 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    762 			ias[0], ETHER_ADDR_LEN);
    763 	}
    764 	if (rxctl & RXCtl_IA3) {
    765 		EPE_WRITE(AFP, 3);
    766 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    767 			ias[1], ETHER_ADDR_LEN);
    768 	}
    769 	if (hashes[0] != 0 && hashes[1] != 0) {
    770 		EPE_WRITE(AFP, 7);
    771 		EPE_WRITE(HashTbl, hashes[0]);
    772 		EPE_WRITE(HashTbl + 4, hashes[1]);
    773 	}
    774 	EPE_WRITE(RXCtl, rxctl);
    775 }
    776