Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: mpt_netbsd.c,v 1.40 2024/02/09 22:08:34 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2000, 2001 by Greg Ansley
     40  * Partially derived from Matt Jacob's ISP driver.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice immediately at the beginning of the file, without modification,
     47  *    this list of conditions, and the following disclaimer.
     48  * 2. The name of the author may not be used to endorse or promote products
     49  *    derived from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
     55  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 /*
     64  * Additional Copyright (c) 2002 by Matthew Jacob under same license.
     65  */
     66 
     67 /*
     68  * mpt_netbsd.c:
     69  *
     70  * NetBSD-specific routines for LSI Fusion adapters.  Includes some
     71  * bus_dma glue, and SCSIPI glue.
     72  *
     73  * Adapted from the FreeBSD "mpt" driver by Jason R. Thorpe for
     74  * Wasabi Systems, Inc.
     75  *
     76  * Additional contributions by Garrett D'Amore on behalf of TELES AG.
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: mpt_netbsd.c,v 1.40 2024/02/09 22:08:34 andvar Exp $");
     81 
     82 #include "bio.h"
     83 
     84 #include <dev/ic/mpt.h>			/* pulls in all headers */
     85 #include <sys/scsiio.h>
     86 
     87 #if NBIO > 0
     88 #include <dev/biovar.h>
     89 #endif
     90 
     91 static int	mpt_poll(mpt_softc_t *, struct scsipi_xfer *, int);
     92 static void	mpt_timeout(void *);
     93 static void	mpt_restart(mpt_softc_t *, request_t *);
     94 static void	mpt_done(mpt_softc_t *, uint32_t);
     95 static int	mpt_drain_queue(mpt_softc_t *);
     96 static void	mpt_run_xfer(mpt_softc_t *, struct scsipi_xfer *);
     97 static void	mpt_set_xfer_mode(mpt_softc_t *, struct scsipi_xfer_mode *);
     98 static void	mpt_get_xfer_mode(mpt_softc_t *, struct scsipi_periph *);
     99 static void	mpt_ctlop(mpt_softc_t *, void *vmsg, uint32_t);
    100 static void	mpt_event_notify_reply(mpt_softc_t *, MSG_EVENT_NOTIFY_REPLY *);
    101 static void  mpt_bus_reset(mpt_softc_t *);
    102 
    103 static void	mpt_scsipi_request(struct scsipi_channel *,
    104 		    scsipi_adapter_req_t, void *);
    105 static void	mpt_minphys(struct buf *);
    106 static int 	mpt_ioctl(struct scsipi_channel *, u_long, void *, int,
    107 	struct proc *);
    108 
    109 #if NBIO > 0
    110 static bool	mpt_is_raid(mpt_softc_t *);
    111 static int	mpt_bio_ioctl(device_t, u_long, void *);
    112 static int	mpt_bio_ioctl_inq(mpt_softc_t *, struct bioc_inq *);
    113 static int	mpt_bio_ioctl_vol(mpt_softc_t *, struct bioc_vol *);
    114 static int	mpt_bio_ioctl_disk(mpt_softc_t *, struct bioc_disk *);
    115 static int	mpt_bio_ioctl_disk_novol(mpt_softc_t *, struct bioc_disk *);
    116 #endif
    117 
    118 void
    119 mpt_scsipi_attach(mpt_softc_t *mpt)
    120 {
    121 	struct scsipi_adapter *adapt = &mpt->sc_adapter;
    122 	struct scsipi_channel *chan = &mpt->sc_channel;
    123 	int maxq;
    124 
    125 	mpt->bus = 0;		/* XXX ?? */
    126 
    127 	maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt)) ?
    128 	    mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt);
    129 
    130 	/* Fill in the scsipi_adapter. */
    131 	memset(adapt, 0, sizeof(*adapt));
    132 	adapt->adapt_dev = mpt->sc_dev;
    133 	adapt->adapt_nchannels = 1;
    134 	adapt->adapt_openings = maxq - 2;	/* Reserve 2 for driver use*/
    135 	adapt->adapt_max_periph = maxq - 2;
    136 	adapt->adapt_request = mpt_scsipi_request;
    137 	adapt->adapt_minphys = mpt_minphys;
    138 	adapt->adapt_ioctl = mpt_ioctl;
    139 
    140 	/* Fill in the scsipi_channel. */
    141 	memset(chan, 0, sizeof(*chan));
    142 	chan->chan_adapter = adapt;
    143 	if (mpt->is_sas) {
    144 		chan->chan_bustype = &scsi_sas_bustype;
    145 	} else if (mpt->is_fc) {
    146 		chan->chan_bustype = &scsi_fc_bustype;
    147 	} else {
    148 		chan->chan_bustype = &scsi_bustype;
    149 	}
    150 	chan->chan_channel = 0;
    151 	chan->chan_flags = 0;
    152 	chan->chan_nluns = 8;
    153 	chan->chan_ntargets = mpt->mpt_max_devices ? mpt->mpt_max_devices : 256;
    154 	chan->chan_id = mpt->mpt_ini_id;
    155 
    156 	/*
    157 	* Save the output of the config so we can rescan the bus in case of
    158 	* errors
    159 	*/
    160 	mpt->sc_scsibus_dv = config_found(mpt->sc_dev, &mpt->sc_channel,
    161 	    scsiprint, CFARGS_NONE);
    162 
    163 #if NBIO > 0
    164 	if (mpt_is_raid(mpt)) {
    165 		if (bio_register(mpt->sc_dev, mpt_bio_ioctl) != 0)
    166 			panic("%s: controller registration failed",
    167 			    device_xname(mpt->sc_dev));
    168 	}
    169 #endif
    170 }
    171 
    172 int
    173 mpt_dma_mem_alloc(mpt_softc_t *mpt)
    174 {
    175 	bus_dma_segment_t reply_seg, request_seg;
    176 	int reply_rseg, request_rseg;
    177 	bus_addr_t pptr, end;
    178 	char *vptr;
    179 	size_t len;
    180 	int error, i;
    181 
    182 	/* Check if we have already allocated the reply memory. */
    183 	if (mpt->reply != NULL)
    184 		return (0);
    185 
    186 	/*
    187 	 * Allocate the request pool.  This isn't really DMA'd memory,
    188 	 * but it's a convenient place to do it.
    189 	 */
    190 	len = sizeof(request_t) * MPT_MAX_REQUESTS(mpt);
    191 	mpt->request_pool = malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
    192 	if (mpt->request_pool == NULL) {
    193 		aprint_error_dev(mpt->sc_dev, "unable to allocate request pool\n");
    194 		return (ENOMEM);
    195 	}
    196 
    197 	/*
    198 	 * Allocate DMA resources for reply buffers.
    199 	 */
    200 	error = bus_dmamem_alloc(mpt->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0,
    201 	    &reply_seg, 1, &reply_rseg, 0);
    202 	if (error) {
    203 		aprint_error_dev(mpt->sc_dev, "unable to allocate reply area, error = %d\n",
    204 		    error);
    205 		goto fail_0;
    206 	}
    207 
    208 	error = bus_dmamem_map(mpt->sc_dmat, &reply_seg, reply_rseg, PAGE_SIZE,
    209 	    (void **) &mpt->reply, BUS_DMA_COHERENT/*XXX*/);
    210 	if (error) {
    211 		aprint_error_dev(mpt->sc_dev, "unable to map reply area, error = %d\n",
    212 		    error);
    213 		goto fail_1;
    214 	}
    215 
    216 	error = bus_dmamap_create(mpt->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    217 	    0, 0, &mpt->reply_dmap);
    218 	if (error) {
    219 		aprint_error_dev(mpt->sc_dev, "unable to create reply DMA map, error = %d\n",
    220 		    error);
    221 		goto fail_2;
    222 	}
    223 
    224 	error = bus_dmamap_load(mpt->sc_dmat, mpt->reply_dmap, mpt->reply,
    225 	    PAGE_SIZE, NULL, 0);
    226 	if (error) {
    227 		aprint_error_dev(mpt->sc_dev, "unable to load reply DMA map, error = %d\n",
    228 		    error);
    229 		goto fail_3;
    230 	}
    231 	mpt->reply_phys = mpt->reply_dmap->dm_segs[0].ds_addr;
    232 
    233 	/*
    234 	 * Allocate DMA resources for request buffers.
    235 	 */
    236 	error = bus_dmamem_alloc(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt),
    237 	    PAGE_SIZE, 0, &request_seg, 1, &request_rseg, 0);
    238 	if (error) {
    239 		aprint_error_dev(mpt->sc_dev, "unable to allocate request area, "
    240 		    "error = %d\n", error);
    241 		goto fail_4;
    242 	}
    243 
    244 	error = bus_dmamem_map(mpt->sc_dmat, &request_seg, request_rseg,
    245 	    MPT_REQ_MEM_SIZE(mpt), (void **) &mpt->request, 0);
    246 	if (error) {
    247 		aprint_error_dev(mpt->sc_dev, "unable to map request area, error = %d\n",
    248 		    error);
    249 		goto fail_5;
    250 	}
    251 
    252 	error = bus_dmamap_create(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), 1,
    253 	    MPT_REQ_MEM_SIZE(mpt), 0, 0, &mpt->request_dmap);
    254 	if (error) {
    255 		aprint_error_dev(mpt->sc_dev, "unable to create request DMA map, "
    256 		    "error = %d\n", error);
    257 		goto fail_6;
    258 	}
    259 
    260 	error = bus_dmamap_load(mpt->sc_dmat, mpt->request_dmap, mpt->request,
    261 	    MPT_REQ_MEM_SIZE(mpt), NULL, 0);
    262 	if (error) {
    263 		aprint_error_dev(mpt->sc_dev, "unable to load request DMA map, error = %d\n",
    264 		    error);
    265 		goto fail_7;
    266 	}
    267 	mpt->request_phys = mpt->request_dmap->dm_segs[0].ds_addr;
    268 
    269 	pptr = mpt->request_phys;
    270 	vptr = (void *) mpt->request;
    271 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
    272 
    273 	for (i = 0; pptr < end; i++) {
    274 		request_t *req = &mpt->request_pool[i];
    275 		req->index = i;
    276 
    277 		/* Store location of Request Data */
    278 		req->req_pbuf = pptr;
    279 		req->req_vbuf = vptr;
    280 
    281 		pptr += MPT_REQUEST_AREA;
    282 		vptr += MPT_REQUEST_AREA;
    283 
    284 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
    285 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
    286 
    287 		error = bus_dmamap_create(mpt->sc_dmat, MAXPHYS,
    288 		    MPT_SGL_MAX, MAXPHYS, 0, 0, &req->dmap);
    289 		if (error) {
    290 			aprint_error_dev(mpt->sc_dev, "unable to create req %d DMA map, "
    291 			    "error = %d\n", i, error);
    292 			goto fail_8;
    293 		}
    294 	}
    295 
    296 	return (0);
    297 
    298  fail_8:
    299 	for (--i; i >= 0; i--) {
    300 		request_t *req = &mpt->request_pool[i];
    301 		if (req->dmap != NULL)
    302 			bus_dmamap_destroy(mpt->sc_dmat, req->dmap);
    303 	}
    304 	bus_dmamap_unload(mpt->sc_dmat, mpt->request_dmap);
    305  fail_7:
    306 	bus_dmamap_destroy(mpt->sc_dmat, mpt->request_dmap);
    307  fail_6:
    308 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->request, PAGE_SIZE);
    309  fail_5:
    310 	bus_dmamem_free(mpt->sc_dmat, &request_seg, request_rseg);
    311  fail_4:
    312 	bus_dmamap_unload(mpt->sc_dmat, mpt->reply_dmap);
    313  fail_3:
    314 	bus_dmamap_destroy(mpt->sc_dmat, mpt->reply_dmap);
    315  fail_2:
    316 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->reply, PAGE_SIZE);
    317  fail_1:
    318 	bus_dmamem_free(mpt->sc_dmat, &reply_seg, reply_rseg);
    319  fail_0:
    320 	free(mpt->request_pool, M_DEVBUF);
    321 
    322 	mpt->reply = NULL;
    323 	mpt->request = NULL;
    324 	mpt->request_pool = NULL;
    325 
    326 	return (error);
    327 }
    328 
    329 int
    330 mpt_intr(void *arg)
    331 {
    332 	mpt_softc_t *mpt = arg;
    333 	int nrepl = 0;
    334 
    335 	if ((mpt_read(mpt, MPT_OFFSET_INTR_STATUS) & MPT_INTR_REPLY_READY) == 0)
    336 		return (0);
    337 
    338 	nrepl = mpt_drain_queue(mpt);
    339 	return (nrepl != 0);
    340 }
    341 
    342 void
    343 mpt_prt(mpt_softc_t *mpt, const char *fmt, ...)
    344 {
    345 	va_list ap;
    346 
    347 	printf("%s: ", device_xname(mpt->sc_dev));
    348 	va_start(ap, fmt);
    349 	vprintf(fmt, ap);
    350 	va_end(ap);
    351 	printf("\n");
    352 }
    353 
    354 static int
    355 mpt_poll(mpt_softc_t *mpt, struct scsipi_xfer *xs, int count)
    356 {
    357 
    358 	/* Timeouts are in msec, so we loop in 1000usec cycles */
    359 	while (count) {
    360 		mpt_intr(mpt);
    361 		if (xs->xs_status & XS_STS_DONE)
    362 			return (0);
    363 		delay(1000);		/* only happens in boot, so ok */
    364 		count--;
    365 	}
    366 	return (1);
    367 }
    368 
    369 static void
    370 mpt_timeout(void *arg)
    371 {
    372 	request_t *req = arg;
    373 	struct scsipi_xfer *xs;
    374 	struct scsipi_periph *periph;
    375 	mpt_softc_t *mpt;
    376  	uint32_t oseq;
    377 	int s, nrepl = 0;
    378 
    379 	if (req->xfer  == NULL) {
    380 		printf("mpt_timeout: NULL xfer for request index 0x%x, sequenc 0x%x\n",
    381 		req->index, req->sequence);
    382 		return;
    383 	}
    384 	xs = req->xfer;
    385 	periph = xs->xs_periph;
    386 	mpt = device_private(periph->periph_channel->chan_adapter->adapt_dev);
    387 	scsipi_printaddr(periph);
    388 	printf("command timeout\n");
    389 
    390 	s = splbio();
    391 
    392 	oseq = req->sequence;
    393 	mpt->timeouts++;
    394 	if (mpt_intr(mpt)) {
    395 		if (req->sequence != oseq) {
    396 			mpt->success++;
    397 			mpt_prt(mpt, "recovered from command timeout");
    398 			splx(s);
    399 			return;
    400 		}
    401 	}
    402 
    403 	/*
    404 	 * Ensure the IOC is really done giving us data since it appears it can
    405 	 * sometimes fail to give us interrupts under heavy load.
    406 	 */
    407 	nrepl = mpt_drain_queue(mpt);
    408 	if (nrepl ) {
    409 		mpt_prt(mpt, "mpt_timeout: recovered %d commands",nrepl);
    410 	}
    411 
    412 	if (req->sequence != oseq) {
    413 		mpt->success++;
    414 		splx(s);
    415 		return;
    416 	}
    417 
    418 	mpt_prt(mpt,
    419 	    "timeout on request index = 0x%x, seq = 0x%08x",
    420 	    req->index, req->sequence);
    421 	mpt_check_doorbell(mpt);
    422 	mpt_prt(mpt, "Status 0x%08x, Mask 0x%08x, Doorbell 0x%08x",
    423 	    mpt_read(mpt, MPT_OFFSET_INTR_STATUS),
    424 	    mpt_read(mpt, MPT_OFFSET_INTR_MASK),
    425 	    mpt_read(mpt, MPT_OFFSET_DOORBELL));
    426 	mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    427 	if (mpt->verbose > 1)
    428 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    429 
    430 	xs->error = XS_TIMEOUT;
    431 	splx(s);
    432 	mpt_restart(mpt, req);
    433 }
    434 
    435 static void
    436 mpt_restart(mpt_softc_t *mpt, request_t *req0)
    437 {
    438 	int i, s, nreq;
    439 	request_t *req;
    440 	struct scsipi_xfer *xs;
    441 
    442 	/* first, reset the IOC, leaving stopped so all requests are idle */
    443 	if (mpt_soft_reset(mpt) != MPT_OK) {
    444 		mpt_prt(mpt, "soft reset failed");
    445 		/*
    446 		* Don't try a hard reset since this mangles the PCI
    447 		* configuration registers.
    448 		*/
    449 		return;
    450 	}
    451 
    452 	/* Freeze the channel so scsipi doesn't queue more commands. */
    453 	scsipi_channel_freeze(&mpt->sc_channel, 1);
    454 
    455 	/* Return all pending requests to scsipi and de-allocate them. */
    456 	s = splbio();
    457 	nreq = 0;
    458 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
    459 		req = &mpt->request_pool[i];
    460 		xs = req->xfer;
    461 		if (xs != NULL) {
    462 			if (xs->datalen != 0)
    463 				bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    464 			req->xfer = NULL;
    465 			callout_stop(&xs->xs_callout);
    466 			if (req != req0) {
    467 				nreq++;
    468 				xs->error = XS_REQUEUE;
    469 			}
    470 			scsipi_done(xs);
    471 			/*
    472 			* Don't need to mpt_free_request() since mpt_init()
    473 			* below will free all requests anyway.
    474 			*/
    475 			mpt_free_request(mpt, req);
    476 		}
    477 	}
    478 	splx(s);
    479 	if (nreq > 0)
    480 		mpt_prt(mpt, "re-queued %d requests", nreq);
    481 
    482 	/* Re-initialize the IOC (which restarts it). */
    483 	if (mpt_init(mpt, MPT_DB_INIT_HOST) == 0)
    484 		mpt_prt(mpt, "restart succeeded");
    485 	/* else error message already printed */
    486 
    487 	/* Thaw the channel, causing scsipi to re-queue the commands. */
    488 	scsipi_channel_thaw(&mpt->sc_channel, 1);
    489 }
    490 
    491 static int
    492 mpt_drain_queue(mpt_softc_t *mpt)
    493 {
    494 	int nrepl = 0;
    495 	uint32_t reply;
    496 
    497 	reply = mpt_pop_reply_queue(mpt);
    498 	while (reply != MPT_REPLY_EMPTY) {
    499 		nrepl++;
    500 		if (mpt->verbose > 1) {
    501 			if ((reply & MPT_CONTEXT_REPLY) != 0) {
    502 				/* Address reply; IOC has something to say */
    503 				mpt_print_reply(MPT_REPLY_PTOV(mpt, reply));
    504 			} else {
    505 				/* Context reply; all went well */
    506 				mpt_prt(mpt, "context %u reply OK", reply);
    507 			}
    508 		}
    509 		mpt_done(mpt, reply);
    510 		reply = mpt_pop_reply_queue(mpt);
    511 	}
    512 	return (nrepl);
    513 }
    514 
    515 static void
    516 mpt_done(mpt_softc_t *mpt, uint32_t reply)
    517 {
    518 	struct scsipi_xfer *xs = NULL;
    519 	struct scsipi_periph *periph;
    520 	int index;
    521 	request_t *req;
    522 	MSG_REQUEST_HEADER *mpt_req;
    523 	MSG_SCSI_IO_REPLY *mpt_reply;
    524 	int restart = 0; /* nonzero if we need to restart the IOC*/
    525 
    526 	if (__predict_true((reply & MPT_CONTEXT_REPLY) == 0)) {
    527 		/* context reply (ok) */
    528 		mpt_reply = NULL;
    529 		index = reply & MPT_CONTEXT_MASK;
    530 	} else {
    531 		/* address reply (error) */
    532 
    533 		/* XXX BUS_DMASYNC_POSTREAD XXX */
    534 		mpt_reply = MPT_REPLY_PTOV(mpt, reply);
    535 		if (mpt_reply != NULL) {
    536 			if (mpt->verbose > 1) {
    537 				uint32_t *pReply = (uint32_t *) mpt_reply;
    538 
    539 				mpt_prt(mpt, "Address Reply (index %u):",
    540 				    le32toh(mpt_reply->MsgContext) & 0xffff);
    541 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[0],
    542 				    pReply[1], pReply[2], pReply[3]);
    543 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[4],
    544 				    pReply[5], pReply[6], pReply[7]);
    545 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[8],
    546 				    pReply[9], pReply[10], pReply[11]);
    547 			}
    548 			index = le32toh(mpt_reply->MsgContext);
    549 		} else
    550 			index = reply & MPT_CONTEXT_MASK;
    551 	}
    552 
    553 	/*
    554 	 * Address reply with MessageContext high bit set.
    555 	 * This is most likely a notify message, so we try
    556 	 * to process it, then free it.
    557 	 */
    558 	if (__predict_false((index & 0x80000000) != 0)) {
    559 		if (mpt_reply != NULL)
    560 			mpt_ctlop(mpt, mpt_reply, reply);
    561 		else
    562 			mpt_prt(mpt, "%s: index 0x%x, NULL reply", __func__,
    563 			    index);
    564 		return;
    565 	}
    566 
    567 	/* Did we end up with a valid index into the table? */
    568 	if (__predict_false(index < 0 || index >= MPT_MAX_REQUESTS(mpt))) {
    569 		mpt_prt(mpt, "%s: invalid index (0x%x) in reply", __func__,
    570 		    index);
    571 		return;
    572 	}
    573 
    574 	req = &mpt->request_pool[index];
    575 
    576 	/* Make sure memory hasn't been trashed. */
    577 	if (__predict_false(req->index != index)) {
    578 		mpt_prt(mpt, "%s: corrupted request_t (0x%x)", __func__,
    579 		    index);
    580 		return;
    581 	}
    582 
    583 	MPT_SYNC_REQ(mpt, req, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    584 	mpt_req = req->req_vbuf;
    585 
    586 	/* Short cut for task management replies; nothing more for us to do. */
    587 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT)) {
    588 		if (mpt->verbose > 1)
    589 			mpt_prt(mpt, "%s: TASK MGMT", __func__);
    590 		KASSERT(req == mpt->mngt_req);
    591 		mpt->mngt_req = NULL;
    592 		goto done;
    593 	}
    594 
    595 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_PORT_ENABLE))
    596 		goto done;
    597 
    598 	/*
    599 	 * At this point, it had better be a SCSI I/O command, but don't
    600 	 * crash if it isn't.
    601 	 */
    602 	if (__predict_false(mpt_req->Function !=
    603 			    MPI_FUNCTION_SCSI_IO_REQUEST)) {
    604 		if (mpt->verbose > 1)
    605 			mpt_prt(mpt, "%s: unknown Function 0x%x (0x%x)",
    606 			    __func__, mpt_req->Function, index);
    607 		goto done;
    608 	}
    609 
    610 	/* Recover scsipi_xfer from the request structure. */
    611 	xs = req->xfer;
    612 
    613 	/* Can't have a SCSI command without a scsipi_xfer. */
    614 	if (__predict_false(xs == NULL)) {
    615 		mpt_prt(mpt,
    616 		    "%s: no scsipi_xfer, index = 0x%x, seq = 0x%08x", __func__,
    617 		    req->index, req->sequence);
    618 		mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    619 		mpt_prt(mpt, "mpt_request:");
    620 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    621 
    622 		if (mpt_reply != NULL) {
    623 			mpt_prt(mpt, "mpt_reply:");
    624 			mpt_print_reply(mpt_reply);
    625 		} else {
    626 			mpt_prt(mpt, "context reply: 0x%08x", reply);
    627 		}
    628 		goto done;
    629 	}
    630 
    631 	callout_stop(&xs->xs_callout);
    632 
    633 	periph = xs->xs_periph;
    634 
    635 	/*
    636 	 * If we were a data transfer, unload the map that described
    637 	 * the data buffer.
    638 	 */
    639 	if (__predict_true(xs->datalen != 0)) {
    640 		bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
    641 		    req->dmap->dm_mapsize,
    642 		    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD
    643 						      : BUS_DMASYNC_POSTWRITE);
    644 		bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    645 	}
    646 
    647 	if (__predict_true(mpt_reply == NULL)) {
    648 		/*
    649 		 * Context reply; report that the command was
    650 		 * successful!
    651 		 *
    652 		 * Also report the xfer mode, if necessary.
    653 		 */
    654 		if (__predict_false(mpt->mpt_report_xfer_mode != 0)) {
    655 			if ((mpt->mpt_report_xfer_mode &
    656 			     (1 << periph->periph_target)) != 0)
    657 				mpt_get_xfer_mode(mpt, periph);
    658 		}
    659 		xs->error = XS_NOERROR;
    660 		xs->status = SCSI_OK;
    661 		xs->resid = 0;
    662 		mpt_free_request(mpt, req);
    663 		scsipi_done(xs);
    664 		return;
    665 	}
    666 
    667 	xs->status = mpt_reply->SCSIStatus;
    668 	switch (le16toh(mpt_reply->IOCStatus) & MPI_IOCSTATUS_MASK) {
    669 	case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
    670 		xs->error = XS_DRIVER_STUFFUP;
    671 		mpt_prt(mpt, "%s: IOC overrun!", __func__);
    672 		break;
    673 
    674 	case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
    675 		/*
    676 		 * Yikes!  Tagged queue full comes through this path!
    677 		 *
    678 		 * So we'll change it to a status error and anything
    679 		 * that returns status should probably be a status
    680 		 * error as well.
    681 		 */
    682 		xs->resid = xs->datalen - le32toh(mpt_reply->TransferCount);
    683 		if (mpt_reply->SCSIState &
    684 		    MPI_SCSI_STATE_NO_SCSI_STATUS) {
    685 			xs->error = XS_DRIVER_STUFFUP;
    686 			break;
    687 		}
    688 		/* FALLTHROUGH */
    689 	case MPI_IOCSTATUS_SUCCESS:
    690 	case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
    691 		switch (xs->status) {
    692 		case SCSI_OK:
    693 			/* Report the xfer mode, if necessary. */
    694 			if ((mpt->mpt_report_xfer_mode &
    695 			     (1 << periph->periph_target)) != 0)
    696 				mpt_get_xfer_mode(mpt, periph);
    697 			xs->resid = 0;
    698 			break;
    699 
    700 		case SCSI_CHECK:
    701 			xs->error = XS_SENSE;
    702 			break;
    703 
    704 		case SCSI_BUSY:
    705 		case SCSI_QUEUE_FULL:
    706 			xs->error = XS_BUSY;
    707 			break;
    708 
    709 		default:
    710 			scsipi_printaddr(periph);
    711 			printf("invalid status code %d\n", xs->status);
    712 			xs->error = XS_DRIVER_STUFFUP;
    713 			break;
    714 		}
    715 		break;
    716 
    717 	case MPI_IOCSTATUS_BUSY:
    718 	case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
    719 		xs->error = XS_RESOURCE_SHORTAGE;
    720 		break;
    721 
    722 	case MPI_IOCSTATUS_SCSI_INVALID_BUS:
    723 	case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
    724 	case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
    725 		xs->error = XS_SELTIMEOUT;
    726 		break;
    727 
    728 	case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
    729 		xs->error = XS_DRIVER_STUFFUP;
    730 		mpt_prt(mpt, "%s: IOC SCSI residual mismatch!", __func__);
    731 		restart = 1;
    732 		break;
    733 
    734 	case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
    735 		/* XXX What should we do here? */
    736 		mpt_prt(mpt, "%s: IOC SCSI task terminated!", __func__);
    737 		restart = 1;
    738 		break;
    739 
    740 	case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
    741 		/* XXX */
    742 		xs->error = XS_DRIVER_STUFFUP;
    743 		mpt_prt(mpt, "%s: IOC SCSI task failed!", __func__);
    744 		restart = 1;
    745 		break;
    746 
    747 	case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
    748 		/* XXX */
    749 		xs->error = XS_DRIVER_STUFFUP;
    750 		mpt_prt(mpt, "%s: IOC task terminated!", __func__);
    751 		restart = 1;
    752 		break;
    753 
    754 	case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
    755 		/* XXX This is a bus-reset */
    756 		xs->error = XS_DRIVER_STUFFUP;
    757 		mpt_prt(mpt, "%s: IOC SCSI bus reset!", __func__);
    758 		restart = 1;
    759 		break;
    760 
    761 	case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
    762 		/*
    763 		 * FreeBSD and Linux indicate this is a phase error between
    764 		 * the IOC and the drive itself. When this happens, the IOC
    765 		 * becomes unhappy and stops processing all transactions.
    766 		 * Call mpt_timeout which knows how to get the IOC back
    767 		 * on its feet.
    768 		 */
    769 		 mpt_prt(mpt, "%s: IOC indicates protocol error -- "
    770 		     "recovering...", __func__);
    771 		xs->error = XS_TIMEOUT;
    772 		restart = 1;
    773 
    774 		break;
    775 
    776 	default:
    777 		/* XXX unrecognized HBA error */
    778 		xs->error = XS_DRIVER_STUFFUP;
    779 		mpt_prt(mpt, "%s: IOC returned unknown code: 0x%x", __func__,
    780 		    le16toh(mpt_reply->IOCStatus));
    781 		restart = 1;
    782 		break;
    783 	}
    784 
    785 	if (mpt_reply != NULL) {
    786 		if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) {
    787 			memcpy(&xs->sense.scsi_sense, req->sense_vbuf,
    788 			    sizeof(xs->sense.scsi_sense));
    789 		} else if (mpt_reply->SCSIState &
    790 		    MPI_SCSI_STATE_AUTOSENSE_FAILED) {
    791 			/*
    792 			 * This will cause the scsipi layer to issue
    793 			 * a REQUEST SENSE.
    794 			 */
    795 			if (xs->status == SCSI_CHECK)
    796 				xs->error = XS_BUSY;
    797 		}
    798 	}
    799 
    800  done:
    801 	if (mpt_reply != NULL && le16toh(mpt_reply->IOCStatus) &
    802 	MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
    803 		mpt_prt(mpt, "%s: IOC has error - logging...\n", __func__);
    804 		mpt_ctlop(mpt, mpt_reply, reply);
    805 	}
    806 
    807 	/* If IOC done with this request, free it up. */
    808 	if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0)
    809 		mpt_free_request(mpt, req);
    810 
    811 	/* If address reply, give the buffer back to the IOC. */
    812 	if (mpt_reply != NULL)
    813 		mpt_free_reply(mpt, (reply << 1));
    814 
    815 	if (xs != NULL)
    816 		scsipi_done(xs);
    817 
    818 	if (restart) {
    819 		mpt_prt(mpt, "%s: IOC fatal error: restarting...", __func__);
    820 		mpt_restart(mpt, NULL);
    821 	}
    822 }
    823 
    824 static void
    825 mpt_run_xfer(mpt_softc_t *mpt, struct scsipi_xfer *xs)
    826 {
    827 	struct scsipi_periph *periph = xs->xs_periph;
    828 	request_t *req;
    829 	MSG_SCSI_IO_REQUEST *mpt_req;
    830 	int error, s;
    831 
    832 	s = splbio();
    833 	req = mpt_get_request(mpt);
    834 	if (__predict_false(req == NULL)) {
    835 		/* This should happen very infrequently. */
    836 		xs->error = XS_RESOURCE_SHORTAGE;
    837 		scsipi_done(xs);
    838 		splx(s);
    839 		return;
    840 	}
    841 	splx(s);
    842 
    843 	/* Link the req and the scsipi_xfer. */
    844 	req->xfer = xs;
    845 
    846 	/* Now we build the command for the IOC */
    847 	mpt_req = req->req_vbuf;
    848 	memset(mpt_req, 0, sizeof(*mpt_req));
    849 
    850 	mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
    851 	mpt_req->Bus = mpt->bus;
    852 
    853 	mpt_req->SenseBufferLength =
    854 	    (sizeof(xs->sense.scsi_sense) < MPT_SENSE_SIZE) ?
    855 	    sizeof(xs->sense.scsi_sense) : MPT_SENSE_SIZE;
    856 
    857 	/*
    858 	 * We use the message context to find the request structure when
    859 	 * we get the command completion interrupt from the IOC.
    860 	 */
    861 	mpt_req->MsgContext = htole32(req->index);
    862 
    863 	/* Which physical device to do the I/O on. */
    864 	mpt_req->TargetID = periph->periph_target;
    865 	mpt_req->LUN[1] = periph->periph_lun;
    866 
    867 	/* Set the direction of the transfer. */
    868 	if (xs->xs_control & XS_CTL_DATA_IN)
    869 		mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
    870 	else if (xs->xs_control & XS_CTL_DATA_OUT)
    871 		mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
    872 	else
    873 		mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
    874 
    875 	/* Set the queue behavior. */
    876 	if (__predict_true((!mpt->is_scsi) ||
    877 			   (mpt->mpt_tag_enable &
    878 			    (1 << periph->periph_target)))) {
    879 		switch (XS_CTL_TAGTYPE(xs)) {
    880 		case XS_CTL_HEAD_TAG:
    881 			mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
    882 			break;
    883 
    884 #if 0	/* XXX */
    885 		case XS_CTL_ACA_TAG:
    886 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
    887 			break;
    888 #endif
    889 
    890 		case XS_CTL_ORDERED_TAG:
    891 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
    892 			break;
    893 
    894 		case XS_CTL_SIMPLE_TAG:
    895 			mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    896 			break;
    897 
    898 		default:
    899 			if (mpt->is_scsi)
    900 				mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    901 			else
    902 				mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    903 			break;
    904 		}
    905 	} else
    906 		mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    907 
    908 	if (__predict_false(mpt->is_scsi &&
    909 			    (mpt->mpt_disc_enable &
    910 			     (1 << periph->periph_target)) == 0))
    911 		mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
    912 
    913 	mpt_req->Control = htole32(mpt_req->Control);
    914 
    915 	/* Copy the SCSI command block into place. */
    916 	memcpy(mpt_req->CDB, xs->cmd, xs->cmdlen);
    917 
    918 	mpt_req->CDBLength = xs->cmdlen;
    919 	mpt_req->DataLength = htole32(xs->datalen);
    920 	mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
    921 
    922 	/*
    923 	 * Map the DMA transfer.
    924 	 */
    925 	if (xs->datalen) {
    926 		SGE_SIMPLE32 *se;
    927 
    928 		error = bus_dmamap_load(mpt->sc_dmat, req->dmap, xs->data,
    929 		    xs->datalen, NULL,
    930 		    ((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT
    931 						       : BUS_DMA_WAITOK) |
    932 		    BUS_DMA_STREAMING |
    933 		    ((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ
    934 						       : BUS_DMA_WRITE));
    935 		switch (error) {
    936 		case 0:
    937 			break;
    938 
    939 		case ENOMEM:
    940 		case EAGAIN:
    941 			xs->error = XS_RESOURCE_SHORTAGE;
    942 			goto out_bad;
    943 
    944 		default:
    945 			xs->error = XS_DRIVER_STUFFUP;
    946 			mpt_prt(mpt, "error %d loading DMA map", error);
    947  out_bad:
    948 			s = splbio();
    949 			mpt_free_request(mpt, req);
    950 			scsipi_done(xs);
    951 			splx(s);
    952 			return;
    953 		}
    954 
    955 		if (req->dmap->dm_nsegs > MPT_NSGL_FIRST(mpt)) {
    956 			int seg, i, nleft = req->dmap->dm_nsegs;
    957 			uint32_t flags;
    958 			SGE_CHAIN32 *ce;
    959 
    960 			seg = 0;
    961 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
    962 			if (xs->xs_control & XS_CTL_DATA_OUT)
    963 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
    964 
    965 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
    966 			for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1;
    967 			     i++, se++, seg++) {
    968 				uint32_t tf;
    969 
    970 				memset(se, 0, sizeof(*se));
    971 				se->Address =
    972 				    htole32(req->dmap->dm_segs[seg].ds_addr);
    973 				MPI_pSGE_SET_LENGTH(se,
    974 				    req->dmap->dm_segs[seg].ds_len);
    975 				tf = flags;
    976 				if (i == MPT_NSGL_FIRST(mpt) - 2)
    977 					tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
    978 				MPI_pSGE_SET_FLAGS(se, tf);
    979 				se->FlagsLength = htole32(se->FlagsLength);
    980 				nleft--;
    981 			}
    982 
    983 			/*
    984 			 * Tell the IOC where to find the first chain element.
    985 			 */
    986 			mpt_req->ChainOffset =
    987 			    ((char *)se - (char *)mpt_req) >> 2;
    988 
    989 			/*
    990 			 * Until we're finished with all segments...
    991 			 */
    992 			while (nleft) {
    993 				int ntodo;
    994 
    995 				/*
    996 				 * Construct the chain element that points to
    997 				 * the next segment.
    998 				 */
    999 				ce = (SGE_CHAIN32 *) se++;
   1000 				if (nleft > MPT_NSGL(mpt)) {
   1001 					ntodo = MPT_NSGL(mpt) - 1;
   1002 					ce->NextChainOffset = (MPT_RQSL(mpt) -
   1003 					    sizeof(SGE_SIMPLE32)) >> 2;
   1004 					ce->Length = htole16(MPT_NSGL(mpt)
   1005 						* sizeof(SGE_SIMPLE32));
   1006 				} else {
   1007 					ntodo = nleft;
   1008 					ce->NextChainOffset = 0;
   1009 					ce->Length = htole16(ntodo
   1010 						* sizeof(SGE_SIMPLE32));
   1011 				}
   1012 				ce->Address = htole32(req->req_pbuf +
   1013 				    ((char *)se - (char *)mpt_req));
   1014 				ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
   1015 				for (i = 0; i < ntodo; i++, se++, seg++) {
   1016 					uint32_t tf;
   1017 
   1018 					memset(se, 0, sizeof(*se));
   1019 					se->Address = htole32(
   1020 					    req->dmap->dm_segs[seg].ds_addr);
   1021 					MPI_pSGE_SET_LENGTH(se,
   1022 					    req->dmap->dm_segs[seg].ds_len);
   1023 					tf = flags;
   1024 					if (i == ntodo - 1) {
   1025 						tf |=
   1026 						    MPI_SGE_FLAGS_LAST_ELEMENT;
   1027 						if (ce->NextChainOffset == 0) {
   1028 							tf |=
   1029 						    MPI_SGE_FLAGS_END_OF_LIST |
   1030 						    MPI_SGE_FLAGS_END_OF_BUFFER;
   1031 						}
   1032 					}
   1033 					MPI_pSGE_SET_FLAGS(se, tf);
   1034 					se->FlagsLength =
   1035 					    htole32(se->FlagsLength);
   1036 					nleft--;
   1037 				}
   1038 			}
   1039 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1040 			    req->dmap->dm_mapsize,
   1041 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1042 			    				BUS_DMASYNC_PREREAD
   1043 						      : BUS_DMASYNC_PREWRITE);
   1044 		} else {
   1045 			int i;
   1046 			uint32_t flags;
   1047 
   1048 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
   1049 			if (xs->xs_control & XS_CTL_DATA_OUT)
   1050 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
   1051 
   1052 			/* Copy the segments into our SG list. */
   1053 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1054 			for (i = 0; i < req->dmap->dm_nsegs;
   1055 			     i++, se++) {
   1056 				uint32_t tf;
   1057 
   1058 				memset(se, 0, sizeof(*se));
   1059 				se->Address =
   1060 				    htole32(req->dmap->dm_segs[i].ds_addr);
   1061 				MPI_pSGE_SET_LENGTH(se,
   1062 				    req->dmap->dm_segs[i].ds_len);
   1063 				tf = flags;
   1064 				if (i == req->dmap->dm_nsegs - 1) {
   1065 					tf |=
   1066 					    MPI_SGE_FLAGS_LAST_ELEMENT |
   1067 					    MPI_SGE_FLAGS_END_OF_BUFFER |
   1068 					    MPI_SGE_FLAGS_END_OF_LIST;
   1069 				}
   1070 				MPI_pSGE_SET_FLAGS(se, tf);
   1071 				se->FlagsLength = htole32(se->FlagsLength);
   1072 			}
   1073 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1074 			    req->dmap->dm_mapsize,
   1075 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1076 			    				BUS_DMASYNC_PREREAD
   1077 						      : BUS_DMASYNC_PREWRITE);
   1078 		}
   1079 	} else {
   1080 		/*
   1081 		 * No data to transfer; just make a single simple SGL
   1082 		 * with zero length.
   1083 		 */
   1084 		SGE_SIMPLE32 *se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1085 		memset(se, 0, sizeof(*se));
   1086 		MPI_pSGE_SET_FLAGS(se,
   1087 		    (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
   1088 		     MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
   1089 		se->FlagsLength = htole32(se->FlagsLength);
   1090 	}
   1091 
   1092 	if (mpt->verbose > 1)
   1093 		mpt_print_scsi_io_request(mpt_req);
   1094 
   1095 	if (xs->timeout == 0) {
   1096 		mpt_prt(mpt, "mpt_run_xfer: no timeout specified for request: 0x%x\n",
   1097 			req->index);
   1098 		xs->timeout = 500;
   1099 	}
   1100 
   1101 	s = splbio();
   1102 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1103 		callout_reset(&xs->xs_callout,
   1104 		    mstohz(xs->timeout), mpt_timeout, req);
   1105 	mpt_send_cmd(mpt, req);
   1106 	splx(s);
   1107 
   1108 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1109 		return;
   1110 
   1111 	/*
   1112 	 * If we can't use interrupts, poll on completion.
   1113 	 */
   1114 	if (mpt_poll(mpt, xs, xs->timeout))
   1115 		mpt_timeout(req);
   1116 }
   1117 
   1118 static void
   1119 mpt_set_xfer_mode(mpt_softc_t *mpt, struct scsipi_xfer_mode *xm)
   1120 {
   1121 	fCONFIG_PAGE_SCSI_DEVICE_1 tmp;
   1122 
   1123 	if (xm->xm_mode & PERIPH_CAP_TQING)
   1124 		mpt->mpt_tag_enable |= (1 << xm->xm_target);
   1125 	else
   1126 		mpt->mpt_tag_enable &= ~(1 << xm->xm_target);
   1127 
   1128 	if (mpt->is_scsi) {
   1129 		/*
   1130 		 * Always allow disconnect; we don't have a way to disable
   1131 		 * it right now, in any case.
   1132 		 */
   1133 		mpt->mpt_disc_enable |= (1 << xm->xm_target);
   1134 
   1135 		/*
   1136 		 * SCSI transport settings only make any sense for
   1137 		 * SCSI
   1138 		 */
   1139 
   1140 		tmp = mpt->mpt_dev_page1[xm->xm_target];
   1141 
   1142 		/*
   1143 		 * Set the wide/narrow parameter for the target.
   1144 		 */
   1145 		if (xm->xm_mode & PERIPH_CAP_WIDE16)
   1146 			tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
   1147 		else
   1148 			tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
   1149 
   1150 		/*
   1151 		 * Set the synchronous parameters for the target.
   1152 		 *
   1153 		 * XXX If we request sync transfers, we just go ahead and
   1154 		 * XXX request the maximum available.  We need finer control
   1155 		 * XXX in order to implement Domain Validation.
   1156 		 */
   1157 		tmp.RequestedParameters &= ~(MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK |
   1158 		    MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK |
   1159 		    MPI_SCSIDEVPAGE1_RP_DT | MPI_SCSIDEVPAGE1_RP_QAS |
   1160 		    MPI_SCSIDEVPAGE1_RP_IU);
   1161 		if (xm->xm_mode & PERIPH_CAP_SYNC) {
   1162 			int factor, offset, np;
   1163 
   1164 			factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff;
   1165 			offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff;
   1166 			np = 0;
   1167 			if (factor < 0x9) {
   1168 				/* Ultra320 */
   1169 				np |= MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU;
   1170 			}
   1171 			if (factor < 0xa) {
   1172 				/* at least Ultra160 */
   1173 				np |= MPI_SCSIDEVPAGE1_RP_DT;
   1174 			}
   1175 			np |= (factor << 8) | (offset << 16);
   1176 			tmp.RequestedParameters |= np;
   1177 		}
   1178 
   1179 		host2mpt_config_page_scsi_device_1(&tmp);
   1180 		if (mpt_write_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1181 			mpt_prt(mpt, "unable to write Device Page 1");
   1182 			return;
   1183 		}
   1184 
   1185 		if (mpt_read_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1186 			mpt_prt(mpt, "unable to read back Device Page 1");
   1187 			return;
   1188 		}
   1189 
   1190 		mpt2host_config_page_scsi_device_1(&tmp);
   1191 		mpt->mpt_dev_page1[xm->xm_target] = tmp;
   1192 		if (mpt->verbose > 1) {
   1193 			mpt_prt(mpt,
   1194 			    "SPI Target %d Page 1: RequestedParameters %x Config %x",
   1195 			    xm->xm_target,
   1196 			    mpt->mpt_dev_page1[xm->xm_target].RequestedParameters,
   1197 			    mpt->mpt_dev_page1[xm->xm_target].Configuration);
   1198 		}
   1199 	}
   1200 
   1201 	/*
   1202 	 * Make a note that we should perform an async callback at the
   1203 	 * end of the next successful command completion to report the
   1204 	 * negotiated transfer mode.
   1205 	 */
   1206 	mpt->mpt_report_xfer_mode |= (1 << xm->xm_target);
   1207 }
   1208 
   1209 static void
   1210 mpt_get_xfer_mode(mpt_softc_t *mpt, struct scsipi_periph *periph)
   1211 {
   1212 	fCONFIG_PAGE_SCSI_DEVICE_0 tmp;
   1213 	struct scsipi_xfer_mode xm;
   1214 	int period, offset;
   1215 
   1216 	tmp = mpt->mpt_dev_page0[periph->periph_target];
   1217 	host2mpt_config_page_scsi_device_0(&tmp);
   1218 	if (mpt_read_cfg_page(mpt, periph->periph_target, &tmp.Header)) {
   1219 		mpt_prt(mpt, "unable to read Device Page 0");
   1220 		return;
   1221 	}
   1222 	mpt2host_config_page_scsi_device_0(&tmp);
   1223 
   1224 	if (mpt->verbose > 1) {
   1225 		mpt_prt(mpt,
   1226 		    "SPI Tgt %d Page 0: NParms %x Information %x",
   1227 		    periph->periph_target,
   1228 		    tmp.NegotiatedParameters, tmp.Information);
   1229 	}
   1230 
   1231 	xm.xm_target = periph->periph_target;
   1232 	xm.xm_mode = 0;
   1233 
   1234 	if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE)
   1235 		xm.xm_mode |= PERIPH_CAP_WIDE16;
   1236 
   1237 	period = (tmp.NegotiatedParameters >> 8) & 0xff;
   1238 	offset = (tmp.NegotiatedParameters >> 16) & 0xff;
   1239 	if (offset) {
   1240 		xm.xm_period = period;
   1241 		xm.xm_offset = offset;
   1242 		xm.xm_mode |= PERIPH_CAP_SYNC;
   1243 	}
   1244 
   1245 	/*
   1246 	 * Tagged queueing is all controlled by us; there is no
   1247 	 * other setting to query.
   1248 	 */
   1249 	if (mpt->mpt_tag_enable & (1 << periph->periph_target))
   1250 		xm.xm_mode |= PERIPH_CAP_TQING;
   1251 
   1252 	/*
   1253 	 * We're going to deliver the async event, so clear the marker.
   1254 	 */
   1255 	mpt->mpt_report_xfer_mode &= ~(1 << periph->periph_target);
   1256 
   1257 	scsipi_async_event(&mpt->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
   1258 }
   1259 
   1260 static void
   1261 mpt_ctlop(mpt_softc_t *mpt, void *vmsg, uint32_t reply)
   1262 {
   1263 	MSG_DEFAULT_REPLY *dmsg = vmsg;
   1264 
   1265 	switch (dmsg->Function) {
   1266 	case MPI_FUNCTION_EVENT_NOTIFICATION:
   1267 		mpt_event_notify_reply(mpt, vmsg);
   1268 		mpt_free_reply(mpt, (reply << 1));
   1269 		break;
   1270 
   1271 	case MPI_FUNCTION_EVENT_ACK:
   1272 	    {
   1273 		MSG_EVENT_ACK_REPLY *msg = vmsg;
   1274 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1275 		mpt_free_reply(mpt, (reply << 1));
   1276 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1277 			request_t *req = &mpt->request_pool[index];
   1278 			mpt_free_request(mpt, req);
   1279 		}
   1280 		break;
   1281 	    }
   1282 
   1283 	case MPI_FUNCTION_PORT_ENABLE:
   1284 	    {
   1285 		MSG_PORT_ENABLE_REPLY *msg = vmsg;
   1286 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1287 		if (mpt->verbose > 1)
   1288 			mpt_prt(mpt, "enable port reply index %d", index);
   1289 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1290 			request_t *req = &mpt->request_pool[index];
   1291 			req->debug = REQ_DONE;
   1292 		}
   1293 		mpt_free_reply(mpt, (reply << 1));
   1294 		break;
   1295 	    }
   1296 
   1297 	case MPI_FUNCTION_CONFIG:
   1298 	    {
   1299 		MSG_CONFIG_REPLY *msg = vmsg;
   1300 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1301 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1302 			request_t *req = &mpt->request_pool[index];
   1303 			req->debug = REQ_DONE;
   1304 			req->sequence = reply;
   1305 		} else
   1306 			mpt_free_reply(mpt, (reply << 1));
   1307 		break;
   1308 	    }
   1309 
   1310 	default:
   1311 		mpt_prt(mpt, "unknown ctlop: 0x%x", dmsg->Function);
   1312 	}
   1313 }
   1314 
   1315 static void
   1316 mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg)
   1317 {
   1318 
   1319 	switch (le32toh(msg->Event)) {
   1320 	case MPI_EVENT_LOG_DATA:
   1321 	    {
   1322 		int i;
   1323 
   1324 		/* Some error occurrerd that the Fusion wants logged. */
   1325 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x", msg->IOCLogInfo);
   1326 		mpt_prt(mpt, "EvtLogData: Event Data:");
   1327 		for (i = 0; i < msg->EventDataLength; i++) {
   1328 			if ((i % 4) == 0)
   1329 				printf("%s:\t", device_xname(mpt->sc_dev));
   1330 			printf("0x%08x%c", msg->Data[i],
   1331 			    ((i % 4) == 3) ? '\n' : ' ');
   1332 		}
   1333 		if ((i % 4) != 0)
   1334 			printf("\n");
   1335 		break;
   1336 	    }
   1337 
   1338 	case MPI_EVENT_UNIT_ATTENTION:
   1339 		mpt_prt(mpt, "Unit Attn: Bus 0x%02x Target 0x%02x",
   1340 		    (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff);
   1341 		break;
   1342 
   1343 	case MPI_EVENT_IOC_BUS_RESET:
   1344 		/* We generated a bus reset. */
   1345 		mpt_prt(mpt, "IOC Bus Reset Port %d",
   1346 		    (msg->Data[0] >> 8) & 0xff);
   1347 		break;
   1348 
   1349 	case MPI_EVENT_EXT_BUS_RESET:
   1350 		/* Someone else generated a bus reset. */
   1351 		mpt_prt(mpt, "External Bus Reset");
   1352 		/*
   1353 		 * These replies don't return EventData like the MPI
   1354 		 * spec says they do.
   1355 		 */
   1356 		/* XXX Send an async event? */
   1357 		break;
   1358 
   1359 	case MPI_EVENT_RESCAN:
   1360 		/*
   1361 		 * In general, this means a device has been added
   1362 		 * to the loop.
   1363 		 */
   1364 		mpt_prt(mpt, "Rescan Port %d", (msg->Data[0] >> 8) & 0xff);
   1365 		/* XXX Send an async event? */
   1366 		break;
   1367 
   1368 	case MPI_EVENT_LINK_STATUS_CHANGE:
   1369 		mpt_prt(mpt, "Port %d: Link state %s",
   1370 		    (msg->Data[1] >> 8) & 0xff,
   1371 		    (msg->Data[0] & 0xff) == 0 ? "Failed" : "Active");
   1372 		break;
   1373 
   1374 	case MPI_EVENT_LOOP_STATE_CHANGE:
   1375 		switch ((msg->Data[0] >> 16) & 0xff) {
   1376 		case 0x01:
   1377 			mpt_prt(mpt,
   1378 			    "Port %d: FC Link Event: LIP(%02x,%02x) "
   1379 			    "(Loop Initialization)",
   1380 			    (msg->Data[1] >> 8) & 0xff,
   1381 			    (msg->Data[0] >> 8) & 0xff,
   1382 			    (msg->Data[0]     ) & 0xff);
   1383 			switch ((msg->Data[0] >> 8) & 0xff) {
   1384 			case 0xf7:
   1385 				if ((msg->Data[0] & 0xff) == 0xf7)
   1386 					mpt_prt(mpt, "\tDevice needs AL_PA");
   1387 				else
   1388 					mpt_prt(mpt, "\tDevice %02x doesn't "
   1389 					    "like FC performance",
   1390 					    msg->Data[0] & 0xff);
   1391 				break;
   1392 
   1393 			case 0xf8:
   1394 				if ((msg->Data[0] & 0xff) == 0xf7)
   1395 					mpt_prt(mpt, "\tDevice detected loop "
   1396 					    "failure before acquiring AL_PA");
   1397 				else
   1398 					mpt_prt(mpt, "\tDevice %02x detected "
   1399 					    "loop failure",
   1400 					    msg->Data[0] & 0xff);
   1401 				break;
   1402 
   1403 			default:
   1404 				mpt_prt(mpt, "\tDevice %02x requests that "
   1405 				    "device %02x reset itself",
   1406 				    msg->Data[0] & 0xff,
   1407 				    (msg->Data[0] >> 8) & 0xff);
   1408 				break;
   1409 			}
   1410 			break;
   1411 
   1412 		case 0x02:
   1413 			mpt_prt(mpt, "Port %d: FC Link Event: LPE(%02x,%02x) "
   1414 			    "(Loop Port Enable)",
   1415 			    (msg->Data[1] >> 8) & 0xff,
   1416 			    (msg->Data[0] >> 8) & 0xff,
   1417 			    (msg->Data[0]     ) & 0xff);
   1418 			break;
   1419 
   1420 		case 0x03:
   1421 			mpt_prt(mpt, "Port %d: FC Link Event: LPB(%02x,%02x) "
   1422 			    "(Loop Port Bypass)",
   1423 			    (msg->Data[1] >> 8) & 0xff,
   1424 			    (msg->Data[0] >> 8) & 0xff,
   1425 			    (msg->Data[0]     ) & 0xff);
   1426 			break;
   1427 
   1428 		default:
   1429 			mpt_prt(mpt, "Port %d: FC Link Event: "
   1430 			    "Unknown event (%02x %02x %02x)",
   1431 			    (msg->Data[1] >>  8) & 0xff,
   1432 			    (msg->Data[0] >> 16) & 0xff,
   1433 			    (msg->Data[0] >>  8) & 0xff,
   1434 			    (msg->Data[0]      ) & 0xff);
   1435 			break;
   1436 		}
   1437 		break;
   1438 
   1439 	case MPI_EVENT_LOGOUT:
   1440 		mpt_prt(mpt, "Port %d: FC Logout: N_PortID: %02x",
   1441 		    (msg->Data[1] >> 8) & 0xff, msg->Data[0]);
   1442 		break;
   1443 
   1444 	case MPI_EVENT_EVENT_CHANGE:
   1445 		/*
   1446 		 * This is just an acknowledgement of our
   1447 		 * mpt_send_event_request().
   1448 		 */
   1449 		break;
   1450 
   1451 	case MPI_EVENT_SAS_PHY_LINK_STATUS:
   1452 		switch ((msg->Data[0] >> 12) & 0x0f) {
   1453 		case 0x00:
   1454 			mpt_prt(mpt, "Phy %d: Link Status Unknown",
   1455 			    msg->Data[0] & 0xff);
   1456 			break;
   1457 		case 0x01:
   1458 			mpt_prt(mpt, "Phy %d: Link Disabled",
   1459 			    msg->Data[0] & 0xff);
   1460 			break;
   1461 		case 0x02:
   1462 			mpt_prt(mpt, "Phy %d: Failed Speed Negotiation",
   1463 			    msg->Data[0] & 0xff);
   1464 			break;
   1465 		case 0x03:
   1466 			mpt_prt(mpt, "Phy %d: SATA OOB Complete",
   1467 			    msg->Data[0] & 0xff);
   1468 			break;
   1469 		case 0x08:
   1470 			mpt_prt(mpt, "Phy %d: Link Rate 1.5 Gbps",
   1471 			    msg->Data[0] & 0xff);
   1472 			break;
   1473 		case 0x09:
   1474 			mpt_prt(mpt, "Phy %d: Link Rate 3.0 Gbps",
   1475 			    msg->Data[0] & 0xff);
   1476 			break;
   1477 		default:
   1478 			mpt_prt(mpt, "Phy %d: SAS Phy Link Status Event: "
   1479 			    "Unknown event (%0x)",
   1480 			    msg->Data[0] & 0xff, (msg->Data[0] >> 8) & 0xff);
   1481 		}
   1482 		break;
   1483 
   1484 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
   1485 	case MPI_EVENT_SAS_DISCOVERY:
   1486 		/* ignore these events for now */
   1487 		break;
   1488 
   1489 	case MPI_EVENT_QUEUE_FULL:
   1490 		/* This can get a little chatty */
   1491 		if (mpt->verbose > 0)
   1492 			mpt_prt(mpt, "Queue Full Event");
   1493 		break;
   1494 
   1495 	default:
   1496 		mpt_prt(mpt, "Unknown async event: 0x%x", msg->Event);
   1497 		break;
   1498 	}
   1499 
   1500 	if (msg->AckRequired) {
   1501 		MSG_EVENT_ACK *ackp;
   1502 		request_t *req;
   1503 
   1504 		if ((req = mpt_get_request(mpt)) == NULL) {
   1505 			/* XXX XXX XXX XXXJRT */
   1506 			panic("mpt_event_notify_reply: unable to allocate "
   1507 			    "request structure");
   1508 		}
   1509 
   1510 		ackp = (MSG_EVENT_ACK *) req->req_vbuf;
   1511 		memset(ackp, 0, sizeof(*ackp));
   1512 		ackp->Function = MPI_FUNCTION_EVENT_ACK;
   1513 		ackp->Event = msg->Event;
   1514 		ackp->EventContext = msg->EventContext;
   1515 		ackp->MsgContext = htole32(req->index | 0x80000000);
   1516 		mpt_check_doorbell(mpt);
   1517 		mpt_send_cmd(mpt, req);
   1518 	}
   1519 }
   1520 
   1521 static void
   1522 mpt_bus_reset(mpt_softc_t *mpt)
   1523 {
   1524 	request_t *req;
   1525 	MSG_SCSI_TASK_MGMT *mngt_req;
   1526 	int s;
   1527 
   1528 	s = splbio();
   1529 	if (mpt->mngt_req) {
   1530 		/* request already queued; can't do more */
   1531 		splx(s);
   1532 		return;
   1533 	}
   1534 	req = mpt_get_request(mpt);
   1535 	if (__predict_false(req == NULL)) {
   1536 		mpt_prt(mpt, "no mngt request\n");
   1537 		splx(s);
   1538 		return;
   1539 	}
   1540 	mpt->mngt_req = req;
   1541 	splx(s);
   1542 	mngt_req = req->req_vbuf;
   1543 	memset(mngt_req, 0, sizeof(*mngt_req));
   1544 	mngt_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
   1545 	mngt_req->Bus = mpt->bus;
   1546 	mngt_req->TargetID = 0;
   1547 	mngt_req->ChainOffset = 0;
   1548 	mngt_req->TaskType = MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS;
   1549 	mngt_req->Reserved1 = 0;
   1550 	mngt_req->MsgFlags =
   1551 	    mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0;
   1552 	mngt_req->MsgContext = req->index;
   1553 	mngt_req->TaskMsgContext = 0;
   1554 	s = splbio();
   1555 	mpt_send_handshake_cmd(mpt, sizeof(*mngt_req), mngt_req);
   1556 	splx(s);
   1557 }
   1558 
   1559 /*****************************************************************************
   1560  * SCSI interface routines
   1561  *****************************************************************************/
   1562 
   1563 static void
   1564 mpt_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1565     void *arg)
   1566 {
   1567 	struct scsipi_adapter *adapt = chan->chan_adapter;
   1568 	mpt_softc_t *mpt = device_private(adapt->adapt_dev);
   1569 
   1570 	switch (req) {
   1571 	case ADAPTER_REQ_RUN_XFER:
   1572 		mpt_run_xfer(mpt, (struct scsipi_xfer *) arg);
   1573 		return;
   1574 
   1575 	case ADAPTER_REQ_GROW_RESOURCES:
   1576 		/* Not supported. */
   1577 		return;
   1578 
   1579 	case ADAPTER_REQ_SET_XFER_MODE:
   1580 		mpt_set_xfer_mode(mpt, (struct scsipi_xfer_mode *) arg);
   1581 		return;
   1582 	}
   1583 }
   1584 
   1585 static void
   1586 mpt_minphys(struct buf *bp)
   1587 {
   1588 
   1589 /*
   1590  * Subtract one from the SGL limit, since we need an extra one to handle
   1591  * an non-page-aligned transfer.
   1592  */
   1593 #define	MPT_MAX_XFER	((MPT_SGL_MAX - 1) * PAGE_SIZE)
   1594 
   1595 	if (bp->b_bcount > MPT_MAX_XFER)
   1596 		bp->b_bcount = MPT_MAX_XFER;
   1597 	minphys(bp);
   1598 }
   1599 
   1600 static int
   1601 mpt_ioctl(struct scsipi_channel *chan, u_long cmd, void *arg,
   1602     int flag, struct proc *p)
   1603 {
   1604 	mpt_softc_t *mpt;
   1605 	int s;
   1606 
   1607 	mpt = device_private(chan->chan_adapter->adapt_dev);
   1608 	switch (cmd) {
   1609 	case SCBUSIORESET:
   1610 		mpt_bus_reset(mpt);
   1611 		s = splbio();
   1612 		mpt_intr(mpt);
   1613 		splx(s);
   1614 		return(0);
   1615 	default:
   1616 		return (ENOTTY);
   1617 	}
   1618 }
   1619 
   1620 #if NBIO > 0
   1621 static fCONFIG_PAGE_IOC_2 *
   1622 mpt_get_cfg_page_ioc2(mpt_softc_t *mpt)
   1623 {
   1624 	fCONFIG_PAGE_HEADER hdr;
   1625 	fCONFIG_PAGE_IOC_2 *ioc2;
   1626 	int rv;
   1627 
   1628 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2, 0, &hdr);
   1629 	if (rv)
   1630 		return NULL;
   1631 
   1632 	ioc2 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1633 	if (ioc2 == NULL)
   1634 		return NULL;
   1635 
   1636 	memcpy(ioc2, &hdr, sizeof(hdr));
   1637 
   1638 	rv = mpt_read_cfg_page(mpt, 0, &ioc2->Header);
   1639 	if (rv)
   1640 		goto fail;
   1641 	mpt2host_config_page_ioc_2(ioc2);
   1642 
   1643 	return ioc2;
   1644 
   1645 fail:
   1646 	free(ioc2, M_DEVBUF);
   1647 	return NULL;
   1648 }
   1649 
   1650 static fCONFIG_PAGE_IOC_3 *
   1651 mpt_get_cfg_page_ioc3(mpt_softc_t *mpt)
   1652 {
   1653 	fCONFIG_PAGE_HEADER hdr;
   1654 	fCONFIG_PAGE_IOC_3 *ioc3;
   1655 	int rv;
   1656 
   1657 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 3, 0, &hdr);
   1658 	if (rv)
   1659 		return NULL;
   1660 
   1661 	ioc3 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1662 	if (ioc3 == NULL)
   1663 		return NULL;
   1664 
   1665 	memcpy(ioc3, &hdr, sizeof(hdr));
   1666 
   1667 	rv = mpt_read_cfg_page(mpt, 0, &ioc3->Header);
   1668 	if (rv)
   1669 		goto fail;
   1670 
   1671 	return ioc3;
   1672 
   1673 fail:
   1674 	free(ioc3, M_DEVBUF);
   1675 	return NULL;
   1676 }
   1677 
   1678 
   1679 static fCONFIG_PAGE_RAID_VOL_0 *
   1680 mpt_get_cfg_page_raid_vol0(mpt_softc_t *mpt, int address)
   1681 {
   1682 	fCONFIG_PAGE_HEADER hdr;
   1683 	fCONFIG_PAGE_RAID_VOL_0 *rvol0;
   1684 	int rv;
   1685 
   1686 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_VOLUME, 0,
   1687 	    address, &hdr);
   1688 	if (rv)
   1689 		return NULL;
   1690 
   1691 	rvol0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1692 	if (rvol0 == NULL)
   1693 		return NULL;
   1694 
   1695 	memcpy(rvol0, &hdr, sizeof(hdr));
   1696 
   1697 	rv = mpt_read_cfg_page(mpt, address, &rvol0->Header);
   1698 	if (rv)
   1699 		goto fail;
   1700 	mpt2host_config_page_raid_vol_0(rvol0);
   1701 
   1702 	return rvol0;
   1703 
   1704 fail:
   1705 	free(rvol0, M_DEVBUF);
   1706 	return NULL;
   1707 }
   1708 
   1709 static fCONFIG_PAGE_RAID_PHYS_DISK_0 *
   1710 mpt_get_cfg_page_raid_phys_disk0(mpt_softc_t *mpt, int address)
   1711 {
   1712 	fCONFIG_PAGE_HEADER hdr;
   1713 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *physdisk0;
   1714 	int rv;
   1715 
   1716 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_PHYSDISK, 0,
   1717 	    address, &hdr);
   1718 	if (rv)
   1719 		return NULL;
   1720 
   1721 	physdisk0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1722 	if (physdisk0 == NULL)
   1723 		return NULL;
   1724 
   1725 	memcpy(physdisk0, &hdr, sizeof(hdr));
   1726 
   1727 	rv = mpt_read_cfg_page(mpt, address, &physdisk0->Header);
   1728 	if (rv)
   1729 		goto fail;
   1730 	mpt2host_config_page_raid_phys_disk_0(physdisk0);
   1731 
   1732 	return physdisk0;
   1733 
   1734 fail:
   1735 	free(physdisk0, M_DEVBUF);
   1736 	return NULL;
   1737 }
   1738 
   1739 static bool
   1740 mpt_is_raid(mpt_softc_t *mpt)
   1741 {
   1742 	fCONFIG_PAGE_IOC_2 *ioc2;
   1743 	bool is_raid = false;
   1744 
   1745 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1746 	if (ioc2 == NULL)
   1747 		return false;
   1748 
   1749 	if (ioc2->CapabilitiesFlags != 0xdeadbeef) {
   1750 		is_raid = !!(ioc2->CapabilitiesFlags &
   1751 				(MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT|
   1752 				 MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT|
   1753 				 MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT));
   1754 	}
   1755 
   1756 	free(ioc2, M_DEVBUF);
   1757 
   1758 	return is_raid;
   1759 }
   1760 
   1761 static int
   1762 mpt_bio_ioctl(device_t dev, u_long cmd, void *addr)
   1763 {
   1764 	mpt_softc_t *mpt = device_private(dev);
   1765 	int error, s;
   1766 
   1767 	KERNEL_LOCK(1, curlwp);
   1768 	s = splbio();
   1769 
   1770 	switch (cmd) {
   1771 	case BIOCINQ:
   1772 		error = mpt_bio_ioctl_inq(mpt, addr);
   1773 		break;
   1774 	case BIOCVOL:
   1775 		error = mpt_bio_ioctl_vol(mpt, addr);
   1776 		break;
   1777 	case BIOCDISK_NOVOL:
   1778 		error = mpt_bio_ioctl_disk_novol(mpt, addr);
   1779 		break;
   1780 	case BIOCDISK:
   1781 		error = mpt_bio_ioctl_disk(mpt, addr);
   1782 		break;
   1783 	default:
   1784 		error = EINVAL;
   1785 		break;
   1786 	}
   1787 
   1788 	splx(s);
   1789 	KERNEL_UNLOCK_ONE(curlwp);
   1790 
   1791 	return error;
   1792 }
   1793 
   1794 static int
   1795 mpt_bio_ioctl_inq(mpt_softc_t *mpt, struct bioc_inq *bi)
   1796 {
   1797 	fCONFIG_PAGE_IOC_2 *ioc2;
   1798 	fCONFIG_PAGE_IOC_3 *ioc3;
   1799 
   1800 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1801 	if (ioc2 == NULL)
   1802 		return EIO;
   1803 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1804 	if (ioc3 == NULL) {
   1805 		free(ioc2, M_DEVBUF);
   1806 		return EIO;
   1807 	}
   1808 
   1809 	strlcpy(bi->bi_dev, device_xname(mpt->sc_dev), sizeof(bi->bi_dev));
   1810 	bi->bi_novol = ioc2->NumActiveVolumes;
   1811 	bi->bi_nodisk = ioc3->NumPhysDisks;
   1812 
   1813 	free(ioc2, M_DEVBUF);
   1814 	free(ioc3, M_DEVBUF);
   1815 
   1816 	return 0;
   1817 }
   1818 
   1819 static int
   1820 mpt_bio_ioctl_vol(mpt_softc_t *mpt, struct bioc_vol *bv)
   1821 {
   1822 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1823 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1824 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1825 	struct scsipi_periph *periph;
   1826 	struct scsipi_inquiry_data inqbuf;
   1827 	char vendor[9], product[17], revision[5];
   1828 	int address;
   1829 
   1830 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1831 	if (ioc2 == NULL)
   1832 		return EIO;
   1833 
   1834 	if (bv->bv_volid < 0 || bv->bv_volid >= ioc2->NumActiveVolumes)
   1835 		goto fail;
   1836 
   1837 	ioc2rvol = &ioc2->RaidVolume[bv->bv_volid];
   1838 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   1839 
   1840 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   1841 	if (rvol0 == NULL)
   1842 		goto fail;
   1843 
   1844 	bv->bv_dev[0] = '\0';
   1845 	bv->bv_vendor[0] = '\0';
   1846 
   1847 	periph = scsipi_lookup_periph(&mpt->sc_channel, ioc2rvol->VolumeBus, 0);
   1848 	if (periph != NULL) {
   1849 		if (periph->periph_dev != NULL) {
   1850 			snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1851 			    device_xname(periph->periph_dev));
   1852 		}
   1853 		memset(&inqbuf, 0, sizeof(inqbuf));
   1854 		if (scsipi_inquire(periph, &inqbuf,
   1855 		    XS_CTL_DISCOVERY | XS_CTL_SILENT) == 0) {
   1856 			strnvisx(vendor, sizeof(vendor),
   1857 			    inqbuf.vendor, sizeof(inqbuf.vendor),
   1858 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1859 			strnvisx(product, sizeof(product),
   1860 			    inqbuf.product, sizeof(inqbuf.product),
   1861 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1862 			strnvisx(revision, sizeof(revision),
   1863 			    inqbuf.revision, sizeof(inqbuf.revision),
   1864 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1865 
   1866 			snprintf(bv->bv_vendor, sizeof(bv->bv_vendor),
   1867 			    "%s %s %s", vendor, product, revision);
   1868 		}
   1869 
   1870 		snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1871 		    device_xname(periph->periph_dev));
   1872 	}
   1873 	bv->bv_nodisk = rvol0->NumPhysDisks;
   1874 	bv->bv_size = (uint64_t)rvol0->MaxLBA * 512;
   1875 	bv->bv_stripe_size = rvol0->StripeSize;
   1876 	bv->bv_percent = -1;
   1877 	bv->bv_seconds = 0;
   1878 
   1879 	switch (rvol0->VolumeStatus.State) {
   1880 	case MPI_RAIDVOL0_STATUS_STATE_OPTIMAL:
   1881 		bv->bv_status = BIOC_SVONLINE;
   1882 		break;
   1883 	case MPI_RAIDVOL0_STATUS_STATE_DEGRADED:
   1884 		bv->bv_status = BIOC_SVDEGRADED;
   1885 		break;
   1886 	case MPI_RAIDVOL0_STATUS_STATE_FAILED:
   1887 		bv->bv_status = BIOC_SVOFFLINE;
   1888 		break;
   1889 	default:
   1890 		bv->bv_status = BIOC_SVINVALID;
   1891 		break;
   1892 	}
   1893 
   1894 	switch (ioc2rvol->VolumeType) {
   1895 	case MPI_RAID_VOL_TYPE_IS:
   1896 		bv->bv_level = 0;
   1897 		break;
   1898 	case MPI_RAID_VOL_TYPE_IME:
   1899 	case MPI_RAID_VOL_TYPE_IM:
   1900 		bv->bv_level = 1;
   1901 		break;
   1902 	default:
   1903 		bv->bv_level = -1;
   1904 		break;
   1905 	}
   1906 
   1907 	free(ioc2, M_DEVBUF);
   1908 	free(rvol0, M_DEVBUF);
   1909 
   1910 	return 0;
   1911 
   1912 fail:
   1913 	if (ioc2) free(ioc2, M_DEVBUF);
   1914 	if (rvol0) free(rvol0, M_DEVBUF);
   1915 	return EINVAL;
   1916 }
   1917 
   1918 static void
   1919 mpt_bio_ioctl_disk_common(mpt_softc_t *mpt, struct bioc_disk *bd,
   1920     int address)
   1921 {
   1922 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *phys = NULL;
   1923 	char vendor_id[9], product_id[17], product_rev_level[5];
   1924 
   1925 	phys = mpt_get_cfg_page_raid_phys_disk0(mpt, address);
   1926 	if (phys == NULL)
   1927 		return;
   1928 
   1929 	strnvisx(vendor_id, sizeof(vendor_id),
   1930 	    phys->InquiryData.VendorID, sizeof(phys->InquiryData.VendorID),
   1931 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1932 	strnvisx(product_id, sizeof(product_id),
   1933 	    phys->InquiryData.ProductID, sizeof(phys->InquiryData.ProductID),
   1934 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1935 	strnvisx(product_rev_level, sizeof(product_rev_level),
   1936 	    phys->InquiryData.ProductRevLevel,
   1937 	    sizeof(phys->InquiryData.ProductRevLevel),
   1938 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1939 
   1940 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s %s",
   1941 	    vendor_id, product_id, product_rev_level);
   1942 	strlcpy(bd->bd_serial, phys->InquiryData.Info, sizeof(bd->bd_serial));
   1943 	bd->bd_procdev[0] = '\0';
   1944 	bd->bd_channel = phys->PhysDiskBus;
   1945 	bd->bd_target = phys->PhysDiskID;
   1946 	bd->bd_lun = 0;
   1947 	bd->bd_size = (uint64_t)phys->MaxLBA * 512;
   1948 
   1949 	switch (phys->PhysDiskStatus.State) {
   1950 	case MPI_PHYSDISK0_STATUS_ONLINE:
   1951 		bd->bd_status = BIOC_SDONLINE;
   1952 		break;
   1953 	case MPI_PHYSDISK0_STATUS_MISSING:
   1954 	case MPI_PHYSDISK0_STATUS_FAILED:
   1955 		bd->bd_status = BIOC_SDFAILED;
   1956 		break;
   1957 	case MPI_PHYSDISK0_STATUS_OFFLINE_REQUESTED:
   1958 	case MPI_PHYSDISK0_STATUS_FAILED_REQUESTED:
   1959 	case MPI_PHYSDISK0_STATUS_OTHER_OFFLINE:
   1960 		bd->bd_status = BIOC_SDOFFLINE;
   1961 		break;
   1962 	case MPI_PHYSDISK0_STATUS_INITIALIZING:
   1963 		bd->bd_status = BIOC_SDSCRUB;
   1964 		break;
   1965 	case MPI_PHYSDISK0_STATUS_NOT_COMPATIBLE:
   1966 	default:
   1967 		bd->bd_status = BIOC_SDINVALID;
   1968 		break;
   1969 	}
   1970 
   1971 	free(phys, M_DEVBUF);
   1972 }
   1973 
   1974 static int
   1975 mpt_bio_ioctl_disk_novol(mpt_softc_t *mpt, struct bioc_disk *bd)
   1976 {
   1977 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1978 	fCONFIG_PAGE_IOC_3 *ioc3 = NULL;
   1979 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1980 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1981 	int address, v, d;
   1982 
   1983 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1984 	if (ioc2 == NULL)
   1985 		return EIO;
   1986 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1987 	if (ioc3 == NULL) {
   1988 		free(ioc2, M_DEVBUF);
   1989 		return EIO;
   1990 	}
   1991 
   1992 	if (bd->bd_diskid < 0 || bd->bd_diskid >= ioc3->NumPhysDisks)
   1993 		goto fail;
   1994 
   1995 	address = ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum;
   1996 
   1997 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   1998 
   1999 	bd->bd_disknovol = true;
   2000 	for (v = 0; bd->bd_disknovol && v < ioc2->NumActiveVolumes; v++) {
   2001 		ioc2rvol = &ioc2->RaidVolume[v];
   2002 		address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   2003 
   2004 		rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   2005 		if (rvol0 == NULL)
   2006 			continue;
   2007 
   2008 		for (d = 0; d < rvol0->NumPhysDisks; d++) {
   2009 			if (rvol0->PhysDisk[d].PhysDiskNum ==
   2010 			    ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum) {
   2011 				bd->bd_disknovol = false;
   2012 				bd->bd_volid = v;
   2013 				break;
   2014 			}
   2015 		}
   2016 		free(rvol0, M_DEVBUF);
   2017 	}
   2018 
   2019 	free(ioc3, M_DEVBUF);
   2020 	free(ioc2, M_DEVBUF);
   2021 
   2022 	return 0;
   2023 
   2024 fail:
   2025 	if (ioc3) free(ioc3, M_DEVBUF);
   2026 	if (ioc2) free(ioc2, M_DEVBUF);
   2027 	return EINVAL;
   2028 }
   2029 
   2030 
   2031 static int
   2032 mpt_bio_ioctl_disk(mpt_softc_t *mpt, struct bioc_disk *bd)
   2033 {
   2034 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   2035 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   2036 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   2037 	int address;
   2038 
   2039 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   2040 	if (ioc2 == NULL)
   2041 		return EIO;
   2042 
   2043 	if (bd->bd_volid < 0 || bd->bd_volid >= ioc2->NumActiveVolumes)
   2044 		goto fail;
   2045 
   2046 	ioc2rvol = &ioc2->RaidVolume[bd->bd_volid];
   2047 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   2048 
   2049 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   2050 	if (rvol0 == NULL)
   2051 		goto fail;
   2052 
   2053 	if (bd->bd_diskid < 0 || bd->bd_diskid >= rvol0->NumPhysDisks)
   2054 		goto fail;
   2055 
   2056 	address = rvol0->PhysDisk[bd->bd_diskid].PhysDiskNum;
   2057 
   2058 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   2059 
   2060 	free(ioc2, M_DEVBUF);
   2061 
   2062 	return 0;
   2063 
   2064 fail:
   2065 	if (ioc2) free(ioc2, M_DEVBUF);
   2066 	return EINVAL;
   2067 }
   2068 #endif
   2069 
   2070