Home | History | Annotate | Line # | Download | only in oea
      1 /*	$NetBSD: pmap.c,v 1.122 2025/02/28 09:07:11 andvar Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.122 2025/02/28 09:07:11 andvar Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #ifdef _KERNEL_OPT
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 #include "opt_ppcarch.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/proc.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 #include <uvm/uvm_physseg.h>
     87 
     88 #include <machine/powerpc.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/pcb.h>
     91 #include <powerpc/psl.h>
     92 #include <powerpc/spr.h>
     93 #include <powerpc/oea/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 
     96 #ifdef ALTIVEC
     97 extern int pmap_use_altivec;
     98 #endif
     99 
    100 #ifdef PMAP_MEMLIMIT
    101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    102 #else
    103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    104 #endif
    105 
    106 extern struct pmap kernel_pmap_;
    107 static unsigned int pmap_pages_stolen;
    108 static u_long pmap_pte_valid;
    109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    110 static u_long pmap_pvo_enter_depth;
    111 static u_long pmap_pvo_remove_depth;
    112 #endif
    113 
    114 #ifndef MSGBUFADDR
    115 extern paddr_t msgbuf_paddr;
    116 #endif
    117 
    118 static struct mem_region *mem, *avail;
    119 static u_int mem_cnt, avail_cnt;
    120 
    121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    122 # define	PMAP_OEA 1
    123 #endif
    124 
    125 #if defined(PMAP_OEA)
    126 #define	_PRIxpte	"lx"
    127 #else
    128 #define	_PRIxpte	PRIx64
    129 #endif
    130 #define	_PRIxpa		"lx"
    131 #define	_PRIxva		"lx"
    132 #define	_PRIsr  	"lx"
    133 
    134 #ifdef PMAP_NEEDS_FIXUP
    135 #if defined(PMAP_OEA)
    136 #define	PMAPNAME(name)	pmap32_##name
    137 #elif defined(PMAP_OEA64)
    138 #define	PMAPNAME(name)	pmap64_##name
    139 #elif defined(PMAP_OEA64_BRIDGE)
    140 #define	PMAPNAME(name)	pmap64bridge_##name
    141 #else
    142 #error unknown variant for pmap
    143 #endif
    144 #endif /* PMAP_NEEDS_FIXUP */
    145 
    146 #ifdef PMAPNAME
    147 #define	STATIC			static
    148 #define pmap_pte_spill		PMAPNAME(pte_spill)
    149 #define pmap_real_memory	PMAPNAME(real_memory)
    150 #define pmap_init		PMAPNAME(init)
    151 #define pmap_virtual_space	PMAPNAME(virtual_space)
    152 #define pmap_create		PMAPNAME(create)
    153 #define pmap_reference		PMAPNAME(reference)
    154 #define pmap_destroy		PMAPNAME(destroy)
    155 #define pmap_copy		PMAPNAME(copy)
    156 #define pmap_update		PMAPNAME(update)
    157 #define pmap_enter		PMAPNAME(enter)
    158 #define pmap_remove		PMAPNAME(remove)
    159 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    160 #define pmap_kremove		PMAPNAME(kremove)
    161 #define pmap_extract		PMAPNAME(extract)
    162 #define pmap_protect		PMAPNAME(protect)
    163 #define pmap_unwire		PMAPNAME(unwire)
    164 #define pmap_page_protect	PMAPNAME(page_protect)
    165 #define	pmap_pv_protect		PMAPNAME(pv_protect)
    166 #define pmap_query_bit		PMAPNAME(query_bit)
    167 #define pmap_clear_bit		PMAPNAME(clear_bit)
    168 
    169 #define pmap_activate		PMAPNAME(activate)
    170 #define pmap_deactivate		PMAPNAME(deactivate)
    171 
    172 #define pmap_pinit		PMAPNAME(pinit)
    173 #define pmap_procwr		PMAPNAME(procwr)
    174 
    175 #define pmap_pool		PMAPNAME(pool)
    176 #define pmap_pvo_pool		PMAPNAME(pvo_pool)
    177 #define pmap_pvo_table		PMAPNAME(pvo_table)
    178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    179 #define pmap_pte_print		PMAPNAME(pte_print)
    180 #define pmap_pteg_check		PMAPNAME(pteg_check)
    181 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    182 #define pmap_print_pte		PMAPNAME(print_pte)
    183 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    184 #endif
    185 #if defined(DEBUG) || defined(PMAPCHECK)
    186 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    187 #define pmapcheck		PMAPNAME(check)
    188 #endif
    189 #if defined(DEBUG) || defined(PMAPDEBUG)
    190 #define pmapdebug		PMAPNAME(debug)
    191 #endif
    192 #define pmap_steal_memory	PMAPNAME(steal_memory)
    193 #define pmap_bootstrap		PMAPNAME(bootstrap)
    194 #define pmap_bootstrap1		PMAPNAME(bootstrap1)
    195 #define pmap_bootstrap2		PMAPNAME(bootstrap2)
    196 #else
    197 #define	STATIC			/* nothing */
    198 #endif /* PMAPNAME */
    199 
    200 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    201 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    202 STATIC void pmap_init(void);
    203 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    204 STATIC pmap_t pmap_create(void);
    205 STATIC void pmap_reference(pmap_t);
    206 STATIC void pmap_destroy(pmap_t);
    207 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    208 STATIC void pmap_update(pmap_t);
    209 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    210 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    211 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    212 STATIC void pmap_kremove(vaddr_t, vsize_t);
    213 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    214 
    215 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    216 STATIC void pmap_unwire(pmap_t, vaddr_t);
    217 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    218 STATIC void pmap_pv_protect(paddr_t, vm_prot_t);
    219 STATIC bool pmap_query_bit(struct vm_page *, int);
    220 STATIC bool pmap_clear_bit(struct vm_page *, int);
    221 
    222 STATIC void pmap_activate(struct lwp *);
    223 STATIC void pmap_deactivate(struct lwp *);
    224 
    225 STATIC void pmap_pinit(pmap_t pm);
    226 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    227 
    228 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    229 STATIC void pmap_pte_print(volatile struct pte *);
    230 STATIC void pmap_pteg_check(void);
    231 STATIC void pmap_print_mmuregs(void);
    232 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    233 STATIC void pmap_pteg_dist(void);
    234 #endif
    235 #if defined(DEBUG) || defined(PMAPCHECK)
    236 STATIC void pmap_pvo_verify(void);
    237 #endif
    238 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    239 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    240 STATIC void pmap_bootstrap1(paddr_t, paddr_t);
    241 STATIC void pmap_bootstrap2(void);
    242 
    243 #ifdef PMAPNAME
    244 const struct pmap_ops PMAPNAME(ops) = {
    245 	.pmapop_pte_spill = pmap_pte_spill,
    246 	.pmapop_real_memory = pmap_real_memory,
    247 	.pmapop_init = pmap_init,
    248 	.pmapop_virtual_space = pmap_virtual_space,
    249 	.pmapop_create = pmap_create,
    250 	.pmapop_reference = pmap_reference,
    251 	.pmapop_destroy = pmap_destroy,
    252 	.pmapop_copy = pmap_copy,
    253 	.pmapop_update = pmap_update,
    254 	.pmapop_enter = pmap_enter,
    255 	.pmapop_remove = pmap_remove,
    256 	.pmapop_kenter_pa = pmap_kenter_pa,
    257 	.pmapop_kremove = pmap_kremove,
    258 	.pmapop_extract = pmap_extract,
    259 	.pmapop_protect = pmap_protect,
    260 	.pmapop_unwire = pmap_unwire,
    261 	.pmapop_page_protect = pmap_page_protect,
    262 	.pmapop_pv_protect = pmap_pv_protect,
    263 	.pmapop_query_bit = pmap_query_bit,
    264 	.pmapop_clear_bit = pmap_clear_bit,
    265 	.pmapop_activate = pmap_activate,
    266 	.pmapop_deactivate = pmap_deactivate,
    267 	.pmapop_pinit = pmap_pinit,
    268 	.pmapop_procwr = pmap_procwr,
    269 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    270 	.pmapop_pte_print = pmap_pte_print,
    271 	.pmapop_pteg_check = pmap_pteg_check,
    272 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    273 	.pmapop_print_pte = pmap_print_pte,
    274 	.pmapop_pteg_dist = pmap_pteg_dist,
    275 #else
    276 	.pmapop_pte_print = NULL,
    277 	.pmapop_pteg_check = NULL,
    278 	.pmapop_print_mmuregs = NULL,
    279 	.pmapop_print_pte = NULL,
    280 	.pmapop_pteg_dist = NULL,
    281 #endif
    282 #if defined(DEBUG) || defined(PMAPCHECK)
    283 	.pmapop_pvo_verify = pmap_pvo_verify,
    284 #else
    285 	.pmapop_pvo_verify = NULL,
    286 #endif
    287 	.pmapop_steal_memory = pmap_steal_memory,
    288 	.pmapop_bootstrap = pmap_bootstrap,
    289 	.pmapop_bootstrap1 = pmap_bootstrap1,
    290 	.pmapop_bootstrap2 = pmap_bootstrap2,
    291 };
    292 #endif /* !PMAPNAME */
    293 
    294 /*
    295  * The following structure is aligned to 32 bytes, if reasonably possible.
    296  */
    297 struct pvo_entry {
    298 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    299 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    300 	struct pte pvo_pte;			/* Prebuilt PTE */
    301 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    302 	vaddr_t pvo_vaddr;			/* VA of entry */
    303 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    304 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    305 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    306 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    307 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    308 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    309 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    310 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    311 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    312 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    313 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    314 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    315 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    316 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    317 #define	PVO_REMOVE		6		/* PVO has been removed */
    318 #define	PVO_WHERE_MASK		15
    319 #define	PVO_WHERE_SHFT		8
    320 };
    321 
    322 #if defined(PMAP_OEA) && !defined(DIAGNOSTIC)
    323 #define	PMAP_PVO_ENTRY_ALIGN	32
    324 #else
    325 #define	PMAP_PVO_ENTRY_ALIGN	__alignof(struct pvo_entry)
    326 #endif
    327 
    328 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    329 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    330 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    331 #define	PVO_PTEGIDX_CLR(pvo)	\
    332 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    333 #define	PVO_PTEGIDX_SET(pvo,i)	\
    334 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    335 #define	PVO_WHERE(pvo,w)	\
    336 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    337 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    338 
    339 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    340 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    341 
    342 struct pool pmap_pool;		/* pool for pmap structures */
    343 struct pool pmap_pvo_pool;	/* pool for pvo entries */
    344 
    345 static void *pmap_pool_alloc(struct pool *, int);
    346 static void pmap_pool_free(struct pool *, void *);
    347 
    348 static struct pool_allocator pmap_pool_allocator = {
    349 	.pa_alloc = pmap_pool_alloc,
    350 	.pa_free = pmap_pool_free,
    351 	.pa_pagesz = 0,
    352 };
    353 
    354 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    355 void pmap_pte_print(volatile struct pte *);
    356 void pmap_pteg_check(void);
    357 void pmap_pteg_dist(void);
    358 void pmap_print_pte(pmap_t, vaddr_t);
    359 void pmap_print_mmuregs(void);
    360 #endif
    361 
    362 #if defined(DEBUG) || defined(PMAPCHECK)
    363 #ifdef PMAPCHECK
    364 int pmapcheck = 1;
    365 #else
    366 int pmapcheck = 0;
    367 #endif
    368 void pmap_pvo_verify(void);
    369 static void pmap_pvo_check(const struct pvo_entry *);
    370 #define	PMAP_PVO_CHECK(pvo)	 		\
    371 	do {					\
    372 		if (pmapcheck)			\
    373 			pmap_pvo_check(pvo);	\
    374 	} while (0)
    375 #else
    376 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    377 #endif
    378 static int pmap_pte_insert(int, struct pte *);
    379 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    380 	vaddr_t, paddr_t, register_t, int);
    381 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    382 static void pmap_pvo_free(struct pvo_entry *);
    383 static void pmap_pvo_free_list(struct pvo_head *);
    384 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    385 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    386 static struct pvo_entry *pmap_pvo_reclaim(void);
    387 static void pvo_set_exec(struct pvo_entry *);
    388 static void pvo_clear_exec(struct pvo_entry *);
    389 
    390 static void tlbia(void);
    391 
    392 static void pmap_release(pmap_t);
    393 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    394 
    395 static uint32_t pmap_pvo_reclaim_nextidx;
    396 #ifdef DEBUG
    397 static int pmap_pvo_reclaim_debugctr;
    398 #endif
    399 
    400 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    401 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    402 
    403 static int pmap_initialized;
    404 
    405 #if defined(DEBUG) || defined(PMAPDEBUG)
    406 #define	PMAPDEBUG_BOOT		0x0001
    407 #define	PMAPDEBUG_PTE		0x0002
    408 #define	PMAPDEBUG_EXEC		0x0008
    409 #define	PMAPDEBUG_PVOENTER	0x0010
    410 #define	PMAPDEBUG_PVOREMOVE	0x0020
    411 #define	PMAPDEBUG_ACTIVATE	0x0100
    412 #define	PMAPDEBUG_CREATE	0x0200
    413 #define	PMAPDEBUG_ENTER		0x1000
    414 #define	PMAPDEBUG_KENTER	0x2000
    415 #define	PMAPDEBUG_KREMOVE	0x4000
    416 #define	PMAPDEBUG_REMOVE	0x8000
    417 
    418 unsigned int pmapdebug = 0;
    419 
    420 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    421 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    422 #else
    423 # define DPRINTF(x, ...)	do { } while (0)
    424 # define DPRINTFN(n, x, ...)	do { } while (0)
    425 #endif
    426 
    427 
    428 #ifdef PMAPCOUNTERS
    429 /*
    430  * From pmap_subr.c
    431  */
    432 extern struct evcnt pmap_evcnt_mappings;
    433 extern struct evcnt pmap_evcnt_unmappings;
    434 
    435 extern struct evcnt pmap_evcnt_kernel_mappings;
    436 extern struct evcnt pmap_evcnt_kernel_unmappings;
    437 
    438 extern struct evcnt pmap_evcnt_mappings_replaced;
    439 
    440 extern struct evcnt pmap_evcnt_exec_mappings;
    441 extern struct evcnt pmap_evcnt_exec_cached;
    442 
    443 extern struct evcnt pmap_evcnt_exec_synced;
    444 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    445 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    446 
    447 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    448 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    449 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    450 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    451 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    452 
    453 extern struct evcnt pmap_evcnt_updates;
    454 extern struct evcnt pmap_evcnt_collects;
    455 extern struct evcnt pmap_evcnt_copies;
    456 
    457 extern struct evcnt pmap_evcnt_ptes_spilled;
    458 extern struct evcnt pmap_evcnt_ptes_unspilled;
    459 extern struct evcnt pmap_evcnt_ptes_evicted;
    460 
    461 extern struct evcnt pmap_evcnt_ptes_primary[8];
    462 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    463 extern struct evcnt pmap_evcnt_ptes_removed;
    464 extern struct evcnt pmap_evcnt_ptes_changed;
    465 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    466 extern struct evcnt pmap_evcnt_pvos_failed;
    467 
    468 extern struct evcnt pmap_evcnt_zeroed_pages;
    469 extern struct evcnt pmap_evcnt_copied_pages;
    470 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    471 
    472 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    473 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    474 #else
    475 #define	PMAPCOUNT(ev)	((void) 0)
    476 #define	PMAPCOUNT2(ev)	((void) 0)
    477 #endif
    478 
    479 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va) : "memory")
    480 
    481 /* XXXSL: this needs to be moved to assembler */
    482 #define	TLBIEL(va)	__asm volatile("tlbie %0" :: "r"(va) : "memory")
    483 
    484 #ifdef MD_TLBSYNC
    485 #define TLBSYNC()	MD_TLBSYNC()
    486 #else
    487 #define	TLBSYNC()	__asm volatile("tlbsync" ::: "memory")
    488 #endif
    489 #define	SYNC()		__asm volatile("sync" ::: "memory")
    490 #define	EIEIO()		__asm volatile("eieio" ::: "memory")
    491 #define	DCBST(va)	__asm volatile("dcbst 0,%0" :: "r"(va) : "memory")
    492 #define	MFMSR()		mfmsr()
    493 #define	MTMSR(psl)	mtmsr(psl)
    494 #define	MFPVR()		mfpvr()
    495 #define	MFSRIN(va)	mfsrin(va)
    496 #define	MFTB()		mfrtcltbl()
    497 
    498 #if defined(DDB) && !defined(PMAP_OEA64)
    499 static inline register_t
    500 mfsrin(vaddr_t va)
    501 {
    502 	register_t sr;
    503 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    504 	return sr;
    505 }
    506 #endif	/* DDB && !PMAP_OEA64 */
    507 
    508 #if defined (PMAP_OEA64_BRIDGE)
    509 extern void mfmsr64 (register64_t *result);
    510 #endif /* PMAP_OEA64_BRIDGE */
    511 
    512 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    513 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    514 
    515 static inline register_t
    516 pmap_interrupts_off(void)
    517 {
    518 	register_t msr = MFMSR();
    519 	if (msr & PSL_EE)
    520 		MTMSR(msr & ~PSL_EE);
    521 	return msr;
    522 }
    523 
    524 static void
    525 pmap_interrupts_restore(register_t msr)
    526 {
    527 	if (msr & PSL_EE)
    528 		MTMSR(msr);
    529 }
    530 
    531 static inline u_int32_t
    532 mfrtcltbl(void)
    533 {
    534 #ifdef PPC_OEA601
    535 	if ((MFPVR() >> 16) == MPC601)
    536 		return (mfrtcl() >> 7);
    537 	else
    538 #endif
    539 		return (mftbl());
    540 }
    541 
    542 /*
    543  * These small routines may have to be replaced,
    544  * if/when we support processors other that the 604.
    545  */
    546 
    547 void
    548 tlbia(void)
    549 {
    550 	char *i;
    551 
    552 	SYNC();
    553 #if defined(PMAP_OEA)
    554 	/*
    555 	 * Why not use "tlbia"?  Because not all processors implement it.
    556 	 *
    557 	 * This needs to be a per-CPU callback to do the appropriate thing
    558 	 * for the CPU. XXX
    559 	 */
    560 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    561 		TLBIE(i);
    562 		EIEIO();
    563 		SYNC();
    564 	}
    565 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    566 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    567 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    568 		TLBIEL(i);
    569 		EIEIO();
    570 		SYNC();
    571 	}
    572 #endif
    573 	TLBSYNC();
    574 	SYNC();
    575 }
    576 
    577 static inline register_t
    578 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    579 {
    580 	/*
    581 	 * Rather than searching the STE groups for the VSID or extracting
    582 	 * it from the SR, we know how we generate that from the ESID and
    583 	 * so do that.
    584 	 *
    585 	 * This makes the code the same for OEA and OEA64, and also allows
    586 	 * us to generate a correct-for-that-address-space VSID even if the
    587 	 * pmap contains a different SR value at any given moment (e.g.
    588 	 * kernel pmap on a 601 that is using I/O segments).
    589 	 */
    590 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    591 }
    592 
    593 static inline register_t
    594 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    595 {
    596 	register_t hash;
    597 
    598 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    599 	return hash & pmap_pteg_mask;
    600 }
    601 
    602 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    603 /*
    604  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    605  * The only bit of magic is that the top 4 bits of the address doesn't
    606  * technically exist in the PTE.  But we know we reserved 4 bits of the
    607  * VSID for it so that's how we get it.
    608  */
    609 static vaddr_t
    610 pmap_pte_to_va(volatile const struct pte *pt)
    611 {
    612 	vaddr_t va;
    613 	uintptr_t ptaddr = (uintptr_t) pt;
    614 
    615 	if (pt->pte_hi & PTE_HID)
    616 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    617 
    618 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    619 #if defined(PMAP_OEA)
    620 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    621 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    622 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    623 #endif
    624 	va <<= ADDR_PIDX_SHFT;
    625 
    626 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    627 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    628 
    629 #if defined(PMAP_OEA64)
    630 	/* PPC63 Bits 0-35 */
    631 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    632 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    633 	/* PPC Bits 0-3 */
    634 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    635 #endif
    636 
    637 	return va;
    638 }
    639 #endif
    640 
    641 static inline struct pvo_head *
    642 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    643 {
    644 	struct vm_page *pg;
    645 	struct vm_page_md *md;
    646 	struct pmap_page *pp;
    647 
    648 	pg = PHYS_TO_VM_PAGE(pa);
    649 	if (pg_p != NULL)
    650 		*pg_p = pg;
    651 	if (pg == NULL) {
    652 		if ((pp = pmap_pv_tracked(pa)) != NULL)
    653 			return &pp->pp_pvoh;
    654 		return NULL;
    655 	}
    656 	md = VM_PAGE_TO_MD(pg);
    657 	return &md->mdpg_pvoh;
    658 }
    659 
    660 static inline struct pvo_head *
    661 vm_page_to_pvoh(struct vm_page *pg)
    662 {
    663 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    664 
    665 	return &md->mdpg_pvoh;
    666 }
    667 
    668 static inline void
    669 pmap_pp_attr_clear(struct pmap_page *pp, int ptebit)
    670 {
    671 
    672 	pp->pp_attrs &= ~ptebit;
    673 }
    674 
    675 static inline void
    676 pmap_attr_clear(struct vm_page *pg, int ptebit)
    677 {
    678 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    679 
    680 	pmap_pp_attr_clear(&md->mdpg_pp, ptebit);
    681 }
    682 
    683 static inline int
    684 pmap_pp_attr_fetch(struct pmap_page *pp)
    685 {
    686 
    687 	return pp->pp_attrs;
    688 }
    689 
    690 static inline int
    691 pmap_attr_fetch(struct vm_page *pg)
    692 {
    693 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    694 
    695 	return pmap_pp_attr_fetch(&md->mdpg_pp);
    696 }
    697 
    698 static inline void
    699 pmap_attr_save(struct vm_page *pg, int ptebit)
    700 {
    701 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    702 
    703 	md->mdpg_attrs |= ptebit;
    704 }
    705 
    706 static inline int
    707 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    708 {
    709 	if (pt->pte_hi == pvo_pt->pte_hi
    710 #if 0
    711 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    712 	        ~(PTE_REF|PTE_CHG)) == 0
    713 #endif
    714 	    )
    715 		return 1;
    716 	return 0;
    717 }
    718 
    719 static inline void
    720 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    721 {
    722 	/*
    723 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    724 	 * only gets set when the real pte is set in memory.
    725 	 *
    726 	 * Note: Don't set the valid bit for correct operation of tlb update.
    727 	 */
    728 #if defined(PMAP_OEA)
    729 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    730 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    731 	pt->pte_lo = pte_lo;
    732 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    733 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    734 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    735 	pt->pte_lo = (u_int64_t) pte_lo;
    736 #endif /* PMAP_OEA */
    737 }
    738 
    739 static inline void
    740 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    741 {
    742 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    743 }
    744 
    745 static inline void
    746 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    747 {
    748 	/*
    749 	 * As shown in Section 7.6.3.2.3
    750 	 */
    751 	pt->pte_lo &= ~ptebit;
    752 	TLBIE(va);
    753 	SYNC();
    754 	EIEIO();
    755 	TLBSYNC();
    756 	SYNC();
    757 #ifdef MULTIPROCESSOR
    758 	DCBST(pt);
    759 #endif
    760 }
    761 
    762 static inline void
    763 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    764 {
    765 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    766 	if (pvo_pt->pte_hi & PTE_VALID)
    767 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    768 #endif
    769 	pvo_pt->pte_hi |= PTE_VALID;
    770 
    771 	/*
    772 	 * Update the PTE as defined in section 7.6.3.1
    773 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    774 	 * have been saved so this routine can restore them (if desired).
    775 	 */
    776 	pt->pte_lo = pvo_pt->pte_lo;
    777 	EIEIO();
    778 	pt->pte_hi = pvo_pt->pte_hi;
    779 	TLBSYNC();
    780 	SYNC();
    781 #ifdef MULTIPROCESSOR
    782 	DCBST(pt);
    783 #endif
    784 	pmap_pte_valid++;
    785 }
    786 
    787 static inline void
    788 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    789 {
    790 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    791 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    792 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    793 	if ((pt->pte_hi & PTE_VALID) == 0)
    794 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    795 #endif
    796 
    797 	pvo_pt->pte_hi &= ~PTE_VALID;
    798 	/*
    799 	 * Force the ref & chg bits back into the PTEs.
    800 	 */
    801 	SYNC();
    802 	/*
    803 	 * Invalidate the pte ... (Section 7.6.3.3)
    804 	 */
    805 	pt->pte_hi &= ~PTE_VALID;
    806 	SYNC();
    807 	TLBIE(va);
    808 	SYNC();
    809 	EIEIO();
    810 	TLBSYNC();
    811 	SYNC();
    812 	/*
    813 	 * Save the ref & chg bits ...
    814 	 */
    815 	pmap_pte_synch(pt, pvo_pt);
    816 	pmap_pte_valid--;
    817 }
    818 
    819 static inline void
    820 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    821 {
    822 	/*
    823 	 * Invalidate the PTE
    824 	 */
    825 	pmap_pte_unset(pt, pvo_pt, va);
    826 	pmap_pte_set(pt, pvo_pt);
    827 }
    828 
    829 /*
    830  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    831  * (either primary or secondary location).
    832  *
    833  * Note: both the destination and source PTEs must not have PTE_VALID set.
    834  */
    835 
    836 static int
    837 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    838 {
    839 	volatile struct pte *pt;
    840 	int i;
    841 
    842 #if defined(DEBUG)
    843 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    844 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    845 #endif
    846 	/*
    847 	 * First try primary hash.
    848 	 */
    849 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    850 		if ((pt->pte_hi & PTE_VALID) == 0) {
    851 			pvo_pt->pte_hi &= ~PTE_HID;
    852 			pmap_pte_set(pt, pvo_pt);
    853 			return i;
    854 		}
    855 	}
    856 
    857 	/*
    858 	 * Now try secondary hash.
    859 	 */
    860 	ptegidx ^= pmap_pteg_mask;
    861 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    862 		if ((pt->pte_hi & PTE_VALID) == 0) {
    863 			pvo_pt->pte_hi |= PTE_HID;
    864 			pmap_pte_set(pt, pvo_pt);
    865 			return i;
    866 		}
    867 	}
    868 	return -1;
    869 }
    870 
    871 /*
    872  * Spill handler.
    873  *
    874  * Tries to spill a page table entry from the overflow area.
    875  * This runs in either real mode (if dealing with a exception spill)
    876  * or virtual mode when dealing with manually spilling one of the
    877  * kernel's pte entries.
    878  */
    879 
    880 int
    881 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool isi_p)
    882 {
    883 	struct pvo_tqhead *spvoh, *vpvoh;
    884 	struct pvo_entry *pvo, *source_pvo, *victim_pvo;
    885 	volatile struct pteg *pteg;
    886 	volatile struct pte *pt;
    887 	register_t msr, vsid, hash;
    888 	int ptegidx, hid, i, j;
    889 	int done = 0;
    890 
    891 	PMAP_LOCK();
    892 	msr = pmap_interrupts_off();
    893 
    894 	/* XXXRO paranoid? */
    895 	if (pm->pm_evictions == 0)
    896 		goto out;
    897 
    898 	ptegidx = va_to_pteg(pm, addr);
    899 
    900 	/*
    901 	 * Find source pvo.
    902 	 */
    903 	spvoh = &pmap_pvo_table[ptegidx];
    904 	source_pvo = NULL;
    905 	TAILQ_FOREACH(pvo, spvoh, pvo_olink) {
    906 		/*
    907 		 * We need to find pvo entry for this address...
    908 		 */
    909 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    910 
    911 		/*
    912 		 * If we haven't found the source and we come to a PVO with
    913 		 * a valid PTE, then we know we can't find it because all
    914 		 * evicted PVOs always are first in the list.
    915 		 */
    916 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) != 0)
    917 			break;
    918 
    919 		if (pm == pvo->pvo_pmap && addr == PVO_VADDR(pvo)) {
    920 			if (isi_p) {
    921 				if (!PVO_EXECUTABLE_P(pvo))
    922 					goto out;
    923 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    924 				int sr __diagused =
    925 				    PVO_VADDR(pvo) >> ADDR_SR_SHFT;
    926 				KASSERT((pm->pm_sr[sr] & SR_NOEXEC) == 0);
    927 #endif
    928 			}
    929 			KASSERT(!PVO_PTEGIDX_ISSET(pvo));
    930 			/* XXXRO where check */
    931 			source_pvo = pvo;
    932 			break;
    933 		}
    934 	}
    935 	if (source_pvo == NULL) {
    936 		PMAPCOUNT(ptes_unspilled);
    937 		goto out;
    938 	}
    939 
    940 	/*
    941 	 * Now we have found the entry to be spilled into the
    942 	 * pteg.  Attempt to insert it into the page table.
    943 	 */
    944 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    945 	if (i >= 0) {
    946 		PVO_PTEGIDX_SET(pvo, i);
    947 		PMAP_PVO_CHECK(pvo);	/* sanity check */
    948 		PVO_WHERE(pvo, SPILL_INSERT);
    949 		pvo->pvo_pmap->pm_evictions--;
    950 		PMAPCOUNT(ptes_spilled);
    951 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID) != 0
    952 		    ? pmap_evcnt_ptes_secondary
    953 		    : pmap_evcnt_ptes_primary)[i]);
    954 
    955 		TAILQ_REMOVE(spvoh, pvo, pvo_olink);
    956 		TAILQ_INSERT_TAIL(spvoh, pvo, pvo_olink);
    957 
    958 		done = 1;
    959 		goto out;
    960 	}
    961 
    962 	/*
    963 	 * Have to substitute some entry. Use the primary hash for this.
    964 	 * Use low bits of timebase as random generator.
    965 	 *
    966 	 * XXX:
    967 	 * Make sure we are not picking a kernel pte for replacement.
    968 	 */
    969 	hid = 0;
    970 	i = MFTB() & 7;
    971 	pteg = &pmap_pteg_table[ptegidx];
    972  retry:
    973 	for (j = 0; j < 8; j++, i = (i + 1) & 7) {
    974 		pt = &pteg->pt[i];
    975 
    976 		if ((pt->pte_hi & PTE_VALID) == 0)
    977 			break;
    978 
    979 		vsid = (pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT;
    980 		hash = VSID_TO_HASH(vsid);
    981 		if (hash < PHYSMAP_VSIDBITS)
    982 			break;
    983 	}
    984 	if (j == 8) {
    985 		if (hid != 0)
    986 			panic("%s: no victim\n", __func__);
    987 		hid = PTE_HID;
    988 		pteg = &pmap_pteg_table[ptegidx ^ pmap_pteg_mask];
    989 		goto retry;
    990 	}
    991 
    992 	/*
    993 	 * We also need the pvo entry of the victim we are replacing
    994 	 * so save the R & C bits of the PTE.
    995 	 */
    996 	if ((pt->pte_hi & PTE_HID) == hid)
    997 		vpvoh = spvoh;
    998 	else
    999 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
   1000 	victim_pvo = NULL;
   1001 	TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1002 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1003 
   1004 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1005 			continue;
   1006 
   1007 		if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1008 			victim_pvo = pvo;
   1009 			break;
   1010 		}
   1011 	}
   1012 	if (victim_pvo == NULL) {
   1013 		panic("%s: victim p-pte (%p) has no pvo entry!",
   1014 		    __func__, pt);
   1015 	}
   1016 
   1017 	/*
   1018 	 * The victim should be not be a kernel PVO/PTE entry.
   1019 	 */
   1020 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1021 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1022 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1023 
   1024 	/*
   1025 	 * We are invalidating the TLB entry for the EA for the
   1026 	 * we are replacing even though its valid; If we don't
   1027 	 * we lose any ref/chg bit changes contained in the TLB
   1028 	 * entry.
   1029 	 */
   1030 	if (hid == 0)
   1031 		source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1032 	else
   1033 		source_pvo->pvo_pte.pte_hi |= PTE_HID;
   1034 
   1035 	/*
   1036 	 * To enforce the PVO list ordering constraint that all
   1037 	 * evicted entries should come before all valid entries,
   1038 	 * move the source PVO to the tail of its list and the
   1039 	 * victim PVO to the head of its list (which might not be
   1040 	 * the same list, if the victim was using the secondary hash).
   1041 	 */
   1042 	TAILQ_REMOVE(spvoh, source_pvo, pvo_olink);
   1043 	TAILQ_INSERT_TAIL(spvoh, source_pvo, pvo_olink);
   1044 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1045 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1046 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1047 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1048 	victim_pvo->pvo_pmap->pm_evictions++;
   1049 	source_pvo->pvo_pmap->pm_evictions--;
   1050 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1051 	PVO_WHERE(source_pvo, SPILL_SET);
   1052 
   1053 	PVO_PTEGIDX_CLR(victim_pvo);
   1054 	PVO_PTEGIDX_SET(source_pvo, i);
   1055 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1056 	PMAPCOUNT(ptes_spilled);
   1057 	PMAPCOUNT(ptes_evicted);
   1058 	PMAPCOUNT(ptes_removed);
   1059 
   1060 	PMAP_PVO_CHECK(victim_pvo);
   1061 	PMAP_PVO_CHECK(source_pvo);
   1062 
   1063 	done = 1;
   1064 
   1065  out:
   1066 	pmap_interrupts_restore(msr);
   1067 	PMAP_UNLOCK();
   1068 	return done;
   1069 }
   1070 
   1071 /*
   1072  * Restrict given range to physical memory
   1073  */
   1074 void
   1075 pmap_real_memory(paddr_t *start, psize_t *size)
   1076 {
   1077 	struct mem_region *mp;
   1078 
   1079 	for (mp = mem; mp->size; mp++) {
   1080 		if (*start + *size > mp->start
   1081 		    && *start < mp->start + mp->size) {
   1082 			if (*start < mp->start) {
   1083 				*size -= mp->start - *start;
   1084 				*start = mp->start;
   1085 			}
   1086 			if (*start + *size > mp->start + mp->size)
   1087 				*size = mp->start + mp->size - *start;
   1088 			return;
   1089 		}
   1090 	}
   1091 	*size = 0;
   1092 }
   1093 
   1094 /*
   1095  * Initialize anything else for pmap handling.
   1096  * Called during vm_init().
   1097  */
   1098 void
   1099 pmap_init(void)
   1100 {
   1101 
   1102 	pmap_initialized = 1;
   1103 }
   1104 
   1105 /*
   1106  * How much virtual space does the kernel get?
   1107  */
   1108 void
   1109 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1110 {
   1111 	/*
   1112 	 * For now, reserve one segment (minus some overhead) for kernel
   1113 	 * virtual memory
   1114 	 */
   1115 	*start = VM_MIN_KERNEL_ADDRESS;
   1116 	*end = VM_MAX_KERNEL_ADDRESS;
   1117 }
   1118 
   1119 /*
   1120  * Allocate, initialize, and return a new physical map.
   1121  */
   1122 pmap_t
   1123 pmap_create(void)
   1124 {
   1125 	pmap_t pm;
   1126 
   1127 	pm = pool_get(&pmap_pool, PR_WAITOK | PR_ZERO);
   1128 	KASSERT((vaddr_t)pm < PMAP_DIRECT_MAPPED_LEN);
   1129 	pmap_pinit(pm);
   1130 
   1131 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1132 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1133 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1134 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1135 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1136 	    pm,
   1137 	    pm->pm_sr[0], pm->pm_sr[1],
   1138 	    pm->pm_sr[2], pm->pm_sr[3],
   1139 	    pm->pm_sr[4], pm->pm_sr[5],
   1140 	    pm->pm_sr[6], pm->pm_sr[7],
   1141 	    pm->pm_sr[8], pm->pm_sr[9],
   1142 	    pm->pm_sr[10], pm->pm_sr[11],
   1143 	    pm->pm_sr[12], pm->pm_sr[13],
   1144 	    pm->pm_sr[14], pm->pm_sr[15]);
   1145 	return pm;
   1146 }
   1147 
   1148 /*
   1149  * Initialize a preallocated and zeroed pmap structure.
   1150  */
   1151 void
   1152 pmap_pinit(pmap_t pm)
   1153 {
   1154 	register_t entropy = MFTB();
   1155 	register_t mask;
   1156 	int i;
   1157 
   1158 	/*
   1159 	 * Allocate some segment registers for this pmap.
   1160 	 */
   1161 	pm->pm_refs = 1;
   1162 	PMAP_LOCK();
   1163 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1164 		static register_t pmap_vsidcontext;
   1165 		register_t hash;
   1166 		unsigned int n;
   1167 
   1168 		/* Create a new value by multiplying by a prime adding in
   1169 		 * entropy from the timebase register.  This is to make the
   1170 		 * VSID more random so that the PT Hash function collides
   1171 		 * less often. (note that the prime causes gcc to do shifts
   1172 		 * instead of a multiply)
   1173 		 */
   1174 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1175 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1176 		if (hash == 0) {		/* 0 is special, avoid it */
   1177 			entropy += 0xbadf00d;
   1178 			continue;
   1179 		}
   1180 		n = hash >> 5;
   1181 		mask = 1L << (hash & (VSID_NBPW-1));
   1182 		hash = pmap_vsidcontext;
   1183 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1184 			/* anything free in this bucket? */
   1185 			if (~pmap_vsid_bitmap[n] == 0) {
   1186 				entropy = hash ^ (hash >> 16);
   1187 				continue;
   1188 			}
   1189 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1190 			mask = 1L << i;
   1191 			hash &= ~(VSID_NBPW-1);
   1192 			hash |= i;
   1193 		}
   1194 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1195 		pmap_vsid_bitmap[n] |= mask;
   1196 		pm->pm_vsid = hash;
   1197 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1198 		for (i = 0; i < 16; i++)
   1199 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1200 			    SR_NOEXEC;
   1201 #endif
   1202 		PMAP_UNLOCK();
   1203 		return;
   1204 	}
   1205 	PMAP_UNLOCK();
   1206 	panic("pmap_pinit: out of segments");
   1207 }
   1208 
   1209 /*
   1210  * Add a reference to the given pmap.
   1211  */
   1212 void
   1213 pmap_reference(pmap_t pm)
   1214 {
   1215 	atomic_inc_uint(&pm->pm_refs);
   1216 }
   1217 
   1218 /*
   1219  * Retire the given pmap from service.
   1220  * Should only be called if the map contains no valid mappings.
   1221  */
   1222 void
   1223 pmap_destroy(pmap_t pm)
   1224 {
   1225 	membar_release();
   1226 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1227 		membar_acquire();
   1228 		pmap_release(pm);
   1229 		pool_put(&pmap_pool, pm);
   1230 	}
   1231 }
   1232 
   1233 /*
   1234  * Release any resources held by the given physical map.
   1235  * Called when a pmap initialized by pmap_pinit is being released.
   1236  */
   1237 void
   1238 pmap_release(pmap_t pm)
   1239 {
   1240 	int idx, mask;
   1241 
   1242 	KASSERT(pm->pm_stats.resident_count == 0);
   1243 	KASSERT(pm->pm_stats.wired_count == 0);
   1244 
   1245 	PMAP_LOCK();
   1246 	if (pm->pm_sr[0] == 0)
   1247 		panic("pmap_release");
   1248 	idx = pm->pm_vsid & (NPMAPS-1);
   1249 	mask = 1 << (idx % VSID_NBPW);
   1250 	idx /= VSID_NBPW;
   1251 
   1252 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1253 	pmap_vsid_bitmap[idx] &= ~mask;
   1254 	PMAP_UNLOCK();
   1255 }
   1256 
   1257 /*
   1258  * Copy the range specified by src_addr/len
   1259  * from the source map to the range dst_addr/len
   1260  * in the destination map.
   1261  *
   1262  * This routine is only advisory and need not do anything.
   1263  */
   1264 void
   1265 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1266 	vsize_t len, vaddr_t src_addr)
   1267 {
   1268 	PMAPCOUNT(copies);
   1269 }
   1270 
   1271 /*
   1272  * Require that all active physical maps contain no
   1273  * incorrect entries NOW.
   1274  */
   1275 void
   1276 pmap_update(struct pmap *pmap)
   1277 {
   1278 	PMAPCOUNT(updates);
   1279 	TLBSYNC();
   1280 }
   1281 
   1282 static inline int
   1283 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1284 {
   1285 	int pteidx;
   1286 	/*
   1287 	 * We can find the actual pte entry without searching by
   1288 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1289 	 * and by noticing the HID bit.
   1290 	 */
   1291 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1292 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1293 		pteidx ^= pmap_pteg_mask * 8;
   1294 	return pteidx;
   1295 }
   1296 
   1297 volatile struct pte *
   1298 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1299 {
   1300 	volatile struct pte *pt;
   1301 
   1302 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1303 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1304 		return NULL;
   1305 #endif
   1306 
   1307 	/*
   1308 	 * If we haven't been supplied the ptegidx, calculate it.
   1309 	 */
   1310 	if (pteidx == -1) {
   1311 		int ptegidx;
   1312 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1313 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1314 	}
   1315 
   1316 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1317 
   1318 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1319 	return pt;
   1320 #else
   1321 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1322 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1323 		    "pvo but no valid pte index", pvo);
   1324 	}
   1325 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1326 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1327 		    "pvo but no valid pte", pvo);
   1328 	}
   1329 
   1330 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1331 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1332 #if defined(DEBUG) || defined(PMAPCHECK)
   1333 			pmap_pte_print(pt);
   1334 #endif
   1335 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1336 			    "pmap_pteg_table %p but invalid in pvo",
   1337 			    pvo, pt);
   1338 		}
   1339 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1340 #if defined(DEBUG) || defined(PMAPCHECK)
   1341 			pmap_pte_print(pt);
   1342 #endif
   1343 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1344 			    "not match pte %p in pmap_pteg_table",
   1345 			    pvo, pt);
   1346 		}
   1347 		return pt;
   1348 	}
   1349 
   1350 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1351 #if defined(DEBUG) || defined(PMAPCHECK)
   1352 		pmap_pte_print(pt);
   1353 #endif
   1354 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1355 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1356 	}
   1357 	return NULL;
   1358 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1359 }
   1360 
   1361 struct pvo_entry *
   1362 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1363 {
   1364 	struct pvo_entry *pvo;
   1365 	int ptegidx;
   1366 
   1367 	va &= ~ADDR_POFF;
   1368 	ptegidx = va_to_pteg(pm, va);
   1369 
   1370 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1371 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1372 		if ((uintptr_t) pvo >= PMAP_DIRECT_MAPPED_LEN)
   1373 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1374 			    "list %#x (%p)", pvo, ptegidx,
   1375 			     &pmap_pvo_table[ptegidx]);
   1376 #endif
   1377 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1378 			if (pteidx_p)
   1379 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1380 			return pvo;
   1381 		}
   1382 	}
   1383 	if ((pm == pmap_kernel()) && (va < PMAP_DIRECT_MAPPED_LEN))
   1384 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1385 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1386 	return NULL;
   1387 }
   1388 
   1389 #if defined(DEBUG) || defined(PMAPCHECK)
   1390 void
   1391 pmap_pvo_check(const struct pvo_entry *pvo)
   1392 {
   1393 	struct pvo_head *pvo_head;
   1394 	struct pvo_entry *pvo0;
   1395 	volatile struct pte *pt;
   1396 	int failed = 0;
   1397 
   1398 	PMAP_LOCK();
   1399 
   1400 	if ((uintptr_t)(pvo+1) >= PMAP_DIRECT_MAPPED_LEN)
   1401 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1402 
   1403 	if ((uintptr_t)(pvo->pvo_pmap+1) >= PMAP_DIRECT_MAPPED_LEN) {
   1404 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1405 		    pvo, pvo->pvo_pmap);
   1406 		failed = 1;
   1407 	}
   1408 
   1409 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= PMAP_DIRECT_MAPPED_LEN ||
   1410 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1411 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1412 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1413 		failed = 1;
   1414 	}
   1415 
   1416 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= PMAP_DIRECT_MAPPED_LEN ||
   1417 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1418 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1419 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1420 		failed = 1;
   1421 	}
   1422 
   1423 	if (PVO_MANAGED_P(pvo)) {
   1424 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1425 		LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1426 			if (pvo0 == pvo)
   1427 				break;
   1428 		}
   1429 		if (pvo0 == NULL) {
   1430 			printf("pmap_pvo_check: pvo %p: not present "
   1431 			       "on its vlist head %p\n", pvo, pvo_head);
   1432 			failed = 1;
   1433 		}
   1434 	} else {
   1435 		KASSERT(pvo->pvo_vaddr >= VM_MIN_KERNEL_ADDRESS);
   1436 		if (__predict_false(pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS))
   1437 			failed = 1;
   1438 	}
   1439 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1440 		printf("pmap_pvo_check: pvo %p: not present "
   1441 		    "on its olist head\n", pvo);
   1442 		failed = 1;
   1443 	}
   1444 	pt = pmap_pvo_to_pte(pvo, -1);
   1445 	if (pt == NULL) {
   1446 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1447 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1448 			    "no PTE\n", pvo);
   1449 			failed = 1;
   1450 		}
   1451 	} else {
   1452 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1453 		    (uintptr_t) pt >=
   1454 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1455 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1456 			    "pteg table\n", pvo, pt);
   1457 			failed = 1;
   1458 		}
   1459 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1460 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1461 			    "no PTE\n", pvo);
   1462 			failed = 1;
   1463 		}
   1464 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1465 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1466 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1467 			    pvo->pvo_pte.pte_hi,
   1468 			    pt->pte_hi);
   1469 			failed = 1;
   1470 		}
   1471 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1472 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1473 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1474 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1475 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1476 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1477 			failed = 1;
   1478 		}
   1479 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1480 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1481 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1482 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1483 			failed = 1;
   1484 		}
   1485 		if (failed)
   1486 			pmap_pte_print(pt);
   1487 	}
   1488 	if (failed)
   1489 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1490 		    pvo->pvo_pmap);
   1491 
   1492 	PMAP_UNLOCK();
   1493 }
   1494 #endif /* DEBUG || PMAPCHECK */
   1495 
   1496 /*
   1497  * Search the PVO table looking for a non-wired entry.
   1498  * If we find one, remove it and return it.
   1499  */
   1500 
   1501 struct pvo_entry *
   1502 pmap_pvo_reclaim(void)
   1503 {
   1504 	struct pvo_tqhead *pvoh;
   1505 	struct pvo_entry *pvo;
   1506 	uint32_t idx, endidx;
   1507 
   1508 	endidx = pmap_pvo_reclaim_nextidx;
   1509 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1510 	     idx = (idx + 1) & pmap_pteg_mask) {
   1511 		pvoh = &pmap_pvo_table[idx];
   1512 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1513 			if (!PVO_WIRED_P(pvo)) {
   1514 				pmap_pvo_remove(pvo, -1, NULL);
   1515 				pmap_pvo_reclaim_nextidx = idx;
   1516 				PMAPCOUNT(pvos_reclaimed);
   1517 				return pvo;
   1518 			}
   1519 		}
   1520 	}
   1521 	return NULL;
   1522 }
   1523 
   1524 /*
   1525  * This returns whether this is the first mapping of a page.
   1526  */
   1527 int
   1528 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1529 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1530 {
   1531 	struct pvo_entry *pvo;
   1532 	struct pvo_tqhead *pvoh;
   1533 	register_t msr;
   1534 	int ptegidx;
   1535 	int i;
   1536 	int poolflags = PR_NOWAIT;
   1537 
   1538 	/*
   1539 	 * Compute the PTE Group index.
   1540 	 */
   1541 	va &= ~ADDR_POFF;
   1542 	ptegidx = va_to_pteg(pm, va);
   1543 
   1544 	msr = pmap_interrupts_off();
   1545 
   1546 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1547 	if (pmap_pvo_remove_depth > 0)
   1548 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1549 	if (++pmap_pvo_enter_depth > 1)
   1550 		panic("pmap_pvo_enter: called recursively!");
   1551 #endif
   1552 
   1553 	/*
   1554 	 * Remove any existing mapping for this page.  Reuse the
   1555 	 * pvo entry if there a mapping.
   1556 	 */
   1557 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1558 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1559 #ifdef DEBUG
   1560 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1561 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1562 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1563 			   va < VM_MIN_KERNEL_ADDRESS) {
   1564 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1565 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1566 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1567 				    pvo->pvo_pte.pte_hi,
   1568 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1569 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1570 #ifdef DDBX
   1571 				Debugger();
   1572 #endif
   1573 			}
   1574 #endif
   1575 			PMAPCOUNT(mappings_replaced);
   1576 			pmap_pvo_remove(pvo, -1, NULL);
   1577 			break;
   1578 		}
   1579 	}
   1580 
   1581 	/*
   1582 	 * If we aren't overwriting an mapping, try to allocate
   1583 	 */
   1584 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1585 	--pmap_pvo_enter_depth;
   1586 #endif
   1587 	pmap_interrupts_restore(msr);
   1588 	if (pvo == NULL) {
   1589 		pvo = pool_get(pl, poolflags);
   1590 	}
   1591 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1592 
   1593 #ifdef DEBUG
   1594 	/*
   1595 	 * Exercise pmap_pvo_reclaim() a little.
   1596 	 */
   1597 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1598 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1599 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1600 		pool_put(pl, pvo);
   1601 		pvo = NULL;
   1602 	}
   1603 #endif
   1604 
   1605 	msr = pmap_interrupts_off();
   1606 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1607 	++pmap_pvo_enter_depth;
   1608 #endif
   1609 	if (pvo == NULL) {
   1610 		pvo = pmap_pvo_reclaim();
   1611 		if (pvo == NULL) {
   1612 			if ((flags & PMAP_CANFAIL) == 0)
   1613 				panic("pmap_pvo_enter: failed");
   1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1615 			pmap_pvo_enter_depth--;
   1616 #endif
   1617 			PMAPCOUNT(pvos_failed);
   1618 			pmap_interrupts_restore(msr);
   1619 			return ENOMEM;
   1620 		}
   1621 	}
   1622 
   1623 	pvo->pvo_vaddr = va;
   1624 	pvo->pvo_pmap = pm;
   1625 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1626 	if (flags & VM_PROT_EXECUTE) {
   1627 		PMAPCOUNT(exec_mappings);
   1628 		pvo_set_exec(pvo);
   1629 	}
   1630 	if (flags & PMAP_WIRED)
   1631 		pvo->pvo_vaddr |= PVO_WIRED;
   1632 	if (pvo_head != NULL) {
   1633 		pvo->pvo_vaddr |= PVO_MANAGED;
   1634 		PMAPCOUNT(mappings);
   1635 	} else {
   1636 		PMAPCOUNT(kernel_mappings);
   1637 	}
   1638 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1639 
   1640 	if (pvo_head != NULL)
   1641 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1642 	if (PVO_WIRED_P(pvo))
   1643 		pvo->pvo_pmap->pm_stats.wired_count++;
   1644 	pvo->pvo_pmap->pm_stats.resident_count++;
   1645 #if defined(DEBUG)
   1646 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1647 		DPRINTFN(PVOENTER,
   1648 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1649 		    pvo, pm, va, pa);
   1650 #endif
   1651 
   1652 	/*
   1653 	 * We hope this succeeds but it isn't required.
   1654 	 */
   1655 	pvoh = &pmap_pvo_table[ptegidx];
   1656 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1657 	if (i >= 0) {
   1658 		PVO_PTEGIDX_SET(pvo, i);
   1659 		PVO_WHERE(pvo, ENTER_INSERT);
   1660 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1661 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1662 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1663 
   1664 	} else {
   1665 		/*
   1666 		 * Since we didn't have room for this entry (which makes it
   1667 		 * and evicted entry), place it at the head of the list.
   1668 		 */
   1669 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1670 		PMAPCOUNT(ptes_evicted);
   1671 		pm->pm_evictions++;
   1672 		/*
   1673 		 * If this is a kernel page, make sure it's active.
   1674 		 */
   1675 		if (pm == pmap_kernel()) {
   1676 			i = pmap_pte_spill(pm, va, false);
   1677 			KASSERT(i);
   1678 		}
   1679 	}
   1680 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1681 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1682 	pmap_pvo_enter_depth--;
   1683 #endif
   1684 	pmap_interrupts_restore(msr);
   1685 	return 0;
   1686 }
   1687 
   1688 static void
   1689 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1690 {
   1691 	volatile struct pte *pt;
   1692 	int ptegidx;
   1693 
   1694 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1695 	if (++pmap_pvo_remove_depth > 1)
   1696 		panic("pmap_pvo_remove: called recursively!");
   1697 #endif
   1698 
   1699 	/*
   1700 	 * If we haven't been supplied the ptegidx, calculate it.
   1701 	 */
   1702 	if (pteidx == -1) {
   1703 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1704 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1705 	} else {
   1706 		ptegidx = pteidx >> 3;
   1707 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1708 			ptegidx ^= pmap_pteg_mask;
   1709 	}
   1710 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1711 
   1712 	/*
   1713 	 * If there is an active pte entry, we need to deactivate it
   1714 	 * (and save the ref & chg bits).
   1715 	 */
   1716 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1717 	if (pt != NULL) {
   1718 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1719 		PVO_WHERE(pvo, REMOVE);
   1720 		PVO_PTEGIDX_CLR(pvo);
   1721 		PMAPCOUNT(ptes_removed);
   1722 	} else {
   1723 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1724 		pvo->pvo_pmap->pm_evictions--;
   1725 	}
   1726 
   1727 	/*
   1728 	 * Account for executable mappings.
   1729 	 */
   1730 	if (PVO_EXECUTABLE_P(pvo))
   1731 		pvo_clear_exec(pvo);
   1732 
   1733 	/*
   1734 	 * Update our statistics.
   1735 	 */
   1736 	pvo->pvo_pmap->pm_stats.resident_count--;
   1737 	if (PVO_WIRED_P(pvo))
   1738 		pvo->pvo_pmap->pm_stats.wired_count--;
   1739 
   1740 	/*
   1741 	 * If the page is managed:
   1742 	 * Save the REF/CHG bits into their cache.
   1743 	 * Remove the PVO from the P/V list.
   1744 	 */
   1745 	if (PVO_MANAGED_P(pvo)) {
   1746 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1747 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1748 
   1749 		if (pg != NULL) {
   1750 			/*
   1751 			 * If this page was changed and it is mapped exec,
   1752 			 * invalidate it.
   1753 			 */
   1754 			if ((ptelo & PTE_CHG) &&
   1755 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1756 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1757 				if (LIST_EMPTY(pvoh)) {
   1758 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1759 					    "%#" _PRIxpa ": clear-exec]\n",
   1760 					    VM_PAGE_TO_PHYS(pg));
   1761 					pmap_attr_clear(pg, PTE_EXEC);
   1762 					PMAPCOUNT(exec_uncached_pvo_remove);
   1763 				} else {
   1764 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1765 					    "%#" _PRIxpa ": syncicache]\n",
   1766 					    VM_PAGE_TO_PHYS(pg));
   1767 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1768 					    PAGE_SIZE);
   1769 					PMAPCOUNT(exec_synced_pvo_remove);
   1770 				}
   1771 			}
   1772 
   1773 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1774 		}
   1775 		LIST_REMOVE(pvo, pvo_vlink);
   1776 		PMAPCOUNT(unmappings);
   1777 	} else {
   1778 		PMAPCOUNT(kernel_unmappings);
   1779 	}
   1780 
   1781 	/*
   1782 	 * Remove the PVO from its list and return it to the pool.
   1783 	 */
   1784 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1785 	if (pvol) {
   1786 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1787 	}
   1788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1789 	pmap_pvo_remove_depth--;
   1790 #endif
   1791 }
   1792 
   1793 void
   1794 pmap_pvo_free(struct pvo_entry *pvo)
   1795 {
   1796 
   1797 	pool_put(&pmap_pvo_pool, pvo);
   1798 }
   1799 
   1800 void
   1801 pmap_pvo_free_list(struct pvo_head *pvol)
   1802 {
   1803 	struct pvo_entry *pvo, *npvo;
   1804 
   1805 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1806 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1807 		LIST_REMOVE(pvo, pvo_vlink);
   1808 		pmap_pvo_free(pvo);
   1809 	}
   1810 }
   1811 
   1812 /*
   1813  * Mark a mapping as executable.
   1814  * If this is the first executable mapping in the segment,
   1815  * clear the noexec flag.
   1816  */
   1817 static void
   1818 pvo_set_exec(struct pvo_entry *pvo)
   1819 {
   1820 	struct pmap *pm = pvo->pvo_pmap;
   1821 
   1822 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1823 		return;
   1824 	}
   1825 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1826 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1827 	{
   1828 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1829 		if (pm->pm_exec[sr]++ == 0) {
   1830 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1831 		}
   1832 	}
   1833 #endif
   1834 }
   1835 
   1836 /*
   1837  * Mark a mapping as non-executable.
   1838  * If this was the last executable mapping in the segment,
   1839  * set the noexec flag.
   1840  */
   1841 static void
   1842 pvo_clear_exec(struct pvo_entry *pvo)
   1843 {
   1844 	struct pmap *pm = pvo->pvo_pmap;
   1845 
   1846 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1847 		return;
   1848 	}
   1849 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1850 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1851 	{
   1852 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1853 		if (--pm->pm_exec[sr] == 0) {
   1854 			pm->pm_sr[sr] |= SR_NOEXEC;
   1855 		}
   1856 	}
   1857 #endif
   1858 }
   1859 
   1860 /*
   1861  * Insert physical page at pa into the given pmap at virtual address va.
   1862  */
   1863 int
   1864 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1865 {
   1866 	struct mem_region *mp;
   1867 	struct pvo_head *pvo_head;
   1868 	struct vm_page *pg;
   1869 	register_t pte_lo;
   1870 	int error;
   1871 	u_int was_exec = 0;
   1872 
   1873 	PMAP_LOCK();
   1874 
   1875 	if (__predict_false(!pmap_initialized)) {
   1876 		pvo_head = NULL;
   1877 		pg = NULL;
   1878 		was_exec = PTE_EXEC;
   1879 
   1880 	} else {
   1881 		pvo_head = pa_to_pvoh(pa, &pg);
   1882 	}
   1883 
   1884 	DPRINTFN(ENTER,
   1885 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1886 	    pm, va, pa, prot, flags);
   1887 
   1888 	/*
   1889 	 * If this is a managed page, and it's the first reference to the
   1890 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1891 	 */
   1892 	if (pg != NULL)
   1893 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1894 
   1895 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1896 
   1897 	/*
   1898 	 * Assume the page is cache inhibited and access is guarded unless
   1899 	 * it's in our available memory array.  If it is in the memory array,
   1900 	 * assume it's in memory coherent memory.
   1901 	 */
   1902 	if (flags & PMAP_MD_PREFETCHABLE) {
   1903 		pte_lo = 0;
   1904 	} else
   1905 		pte_lo = PTE_G;
   1906 
   1907 	if ((flags & PMAP_NOCACHE) == 0) {
   1908 		for (mp = mem; mp->size; mp++) {
   1909 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1910 				pte_lo = PTE_M;
   1911 				break;
   1912 			}
   1913 		}
   1914 #ifdef MULTIPROCESSOR
   1915 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1916 			pte_lo = PTE_M;
   1917 #endif
   1918 	} else {
   1919 		pte_lo |= PTE_I;
   1920 	}
   1921 
   1922 	if (prot & VM_PROT_WRITE)
   1923 		pte_lo |= PTE_BW;
   1924 	else
   1925 		pte_lo |= PTE_BR;
   1926 
   1927 	/*
   1928 	 * If this was in response to a fault, "pre-fault" the PTE's
   1929 	 * changed/referenced bit appropriately.
   1930 	 */
   1931 	if (flags & VM_PROT_WRITE)
   1932 		pte_lo |= PTE_CHG;
   1933 	if (flags & VM_PROT_ALL)
   1934 		pte_lo |= PTE_REF;
   1935 
   1936 	/*
   1937 	 * We need to know if this page can be executable
   1938 	 */
   1939 	flags |= (prot & VM_PROT_EXECUTE);
   1940 
   1941 	/*
   1942 	 * Record mapping for later back-translation and pte spilling.
   1943 	 * This will overwrite any existing mapping.
   1944 	 */
   1945 	error = pmap_pvo_enter(pm, &pmap_pvo_pool, pvo_head, va, pa, pte_lo, flags);
   1946 
   1947 	/*
   1948 	 * Flush the real page from the instruction cache if this page is
   1949 	 * mapped executable and cacheable and has not been flushed since
   1950 	 * the last time it was modified.
   1951 	 */
   1952 	if (error == 0 &&
   1953             (flags & VM_PROT_EXECUTE) &&
   1954             (pte_lo & PTE_I) == 0 &&
   1955 	    was_exec == 0) {
   1956 		DPRINTFN(ENTER, " %s", "syncicache");
   1957 		PMAPCOUNT(exec_synced);
   1958 		pmap_syncicache(pa, PAGE_SIZE);
   1959 		if (pg != NULL) {
   1960 			pmap_attr_save(pg, PTE_EXEC);
   1961 			PMAPCOUNT(exec_cached);
   1962 #if defined(DEBUG) || defined(PMAPDEBUG)
   1963 			if (pmapdebug & PMAPDEBUG_ENTER)
   1964 				printf(" marked-as-exec");
   1965 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1966 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1967 				    VM_PAGE_TO_PHYS(pg));
   1968 #endif
   1969 		}
   1970 	}
   1971 
   1972 	DPRINTFN(ENTER, ": error=%d\n", error);
   1973 
   1974 	PMAP_UNLOCK();
   1975 
   1976 	return error;
   1977 }
   1978 
   1979 void
   1980 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1981 {
   1982 	struct mem_region *mp;
   1983 	register_t pte_lo;
   1984 	int error;
   1985 
   1986 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   1987 	if (va < VM_MIN_KERNEL_ADDRESS)
   1988 		panic("pmap_kenter_pa: attempt to enter "
   1989 		    "non-kernel address %#" _PRIxva "!", va);
   1990 #endif
   1991 
   1992 	DPRINTFN(KENTER,
   1993 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   1994 
   1995 	PMAP_LOCK();
   1996 
   1997 	/*
   1998 	 * Assume the page is cache inhibited and access is guarded unless
   1999 	 * it's in our available memory array.  If it is in the memory array,
   2000 	 * assume it's in memory coherent memory.
   2001 	 */
   2002 	pte_lo = PTE_IG;
   2003 	if ((flags & PMAP_NOCACHE) == 0) {
   2004 		for (mp = mem; mp->size; mp++) {
   2005 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2006 				pte_lo = PTE_M;
   2007 				break;
   2008 			}
   2009 		}
   2010 #ifdef MULTIPROCESSOR
   2011 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2012 			pte_lo = PTE_M;
   2013 #endif
   2014 	}
   2015 
   2016 	if (prot & VM_PROT_WRITE)
   2017 		pte_lo |= PTE_BW;
   2018 	else
   2019 		pte_lo |= PTE_BR;
   2020 
   2021 	/*
   2022 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2023 	 */
   2024 	error = pmap_pvo_enter(pmap_kernel(), &pmap_pvo_pool,
   2025 	    NULL, va, pa, pte_lo, prot|PMAP_WIRED);
   2026 
   2027 	if (error != 0)
   2028 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2029 		      va, pa, error);
   2030 
   2031 	PMAP_UNLOCK();
   2032 }
   2033 
   2034 void
   2035 pmap_kremove(vaddr_t va, vsize_t len)
   2036 {
   2037 	if (va < VM_MIN_KERNEL_ADDRESS)
   2038 		panic("pmap_kremove: attempt to remove "
   2039 		    "non-kernel address %#" _PRIxva "!", va);
   2040 
   2041 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2042 	pmap_remove(pmap_kernel(), va, va + len);
   2043 }
   2044 
   2045 /*
   2046  * Remove the given range of mapping entries.
   2047  */
   2048 void
   2049 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2050 {
   2051 	struct pvo_head pvol;
   2052 	struct pvo_entry *pvo;
   2053 	register_t msr;
   2054 	int pteidx;
   2055 
   2056 	PMAP_LOCK();
   2057 	LIST_INIT(&pvol);
   2058 	msr = pmap_interrupts_off();
   2059 	for (; va < endva; va += PAGE_SIZE) {
   2060 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2061 		if (pvo != NULL) {
   2062 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2063 		}
   2064 	}
   2065 	pmap_interrupts_restore(msr);
   2066 	pmap_pvo_free_list(&pvol);
   2067 	PMAP_UNLOCK();
   2068 }
   2069 
   2070 #if defined(PMAP_OEA)
   2071 #ifdef PPC_OEA601
   2072 bool
   2073 pmap_extract_ioseg601(vaddr_t va, paddr_t *pap)
   2074 {
   2075 	if ((MFPVR() >> 16) != MPC601)
   2076 		return false;
   2077 
   2078 	const register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2079 
   2080 	if (SR601_VALID_P(sr) && SR601_PA_MATCH_P(sr, va)) {
   2081 		if (pap)
   2082 			*pap = va;
   2083 		return true;
   2084 	}
   2085 	return false;
   2086 }
   2087 
   2088 static bool
   2089 pmap_extract_battable601(vaddr_t va, paddr_t *pap)
   2090 {
   2091 	const register_t batu = battable[va >> 23].batu;
   2092 	const register_t batl = battable[va >> 23].batl;
   2093 
   2094 	if (BAT601_VALID_P(batl) && BAT601_VA_MATCH_P(batu, batl, va)) {
   2095 		const register_t mask =
   2096 		    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2097 		if (pap)
   2098 			*pap = (batl & mask) | (va & ~mask);
   2099 		return true;
   2100 	}
   2101 	return false;
   2102 }
   2103 #endif /* PPC_OEA601 */
   2104 
   2105 bool
   2106 pmap_extract_battable(vaddr_t va, paddr_t *pap)
   2107 {
   2108 #ifdef PPC_OEA601
   2109 	if ((MFPVR() >> 16) == MPC601)
   2110 		return pmap_extract_battable601(va, pap);
   2111 #endif /* PPC_OEA601 */
   2112 
   2113 	if (oeacpufeat & OEACPU_NOBAT)
   2114 		return false;
   2115 
   2116 	const register_t batu = battable[BAT_VA2IDX(va)].batu;
   2117 
   2118 	if (BAT_VALID_P(batu, 0) && BAT_VA_MATCH_P(batu, va)) {
   2119 		const register_t batl = battable[BAT_VA2IDX(va)].batl;
   2120 		const register_t mask =
   2121 		    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2122 		if (pap)
   2123 			*pap = (batl & mask) | (va & ~mask);
   2124 		return true;
   2125 	}
   2126 	return false;
   2127 }
   2128 #endif /* PMAP_OEA */
   2129 
   2130 /*
   2131  * Get the physical page address for the given pmap/virtual address.
   2132  */
   2133 bool
   2134 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2135 {
   2136 	struct pvo_entry *pvo;
   2137 	register_t msr;
   2138 
   2139 	PMAP_LOCK();
   2140 
   2141 	/*
   2142 	 * If this is the kernel pmap, check the battable and I/O
   2143 	 * segments for a hit.  This is done only for regions outside
   2144 	 * VM_MIN_KERNEL_ADDRESS-VM_MAX_KERNEL_ADDRESS.
   2145 	 *
   2146 	 * Be careful when checking VM_MAX_KERNEL_ADDRESS; you don't
   2147 	 * want to wrap around to 0.
   2148 	 */
   2149 	if (pm == pmap_kernel() &&
   2150 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2151 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2152 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2153 #if defined(PMAP_OEA)
   2154 #ifdef PPC_OEA601
   2155 		if (pmap_extract_ioseg601(va, pap)) {
   2156 			PMAP_UNLOCK();
   2157 			return true;
   2158 		}
   2159 #endif /* PPC_OEA601 */
   2160 		if (pmap_extract_battable(va, pap)) {
   2161 			PMAP_UNLOCK();
   2162 			return true;
   2163 		}
   2164 		/*
   2165 		 * We still check the HTAB...
   2166 		 */
   2167 #elif defined(PMAP_OEA64_BRIDGE)
   2168 		if (va < PMAP_DIRECT_MAPPED_LEN) {
   2169 			if (pap)
   2170 				*pap = va;
   2171 			PMAP_UNLOCK();
   2172 			return true;
   2173 		}
   2174 		/*
   2175 		 * We still check the HTAB...
   2176 		 */
   2177 #elif defined(PMAP_OEA64)
   2178 #error PPC_OEA64 not supported
   2179 #endif /* PPC_OEA */
   2180 	}
   2181 
   2182 	msr = pmap_interrupts_off();
   2183 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2184 	if (pvo != NULL) {
   2185 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2186 		if (pap)
   2187 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2188 			    | (va & ADDR_POFF);
   2189 	}
   2190 	pmap_interrupts_restore(msr);
   2191 	PMAP_UNLOCK();
   2192 	return pvo != NULL;
   2193 }
   2194 
   2195 /*
   2196  * Lower the protection on the specified range of this pmap.
   2197  */
   2198 void
   2199 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2200 {
   2201 	struct pvo_entry *pvo;
   2202 	volatile struct pte *pt;
   2203 	register_t msr;
   2204 	int pteidx;
   2205 
   2206 	/*
   2207 	 * Since this routine only downgrades protection, we should
   2208 	 * always be called with at least one bit not set.
   2209 	 */
   2210 	KASSERT(prot != VM_PROT_ALL);
   2211 
   2212 	/*
   2213 	 * If there is no protection, this is equivalent to
   2214 	 * remove the pmap from the pmap.
   2215 	 */
   2216 	if ((prot & VM_PROT_READ) == 0) {
   2217 		pmap_remove(pm, va, endva);
   2218 		return;
   2219 	}
   2220 
   2221 	PMAP_LOCK();
   2222 
   2223 	msr = pmap_interrupts_off();
   2224 	for (; va < endva; va += PAGE_SIZE) {
   2225 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2226 		if (pvo == NULL)
   2227 			continue;
   2228 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2229 
   2230 		/*
   2231 		 * Revoke executable if asked to do so.
   2232 		 */
   2233 		if ((prot & VM_PROT_EXECUTE) == 0)
   2234 			pvo_clear_exec(pvo);
   2235 
   2236 #if 0
   2237 		/*
   2238 		 * If the page is already read-only, no change
   2239 		 * needs to be made.
   2240 		 */
   2241 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2242 			continue;
   2243 #endif
   2244 		/*
   2245 		 * Grab the PTE pointer before we diddle with
   2246 		 * the cached PTE copy.
   2247 		 */
   2248 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2249 		/*
   2250 		 * Change the protection of the page.
   2251 		 */
   2252 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2253 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2254 
   2255 		/*
   2256 		 * If the PVO is in the page table, update
   2257 		 * that pte at well.
   2258 		 */
   2259 		if (pt != NULL) {
   2260 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2261 			PVO_WHERE(pvo, PMAP_PROTECT);
   2262 			PMAPCOUNT(ptes_changed);
   2263 		}
   2264 
   2265 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2266 	}
   2267 	pmap_interrupts_restore(msr);
   2268 	PMAP_UNLOCK();
   2269 }
   2270 
   2271 void
   2272 pmap_unwire(pmap_t pm, vaddr_t va)
   2273 {
   2274 	struct pvo_entry *pvo;
   2275 	register_t msr;
   2276 
   2277 	PMAP_LOCK();
   2278 	msr = pmap_interrupts_off();
   2279 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2280 	if (pvo != NULL) {
   2281 		if (PVO_WIRED_P(pvo)) {
   2282 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2283 			pm->pm_stats.wired_count--;
   2284 		}
   2285 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2286 	}
   2287 	pmap_interrupts_restore(msr);
   2288 	PMAP_UNLOCK();
   2289 }
   2290 
   2291 static void
   2292 pmap_pp_protect(struct pmap_page *pp, paddr_t pa, vm_prot_t prot)
   2293 {
   2294 	struct pvo_head *pvo_head, pvol;
   2295 	struct pvo_entry *pvo, *next_pvo;
   2296 	volatile struct pte *pt;
   2297 	register_t msr;
   2298 
   2299 	PMAP_LOCK();
   2300 
   2301 	KASSERT(prot != VM_PROT_ALL);
   2302 	LIST_INIT(&pvol);
   2303 	msr = pmap_interrupts_off();
   2304 
   2305 	/*
   2306 	 * When UVM reuses a page, it does a pmap_page_protect with
   2307 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2308 	 * since we know the page will have different contents.
   2309 	 */
   2310 	if ((prot & VM_PROT_READ) == 0) {
   2311 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2312 		    pa);
   2313 		if (pmap_pp_attr_fetch(pp) & PTE_EXEC) {
   2314 			PMAPCOUNT(exec_uncached_page_protect);
   2315 			pmap_pp_attr_clear(pp, PTE_EXEC);
   2316 		}
   2317 	}
   2318 
   2319 	pvo_head = &pp->pp_pvoh;
   2320 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2321 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2322 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2323 
   2324 		/*
   2325 		 * Downgrading to no mapping at all, we just remove the entry.
   2326 		 */
   2327 		if ((prot & VM_PROT_READ) == 0) {
   2328 			pmap_pvo_remove(pvo, -1, &pvol);
   2329 			continue;
   2330 		}
   2331 
   2332 		/*
   2333 		 * If EXEC permission is being revoked, just clear the
   2334 		 * flag in the PVO.
   2335 		 */
   2336 		if ((prot & VM_PROT_EXECUTE) == 0)
   2337 			pvo_clear_exec(pvo);
   2338 
   2339 		/*
   2340 		 * If this entry is already RO, don't diddle with the
   2341 		 * page table.
   2342 		 */
   2343 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2344 			PMAP_PVO_CHECK(pvo);
   2345 			continue;
   2346 		}
   2347 
   2348 		/*
   2349 		 * Grab the PTE before the we diddle the bits so
   2350 		 * pvo_to_pte can verify the pte contents are as
   2351 		 * expected.
   2352 		 */
   2353 		pt = pmap_pvo_to_pte(pvo, -1);
   2354 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2355 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2356 		if (pt != NULL) {
   2357 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2358 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2359 			PMAPCOUNT(ptes_changed);
   2360 		}
   2361 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2362 	}
   2363 	pmap_interrupts_restore(msr);
   2364 	pmap_pvo_free_list(&pvol);
   2365 
   2366 	PMAP_UNLOCK();
   2367 }
   2368 
   2369 /*
   2370  * Lower the protection on the specified physical page.
   2371  */
   2372 void
   2373 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2374 {
   2375 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2376 
   2377 	pmap_pp_protect(&md->mdpg_pp, VM_PAGE_TO_PHYS(pg), prot);
   2378 }
   2379 
   2380 /*
   2381  * Lower the protection on the physical page at the specified physical
   2382  * address, which may not be managed and so may not have a struct
   2383  * vm_page.
   2384  */
   2385 void
   2386 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   2387 {
   2388 	struct pmap_page *pp;
   2389 
   2390 	if ((pp = pmap_pv_tracked(pa)) == NULL)
   2391 		return;
   2392 	pmap_pp_protect(pp, pa, prot);
   2393 }
   2394 
   2395 /*
   2396  * Activate the address space for the specified process.  If the process
   2397  * is the current process, load the new MMU context.
   2398  */
   2399 void
   2400 pmap_activate(struct lwp *l)
   2401 {
   2402 	struct pcb *pcb = lwp_getpcb(l);
   2403 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2404 
   2405 	DPRINTFN(ACTIVATE,
   2406 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2407 
   2408 	/*
   2409 	 * XXX Normally performed in cpu_lwp_fork().
   2410 	 */
   2411 	pcb->pcb_pm = pmap;
   2412 
   2413 	/*
   2414 	* In theory, the SR registers need only be valid on return
   2415 	* to user space wait to do them there.
   2416 	*/
   2417 	if (l == curlwp) {
   2418 		/* Store pointer to new current pmap. */
   2419 		curpm = pmap;
   2420 	}
   2421 }
   2422 
   2423 /*
   2424  * Deactivate the specified process's address space.
   2425  */
   2426 void
   2427 pmap_deactivate(struct lwp *l)
   2428 {
   2429 }
   2430 
   2431 bool
   2432 pmap_query_bit(struct vm_page *pg, int ptebit)
   2433 {
   2434 	struct pvo_entry *pvo;
   2435 	volatile struct pte *pt;
   2436 	register_t msr;
   2437 
   2438 	PMAP_LOCK();
   2439 
   2440 	if (pmap_attr_fetch(pg) & ptebit) {
   2441 		PMAP_UNLOCK();
   2442 		return true;
   2443 	}
   2444 
   2445 	msr = pmap_interrupts_off();
   2446 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2447 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2448 		/*
   2449 		 * See if we saved the bit off.  If so cache, it and return
   2450 		 * success.
   2451 		 */
   2452 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2453 			pmap_attr_save(pg, ptebit);
   2454 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2455 			pmap_interrupts_restore(msr);
   2456 			PMAP_UNLOCK();
   2457 			return true;
   2458 		}
   2459 	}
   2460 	/*
   2461 	 * No luck, now go thru the hard part of looking at the ptes
   2462 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2463 	 * to the PTEs.
   2464 	 */
   2465 	SYNC();
   2466 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2467 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2468 		/*
   2469 		 * See if this pvo have a valid PTE.  If so, fetch the
   2470 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2471 		 * ptebit is set, cache, it and return success.
   2472 		 */
   2473 		pt = pmap_pvo_to_pte(pvo, -1);
   2474 		if (pt != NULL) {
   2475 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2476 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2477 				pmap_attr_save(pg, ptebit);
   2478 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2479 				pmap_interrupts_restore(msr);
   2480 				PMAP_UNLOCK();
   2481 				return true;
   2482 			}
   2483 		}
   2484 	}
   2485 	pmap_interrupts_restore(msr);
   2486 	PMAP_UNLOCK();
   2487 	return false;
   2488 }
   2489 
   2490 bool
   2491 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2492 {
   2493 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2494 	struct pvo_entry *pvo;
   2495 	volatile struct pte *pt;
   2496 	register_t msr;
   2497 	int rv = 0;
   2498 
   2499 	PMAP_LOCK();
   2500 	msr = pmap_interrupts_off();
   2501 
   2502 	/*
   2503 	 * Fetch the cache value
   2504 	 */
   2505 	rv |= pmap_attr_fetch(pg);
   2506 
   2507 	/*
   2508 	 * Clear the cached value.
   2509 	 */
   2510 	pmap_attr_clear(pg, ptebit);
   2511 
   2512 	/*
   2513 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2514 	 * can reset the right ones).  Note that since the pvo entries and
   2515 	 * list heads are accessed via BAT0 and are never placed in the
   2516 	 * page table, we don't have to worry about further accesses setting
   2517 	 * the REF/CHG bits.
   2518 	 */
   2519 	SYNC();
   2520 
   2521 	/*
   2522 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2523 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2524 	 */
   2525 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2526 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2527 		pt = pmap_pvo_to_pte(pvo, -1);
   2528 		if (pt != NULL) {
   2529 			/*
   2530 			 * Only sync the PTE if the bit we are looking
   2531 			 * for is not already set.
   2532 			 */
   2533 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2534 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2535 			/*
   2536 			 * If the bit we are looking for was already set,
   2537 			 * clear that bit in the pte.
   2538 			 */
   2539 			if (pvo->pvo_pte.pte_lo & ptebit)
   2540 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2541 		}
   2542 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2543 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2544 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2545 	}
   2546 	pmap_interrupts_restore(msr);
   2547 
   2548 	/*
   2549 	 * If we are clearing the modify bit and this page was marked EXEC
   2550 	 * and the user of the page thinks the page was modified, then we
   2551 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2552 	 * bit if it's not mapped.  The page itself might not have the CHG
   2553 	 * bit set if the modification was done via DMA to the page.
   2554 	 */
   2555 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2556 		if (LIST_EMPTY(pvoh)) {
   2557 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2558 			    VM_PAGE_TO_PHYS(pg));
   2559 			pmap_attr_clear(pg, PTE_EXEC);
   2560 			PMAPCOUNT(exec_uncached_clear_modify);
   2561 		} else {
   2562 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2563 			    VM_PAGE_TO_PHYS(pg));
   2564 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2565 			PMAPCOUNT(exec_synced_clear_modify);
   2566 		}
   2567 	}
   2568 	PMAP_UNLOCK();
   2569 	return (rv & ptebit) != 0;
   2570 }
   2571 
   2572 void
   2573 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2574 {
   2575 	struct pvo_entry *pvo;
   2576 	size_t offset = va & ADDR_POFF;
   2577 	int s;
   2578 
   2579 	PMAP_LOCK();
   2580 	s = splvm();
   2581 	while (len > 0) {
   2582 		size_t seglen = PAGE_SIZE - offset;
   2583 		if (seglen > len)
   2584 			seglen = len;
   2585 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2586 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2587 			pmap_syncicache(
   2588 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2589 			PMAP_PVO_CHECK(pvo);
   2590 		}
   2591 		va += seglen;
   2592 		len -= seglen;
   2593 		offset = 0;
   2594 	}
   2595 	splx(s);
   2596 	PMAP_UNLOCK();
   2597 }
   2598 
   2599 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2600 void
   2601 pmap_pte_print(volatile struct pte *pt)
   2602 {
   2603 	printf("PTE %p: ", pt);
   2604 
   2605 #if defined(PMAP_OEA)
   2606 	/* High word: */
   2607 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2608 #else
   2609 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2610 #endif /* PMAP_OEA */
   2611 
   2612 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2613 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2614 
   2615 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2616 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2617 	    pt->pte_hi & PTE_API);
   2618 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2619 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2620 #else
   2621 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2622 #endif /* PMAP_OEA */
   2623 
   2624 	/* Low word: */
   2625 #if defined (PMAP_OEA)
   2626 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2627 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2628 #else
   2629 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2630 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2631 #endif
   2632 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2633 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2634 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2635 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2636 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2637 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2638 	switch (pt->pte_lo & PTE_PP) {
   2639 	case PTE_BR: printf("br]\n"); break;
   2640 	case PTE_BW: printf("bw]\n"); break;
   2641 	case PTE_SO: printf("so]\n"); break;
   2642 	case PTE_SW: printf("sw]\n"); break;
   2643 	}
   2644 }
   2645 #endif
   2646 
   2647 #if defined(DDB)
   2648 void
   2649 pmap_pteg_check(void)
   2650 {
   2651 	volatile struct pte *pt;
   2652 	int i;
   2653 	int ptegidx;
   2654 	u_int p_valid = 0;
   2655 	u_int s_valid = 0;
   2656 	u_int invalid = 0;
   2657 
   2658 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2659 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2660 			if (pt->pte_hi & PTE_VALID) {
   2661 				if (pt->pte_hi & PTE_HID)
   2662 					s_valid++;
   2663 				else
   2664 				{
   2665 					p_valid++;
   2666 				}
   2667 			} else
   2668 				invalid++;
   2669 		}
   2670 	}
   2671 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2672 		p_valid, p_valid, s_valid, s_valid,
   2673 		invalid, invalid);
   2674 }
   2675 
   2676 void
   2677 pmap_print_mmuregs(void)
   2678 {
   2679 	int i;
   2680 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2681 	u_int cpuvers;
   2682 #endif
   2683 #ifndef PMAP_OEA64
   2684 	vaddr_t addr;
   2685 	register_t soft_sr[16];
   2686 #endif
   2687 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2688 	struct bat soft_ibat[4];
   2689 	struct bat soft_dbat[4];
   2690 #endif
   2691 	paddr_t sdr1;
   2692 
   2693 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2694 	cpuvers = MFPVR() >> 16;
   2695 #endif
   2696 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2697 #ifndef PMAP_OEA64
   2698 	addr = 0;
   2699 	for (i = 0; i < 16; i++) {
   2700 		soft_sr[i] = MFSRIN(addr);
   2701 		addr += (1 << ADDR_SR_SHFT);
   2702 	}
   2703 #endif
   2704 
   2705 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2706 	/* read iBAT (601: uBAT) registers */
   2707 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2708 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2709 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2710 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2711 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2712 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2713 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2714 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2715 
   2716 
   2717 	if (cpuvers != MPC601) {
   2718 		/* read dBAT registers */
   2719 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2720 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2721 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2722 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2723 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2724 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2725 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2726 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2727 	}
   2728 #endif
   2729 
   2730 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2731 #ifndef PMAP_OEA64
   2732 	printf("SR[]:\t");
   2733 	for (i = 0; i < 4; i++)
   2734 		printf("0x%08lx,   ", soft_sr[i]);
   2735 	printf("\n\t");
   2736 	for ( ; i < 8; i++)
   2737 		printf("0x%08lx,   ", soft_sr[i]);
   2738 	printf("\n\t");
   2739 	for ( ; i < 12; i++)
   2740 		printf("0x%08lx,   ", soft_sr[i]);
   2741 	printf("\n\t");
   2742 	for ( ; i < 16; i++)
   2743 		printf("0x%08lx,   ", soft_sr[i]);
   2744 	printf("\n");
   2745 #endif
   2746 
   2747 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2748 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2749 	for (i = 0; i < 4; i++) {
   2750 		printf("0x%08lx 0x%08lx, ",
   2751 			soft_ibat[i].batu, soft_ibat[i].batl);
   2752 		if (i == 1)
   2753 			printf("\n\t");
   2754 	}
   2755 	if (cpuvers != MPC601) {
   2756 		printf("\ndBAT[]:\t");
   2757 		for (i = 0; i < 4; i++) {
   2758 			printf("0x%08lx 0x%08lx, ",
   2759 				soft_dbat[i].batu, soft_dbat[i].batl);
   2760 			if (i == 1)
   2761 				printf("\n\t");
   2762 		}
   2763 	}
   2764 	printf("\n");
   2765 #endif /* PMAP_OEA... */
   2766 }
   2767 
   2768 void
   2769 pmap_print_pte(pmap_t pm, vaddr_t va)
   2770 {
   2771 	struct pvo_entry *pvo;
   2772 	volatile struct pte *pt;
   2773 	int pteidx;
   2774 
   2775 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2776 	if (pvo != NULL) {
   2777 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2778 		if (pt != NULL) {
   2779 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2780 				va, pt,
   2781 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2782 				pt->pte_hi, pt->pte_lo);
   2783 		} else {
   2784 			printf("No valid PTE found\n");
   2785 		}
   2786 	} else {
   2787 		printf("Address not in pmap\n");
   2788 	}
   2789 }
   2790 
   2791 void
   2792 pmap_pteg_dist(void)
   2793 {
   2794 	struct pvo_entry *pvo;
   2795 	int ptegidx;
   2796 	int depth;
   2797 	int max_depth = 0;
   2798 	unsigned int depths[64];
   2799 
   2800 	memset(depths, 0, sizeof(depths));
   2801 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2802 		depth = 0;
   2803 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2804 			depth++;
   2805 		}
   2806 		if (depth > max_depth)
   2807 			max_depth = depth;
   2808 		if (depth > 63)
   2809 			depth = 63;
   2810 		depths[depth]++;
   2811 	}
   2812 
   2813 	for (depth = 0; depth < 64; depth++) {
   2814 		printf("  [%2d]: %8u", depth, depths[depth]);
   2815 		if ((depth & 3) == 3)
   2816 			printf("\n");
   2817 		if (depth == max_depth)
   2818 			break;
   2819 	}
   2820 	if ((depth & 3) != 3)
   2821 		printf("\n");
   2822 	printf("Max depth found was %d\n", max_depth);
   2823 }
   2824 #endif /* DEBUG */
   2825 
   2826 #if defined(PMAPCHECK) || defined(DEBUG)
   2827 void
   2828 pmap_pvo_verify(void)
   2829 {
   2830 	int ptegidx;
   2831 	int s;
   2832 
   2833 	s = splvm();
   2834 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2835 		struct pvo_entry *pvo;
   2836 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2837 			if ((uintptr_t) pvo >= PMAP_DIRECT_MAPPED_LEN)
   2838 				panic("pmap_pvo_verify: invalid pvo %p "
   2839 				    "on list %#x", pvo, ptegidx);
   2840 			pmap_pvo_check(pvo);
   2841 		}
   2842 	}
   2843 	splx(s);
   2844 }
   2845 #endif /* PMAPCHECK */
   2846 
   2847 /*
   2848  * Queue for unmanaged pages, used before uvm.page_init_done.
   2849  * Reuse when pool shortage; see pmap_pool_alloc() below.
   2850  */
   2851 struct pup {
   2852 	SIMPLEQ_ENTRY(pup) pup_link;
   2853 };
   2854 SIMPLEQ_HEAD(pup_head, pup);
   2855 static struct pup_head pup_head = SIMPLEQ_HEAD_INITIALIZER(pup_head);
   2856 
   2857 static struct pup *
   2858 pmap_alloc_unmanaged(void)
   2859 {
   2860 	struct pup *pup;
   2861 	register_t msr;
   2862 
   2863 	PMAP_LOCK();
   2864 	msr = pmap_interrupts_off();
   2865 	pup = SIMPLEQ_FIRST(&pup_head);
   2866 	if (pup != NULL)
   2867 		SIMPLEQ_REMOVE_HEAD(&pup_head, pup_link);
   2868 	pmap_interrupts_restore(msr);
   2869 	PMAP_UNLOCK();
   2870 	return pup;
   2871 }
   2872 
   2873 static void
   2874 pmap_free_unmanaged(struct pup *pup)
   2875 {
   2876 	register_t msr;
   2877 
   2878 	PMAP_LOCK();
   2879 	msr = pmap_interrupts_off();
   2880 	SIMPLEQ_INSERT_HEAD(&pup_head, pup, pup_link);
   2881 	pmap_interrupts_restore(msr);
   2882 	PMAP_UNLOCK();
   2883 }
   2884 
   2885 void *
   2886 pmap_pool_alloc(struct pool *pp, int flags)
   2887 {
   2888 	struct vm_page *pg;
   2889 	paddr_t pa;
   2890 
   2891 	if (__predict_false(!uvm.page_init_done))
   2892 		return (void *)uvm_pageboot_alloc(PAGE_SIZE);
   2893 
   2894  retry:
   2895 	pg = uvm_pagealloc_strat(NULL /*obj*/, 0 /*off*/, NULL /*anon*/,
   2896 	    UVM_PGA_USERESERVE /*flags*/, UVM_PGA_STRAT_ONLY /*strat*/,
   2897 	    VM_FREELIST_DIRECT_MAPPED /*free_list*/);
   2898 	if (__predict_false(pg == NULL)) {
   2899 		void *va = pmap_alloc_unmanaged();
   2900 		if (va != NULL)
   2901 			return va;
   2902 
   2903 		if ((flags & PR_WAITOK) == 0)
   2904 			return NULL;
   2905 		uvm_wait("plpg");
   2906 		goto retry;
   2907 	}
   2908 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2909 	pa = VM_PAGE_TO_PHYS(pg);
   2910 	return (void *)(uintptr_t)pa;
   2911 }
   2912 
   2913 void
   2914 pmap_pool_free(struct pool *pp, void *va)
   2915 {
   2916 	struct vm_page *pg;
   2917 
   2918 	pg = PHYS_TO_VM_PAGE((paddr_t)va);
   2919 	if (__predict_false(pg == NULL)) {
   2920 		pmap_free_unmanaged(va);
   2921 		return;
   2922 	}
   2923 	uvm_pagefree(pg);
   2924 }
   2925 
   2926 /*
   2927  * This routine in bootstraping to steal to-be-managed memory (which will
   2928  * then be unmanaged).  We use it to grab from the first PMAP_DIRECT_MAPPED_LEN
   2929  * for our pmap needs and above it for other stuff.
   2930  */
   2931 vaddr_t
   2932 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2933 {
   2934 	vsize_t size;
   2935 	vaddr_t va;
   2936 	paddr_t start, end, pa = 0;
   2937 	int npgs, freelist;
   2938 	uvm_physseg_t bank;
   2939 
   2940 	if (uvm.page_init_done == true)
   2941 		panic("pmap_steal_memory: called _after_ bootstrap");
   2942 
   2943 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2944 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2945 
   2946 	size = round_page(vsize);
   2947 	npgs = atop(size);
   2948 
   2949 	/*
   2950 	 * PA 0 will never be among those given to UVM so we can use it
   2951 	 * to indicate we couldn't steal any memory.
   2952 	 */
   2953 
   2954 	for (bank = uvm_physseg_get_first();
   2955 	     uvm_physseg_valid_p(bank);
   2956 	     bank = uvm_physseg_get_next(bank)) {
   2957 
   2958 		freelist = uvm_physseg_get_free_list(bank);
   2959 		start = uvm_physseg_get_start(bank);
   2960 		end = uvm_physseg_get_end(bank);
   2961 
   2962 		if (freelist == VM_FREELIST_DIRECT_MAPPED &&
   2963 		    (end - start) >= npgs) {
   2964 			pa = ptoa(start);
   2965 			break;
   2966 		}
   2967 	}
   2968 
   2969 	if (pa == 0)
   2970 		panic("pmap_steal_memory: no approriate memory to steal!");
   2971 
   2972 	uvm_physseg_unplug(start, npgs);
   2973 
   2974 	va = (vaddr_t) pa;
   2975 	memset((void *) va, 0, size);
   2976 	pmap_pages_stolen += npgs;
   2977 #ifdef DEBUG
   2978 	if (pmapdebug && npgs > 1) {
   2979 		u_int cnt = 0;
   2980 	for (bank = uvm_physseg_get_first();
   2981 	     uvm_physseg_valid_p(bank);
   2982 	     bank = uvm_physseg_get_next(bank)) {
   2983 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
   2984 		}
   2985 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2986 		    npgs, pmap_pages_stolen, cnt);
   2987 	}
   2988 #endif
   2989 
   2990 	return va;
   2991 }
   2992 
   2993 /*
   2994  * Find a chunk of memory with right size and alignment.
   2995  */
   2996 paddr_t
   2997 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2998 {
   2999 	struct mem_region *mp;
   3000 	paddr_t s, e;
   3001 	int i, j;
   3002 
   3003 	size = round_page(size);
   3004 
   3005 	DPRINTFN(BOOT,
   3006 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   3007 	    size, alignment, at_end);
   3008 
   3009 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   3010 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   3011 		    alignment);
   3012 
   3013 	if (at_end) {
   3014 		if (alignment != PAGE_SIZE)
   3015 			panic("pmap_boot_find_memory: invalid ending "
   3016 			    "alignment %#" _PRIxpa, alignment);
   3017 
   3018 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3019 			s = mp->start + mp->size - size;
   3020 			if (s >= mp->start && mp->size >= size) {
   3021 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3022 				DPRINTFN(BOOT,
   3023 				    "pmap_boot_find_memory: b-avail[%d] start "
   3024 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3025 				     mp->start, mp->size);
   3026 				mp->size -= size;
   3027 				DPRINTFN(BOOT,
   3028 				    "pmap_boot_find_memory: a-avail[%d] start "
   3029 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3030 				     mp->start, mp->size);
   3031 				return s;
   3032 			}
   3033 		}
   3034 		panic("pmap_boot_find_memory: no available memory");
   3035 	}
   3036 
   3037 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3038 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3039 		e = s + size;
   3040 
   3041 		/*
   3042 		 * Is the calculated region entirely within the region?
   3043 		 */
   3044 		if (s < mp->start || e > mp->start + mp->size)
   3045 			continue;
   3046 
   3047 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3048 		if (s == mp->start) {
   3049 			/*
   3050 			 * If the block starts at the beginning of region,
   3051 			 * adjust the size & start. (the region may now be
   3052 			 * zero in length)
   3053 			 */
   3054 			DPRINTFN(BOOT,
   3055 			    "pmap_boot_find_memory: b-avail[%d] start "
   3056 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3057 			mp->start += size;
   3058 			mp->size -= size;
   3059 			DPRINTFN(BOOT,
   3060 			    "pmap_boot_find_memory: a-avail[%d] start "
   3061 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3062 		} else if (e == mp->start + mp->size) {
   3063 			/*
   3064 			 * If the block starts at the beginning of region,
   3065 			 * adjust only the size.
   3066 			 */
   3067 			DPRINTFN(BOOT,
   3068 			    "pmap_boot_find_memory: b-avail[%d] start "
   3069 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3070 			mp->size -= size;
   3071 			DPRINTFN(BOOT,
   3072 			    "pmap_boot_find_memory: a-avail[%d] start "
   3073 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3074 		} else {
   3075 			/*
   3076 			 * Block is in the middle of the region, so we
   3077 			 * have to split it in two.
   3078 			 */
   3079 			for (j = avail_cnt; j > i + 1; j--) {
   3080 				avail[j] = avail[j-1];
   3081 			}
   3082 			DPRINTFN(BOOT,
   3083 			    "pmap_boot_find_memory: b-avail[%d] start "
   3084 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3085 			mp[1].start = e;
   3086 			mp[1].size = mp[0].start + mp[0].size - e;
   3087 			mp[0].size = s - mp[0].start;
   3088 			avail_cnt++;
   3089 			for (; i < avail_cnt; i++) {
   3090 				DPRINTFN(BOOT,
   3091 				    "pmap_boot_find_memory: a-avail[%d] "
   3092 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3093 				     avail[i].start, avail[i].size);
   3094 			}
   3095 		}
   3096 		KASSERT(s == (uintptr_t) s);
   3097 		return s;
   3098 	}
   3099 	panic("pmap_boot_find_memory: not enough memory for "
   3100 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3101 }
   3102 
   3103 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3104 #if defined (PMAP_OEA64_BRIDGE)
   3105 int
   3106 pmap_setup_segment0_map(int use_large_pages, ...)
   3107 {
   3108     vaddr_t va, va_end;
   3109 
   3110     register_t pte_lo = 0x0;
   3111     int ptegidx = 0;
   3112     struct pte pte;
   3113     va_list ap;
   3114 
   3115     /* Coherent + Supervisor RW, no user access */
   3116     pte_lo = PTE_M;
   3117 
   3118     /* XXXSL
   3119      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3120      * these have to take priority.
   3121      */
   3122     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3123         ptegidx = va_to_pteg(pmap_kernel(), va);
   3124         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3125         (void)pmap_pte_insert(ptegidx, &pte);
   3126     }
   3127 
   3128     va_start(ap, use_large_pages);
   3129     while (1) {
   3130         paddr_t pa;
   3131         size_t size;
   3132 
   3133         va = va_arg(ap, vaddr_t);
   3134 
   3135         if (va == 0)
   3136             break;
   3137 
   3138         pa = va_arg(ap, paddr_t);
   3139         size = va_arg(ap, size_t);
   3140 
   3141         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3142 #if 0
   3143 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3144 #endif
   3145             ptegidx = va_to_pteg(pmap_kernel(), va);
   3146             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3147             (void)pmap_pte_insert(ptegidx, &pte);
   3148         }
   3149     }
   3150     va_end(ap);
   3151 
   3152     TLBSYNC();
   3153     SYNC();
   3154     return (0);
   3155 }
   3156 #endif /* PMAP_OEA64_BRIDGE */
   3157 
   3158 /*
   3159  * Set up the bottom level of the data structures necessary for the kernel
   3160  * to manage memory.  MMU hardware is programmed in pmap_bootstrap2().
   3161  */
   3162 void
   3163 pmap_bootstrap1(paddr_t kernelstart, paddr_t kernelend)
   3164 {
   3165 	struct mem_region *mp, tmp;
   3166 	paddr_t s, e;
   3167 	psize_t size;
   3168 	int i, j;
   3169 
   3170 	/*
   3171 	 * Get memory.
   3172 	 */
   3173 	mem_regions(&mem, &avail);
   3174 #if defined(DEBUG)
   3175 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3176 		printf("pmap_bootstrap: memory configuration:\n");
   3177 		for (mp = mem; mp->size; mp++) {
   3178 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3179 				mp->start, mp->size);
   3180 		}
   3181 		for (mp = avail; mp->size; mp++) {
   3182 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3183 				mp->start, mp->size);
   3184 		}
   3185 	}
   3186 #endif
   3187 
   3188 	/*
   3189 	 * Find out how much physical memory we have and in how many chunks.
   3190 	 */
   3191 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3192 		if (mp->start >= pmap_memlimit)
   3193 			continue;
   3194 		if (mp->start + mp->size > pmap_memlimit) {
   3195 			size = pmap_memlimit - mp->start;
   3196 			physmem += btoc(size);
   3197 		} else {
   3198 			physmem += btoc(mp->size);
   3199 		}
   3200 		mem_cnt++;
   3201 	}
   3202 
   3203 	/*
   3204 	 * Count the number of available entries.
   3205 	 */
   3206 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3207 		avail_cnt++;
   3208 
   3209 	/*
   3210 	 * Page align all regions.
   3211 	 */
   3212 	kernelstart = trunc_page(kernelstart);
   3213 	kernelend = round_page(kernelend);
   3214 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3215 		s = round_page(mp->start);
   3216 		mp->size -= (s - mp->start);
   3217 		mp->size = trunc_page(mp->size);
   3218 		mp->start = s;
   3219 		e = mp->start + mp->size;
   3220 
   3221 		DPRINTFN(BOOT,
   3222 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3223 		    i, mp->start, mp->size);
   3224 
   3225 		/*
   3226 		 * Don't allow the end to run beyond our artificial limit
   3227 		 */
   3228 		if (e > pmap_memlimit)
   3229 			e = pmap_memlimit;
   3230 
   3231 		/*
   3232 		 * Is this region empty or strange?  skip it.
   3233 		 */
   3234 		if (e <= s) {
   3235 			mp->start = 0;
   3236 			mp->size = 0;
   3237 			continue;
   3238 		}
   3239 
   3240 		/*
   3241 		 * Does this overlap the beginning of kernel?
   3242 		 *   Does extend past the end of the kernel?
   3243 		 */
   3244 		else if (s < kernelstart && e > kernelstart) {
   3245 			if (e > kernelend) {
   3246 				avail[avail_cnt].start = kernelend;
   3247 				avail[avail_cnt].size = e - kernelend;
   3248 				avail_cnt++;
   3249 			}
   3250 			mp->size = kernelstart - s;
   3251 		}
   3252 		/*
   3253 		 * Check whether this region overlaps the end of the kernel.
   3254 		 */
   3255 		else if (s < kernelend && e > kernelend) {
   3256 			mp->start = kernelend;
   3257 			mp->size = e - kernelend;
   3258 		}
   3259 		/*
   3260 		 * Look whether this regions is completely inside the kernel.
   3261 		 * Nuke it if it does.
   3262 		 */
   3263 		else if (s >= kernelstart && e <= kernelend) {
   3264 			mp->start = 0;
   3265 			mp->size = 0;
   3266 		}
   3267 		/*
   3268 		 * If the user imposed a memory limit, enforce it.
   3269 		 */
   3270 		else if (s >= pmap_memlimit) {
   3271 			mp->start = -PAGE_SIZE;	/* let's know why */
   3272 			mp->size = 0;
   3273 		}
   3274 		else {
   3275 			mp->start = s;
   3276 			mp->size = e - s;
   3277 		}
   3278 		DPRINTFN(BOOT,
   3279 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3280 		    i, mp->start, mp->size);
   3281 	}
   3282 
   3283 	/*
   3284 	 * Move (and uncount) all the null return to the end.
   3285 	 */
   3286 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3287 		if (mp->size == 0) {
   3288 			tmp = avail[i];
   3289 			avail[i] = avail[--avail_cnt];
   3290 			avail[avail_cnt] = avail[i];
   3291 		}
   3292 	}
   3293 
   3294 	/*
   3295 	 * (Bubble)sort them into ascending order.
   3296 	 */
   3297 	for (i = 0; i < avail_cnt; i++) {
   3298 		for (j = i + 1; j < avail_cnt; j++) {
   3299 			if (avail[i].start > avail[j].start) {
   3300 				tmp = avail[i];
   3301 				avail[i] = avail[j];
   3302 				avail[j] = tmp;
   3303 			}
   3304 		}
   3305 	}
   3306 
   3307 	/*
   3308 	 * Make sure they don't overlap.
   3309 	 */
   3310 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3311 		if (mp[0].start + mp[0].size > mp[1].start) {
   3312 			mp[0].size = mp[1].start - mp[0].start;
   3313 		}
   3314 		DPRINTFN(BOOT,
   3315 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3316 		    i, mp->start, mp->size);
   3317 	}
   3318 	DPRINTFN(BOOT,
   3319 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3320 	    i, mp->start, mp->size);
   3321 
   3322 #ifdef	PTEGCOUNT
   3323 	pmap_pteg_cnt = PTEGCOUNT;
   3324 #else /* PTEGCOUNT */
   3325 
   3326 	pmap_pteg_cnt = 0x1000;
   3327 
   3328 	while (pmap_pteg_cnt < physmem)
   3329 		pmap_pteg_cnt <<= 1;
   3330 
   3331 	pmap_pteg_cnt >>= 1;
   3332 #endif /* PTEGCOUNT */
   3333 
   3334 #ifdef DEBUG
   3335 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3336 #endif
   3337 
   3338 	/*
   3339 	 * Find suitably aligned memory for PTEG hash table.
   3340 	 */
   3341 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3342 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3343 
   3344 #ifdef DEBUG
   3345 	DPRINTFN(BOOT,
   3346 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3347 #endif
   3348 
   3349 
   3350 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3351 	if ( (uintptr_t) pmap_pteg_table + size > PMAP_DIRECT_MAPPED_LEN)
   3352 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > PMAP_DIRECT_MAPPED_LEN",
   3353 		    pmap_pteg_table, size);
   3354 #endif
   3355 
   3356 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3357 		pmap_pteg_cnt * sizeof(struct pteg));
   3358 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3359 
   3360 	/*
   3361 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3362 	 * with pages.  So we just steal them before giving them to UVM.
   3363 	 */
   3364 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3365 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3366 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3367 	if ( (uintptr_t) pmap_pvo_table + size > PMAP_DIRECT_MAPPED_LEN)
   3368 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > PMAP_DIRECT_MAPPED_LEN",
   3369 		    pmap_pvo_table, size);
   3370 #endif
   3371 
   3372 	for (i = 0; i < pmap_pteg_cnt; i++)
   3373 		TAILQ_INIT(&pmap_pvo_table[i]);
   3374 
   3375 #ifndef MSGBUFADDR
   3376 	/*
   3377 	 * Allocate msgbuf in high memory.
   3378 	 */
   3379 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3380 #endif
   3381 
   3382 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3383 		paddr_t pfstart = atop(mp->start);
   3384 		paddr_t pfend = atop(mp->start + mp->size);
   3385 		if (mp->size == 0)
   3386 			continue;
   3387 		if (mp->start + mp->size <= PMAP_DIRECT_MAPPED_LEN) {
   3388 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3389 				VM_FREELIST_DIRECT_MAPPED);
   3390 		} else if (mp->start >= PMAP_DIRECT_MAPPED_LEN) {
   3391 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3392 				VM_FREELIST_DEFAULT);
   3393 		} else {
   3394 			pfend = atop(PMAP_DIRECT_MAPPED_LEN);
   3395 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3396 				VM_FREELIST_DIRECT_MAPPED);
   3397 			pfstart = atop(PMAP_DIRECT_MAPPED_LEN);
   3398 			pfend = atop(mp->start + mp->size);
   3399 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3400 				VM_FREELIST_DEFAULT);
   3401 		}
   3402 	}
   3403 
   3404 	/*
   3405 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3406 	 */
   3407 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3408 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3409 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3410 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3411 	pmap_vsid_bitmap[0] |= 1;
   3412 
   3413 	/*
   3414 	 * Initialize kernel pmap.
   3415 	 */
   3416 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3417 	for (i = 0; i < 16; i++) {
   3418  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3419 	}
   3420 	pmap_kernel()->pm_vsid = KERNEL_VSIDBITS;
   3421 
   3422 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3423 #ifdef KERNEL2_SR
   3424 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3425 #endif
   3426 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3427 
   3428 #if defined(PMAP_OEA) && defined(PPC_OEA601)
   3429 	if ((MFPVR() >> 16) == MPC601) {
   3430 		for (i = 0; i < 16; i++) {
   3431 			if (iosrtable[i] & SR601_T) {
   3432 				pmap_kernel()->pm_sr[i] = iosrtable[i];
   3433 			}
   3434 		}
   3435 	}
   3436 #endif /* PMAP_OEA && PPC_OEA601 */
   3437 
   3438 #ifdef ALTIVEC
   3439 	pmap_use_altivec = cpu_altivec;
   3440 #endif
   3441 
   3442 #ifdef DEBUG
   3443 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3444 		u_int cnt;
   3445 		uvm_physseg_t bank;
   3446 		char pbuf[9];
   3447 		for (cnt = 0, bank = uvm_physseg_get_first();
   3448 		     uvm_physseg_valid_p(bank);
   3449 		     bank = uvm_physseg_get_next(bank)) {
   3450 			cnt += uvm_physseg_get_avail_end(bank) -
   3451 			    uvm_physseg_get_avail_start(bank);
   3452 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3453 			    bank,
   3454 			    ptoa(uvm_physseg_get_avail_start(bank)),
   3455 			    ptoa(uvm_physseg_get_avail_end(bank)),
   3456 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
   3457 		}
   3458 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3459 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3460 		    pbuf, cnt);
   3461 	}
   3462 #endif
   3463 
   3464 	pool_init(&pmap_pvo_pool, sizeof(struct pvo_entry),
   3465 	    PMAP_PVO_ENTRY_ALIGN, 0, 0, "pmap_pvopl",
   3466 	    &pmap_pool_allocator, IPL_VM);
   3467 
   3468 	pool_setlowat(&pmap_pvo_pool, 1008);
   3469 
   3470 	pool_init(&pmap_pool, sizeof(struct pmap),
   3471 	    __alignof(struct pmap), 0, 0, "pmap_pl",
   3472 	    &pmap_pool_allocator, IPL_NONE);
   3473 
   3474 #if defined(PMAP_OEA64_BRIDGE)
   3475 	{
   3476 		struct pmap *pm = pmap_kernel();
   3477 		uvm_physseg_t bank;
   3478 		paddr_t pa;
   3479 		struct pte pt;
   3480 		unsigned int ptegidx;
   3481 
   3482 		for (bank = uvm_physseg_get_first();
   3483 		     uvm_physseg_valid_p(bank);
   3484 		     bank = uvm_physseg_get_next(bank)) {
   3485 			if (uvm_physseg_get_free_list(bank) !=
   3486 			    VM_FREELIST_DIRECT_MAPPED)
   3487 				continue;
   3488 			for (pa = uimax(ptoa(uvm_physseg_get_avail_start(bank)),
   3489 					SEGMENT_LENGTH);
   3490 			     pa < ptoa(uvm_physseg_get_avail_end(bank));
   3491 			     pa += PAGE_SIZE) {
   3492 				ptegidx = va_to_pteg(pm, pa);
   3493 				pmap_pte_create(&pt, pm, pa, pa | PTE_M);
   3494 				pmap_pte_insert(ptegidx, &pt);
   3495 			}
   3496 		}
   3497 	}
   3498 #endif
   3499 
   3500 #if defined(PMAP_NEED_MAPKERNEL)
   3501 	{
   3502 		struct pmap *pm = pmap_kernel();
   3503 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3504 		extern int etext[], kernel_text[];
   3505 		vaddr_t va, va_etext = (paddr_t) etext;
   3506 #endif
   3507 		paddr_t pa, pa_end;
   3508 		register_t sr;
   3509 		struct pte pt;
   3510 		unsigned int ptegidx;
   3511 		int bank;
   3512 
   3513 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3514 		pm->pm_sr[0] = sr;
   3515 
   3516 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3517 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3518 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3519 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3520 				ptegidx = va_to_pteg(pm, pa);
   3521 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3522 				pmap_pte_insert(ptegidx, &pt);
   3523 			}
   3524 		}
   3525 
   3526 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3527 		va = (vaddr_t) kernel_text;
   3528 
   3529 		for (pa = kernelstart; va < va_etext;
   3530 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3531 			ptegidx = va_to_pteg(pm, va);
   3532 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3533 			pmap_pte_insert(ptegidx, &pt);
   3534 		}
   3535 
   3536 		for (; pa < kernelend;
   3537 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3538 			ptegidx = va_to_pteg(pm, va);
   3539 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3540 			pmap_pte_insert(ptegidx, &pt);
   3541 		}
   3542 
   3543 		for (va = 0, pa = 0; va < kernelstart;
   3544 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3545 			ptegidx = va_to_pteg(pm, va);
   3546 			if (va < 0x3000)
   3547 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3548 			else
   3549 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3550 			pmap_pte_insert(ptegidx, &pt);
   3551 		}
   3552 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3553 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3554 			ptegidx = va_to_pteg(pm, va);
   3555 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3556 			pmap_pte_insert(ptegidx, &pt);
   3557 		}
   3558 #endif /* PMAP_NEED_FULL_MAPKERNEL */
   3559 	}
   3560 #endif /* PMAP_NEED_MAPKERNEL */
   3561 }
   3562 
   3563 /*
   3564  * Using the data structures prepared in pmap_bootstrap1(), program
   3565  * the MMU hardware.
   3566  */
   3567 void
   3568 pmap_bootstrap2(void)
   3569 {
   3570 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   3571 	for (int i = 0; i < 16; i++) {
   3572 		__asm volatile("mtsrin %0,%1"
   3573 			:: "r"(pmap_kernel()->pm_sr[i]),
   3574 			   "r"(i << ADDR_SR_SHFT));
   3575 	}
   3576 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3577 
   3578 #if defined(PMAP_OEA)
   3579 	__asm volatile("sync; mtsdr1 %0; isync"
   3580 	    :
   3581 	    : "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10))
   3582 	    : "memory");
   3583 #elif defined(PMAP_OEA64) || defined(PMAP_OEA64_BRIDGE)
   3584 	__asm volatile("sync; mtsdr1 %0; isync"
   3585 	    :
   3586 	    : "r"((uintptr_t)pmap_pteg_table |
   3587 		(32 - __builtin_clz(pmap_pteg_mask >> 11)))
   3588 	    : "memory");
   3589 #endif
   3590 	tlbia();
   3591 
   3592 #if defined(PMAPDEBUG)
   3593 	if (pmapdebug)
   3594 	    pmap_print_mmuregs();
   3595 #endif
   3596 }
   3597 
   3598 /*
   3599  * This is not part of the defined PMAP interface and is specific to the
   3600  * PowerPC architecture.  This is called during initppc, before the system
   3601  * is really initialized.
   3602  */
   3603 void
   3604 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3605 {
   3606 	pmap_bootstrap1(kernelstart, kernelend);
   3607 	pmap_bootstrap2();
   3608 }
   3609