Home | History | Annotate | Line # | Download | only in voyager
      1 /*	$NetBSD: pwmclock.c,v 1.12 2020/05/29 12:30:41 rin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Michael Lorenz
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.12 2020/05/29 12:30:41 rin Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/systm.h>
     33 #include <sys/kernel.h>
     34 #include <sys/device.h>
     35 #include <sys/cpu.h>
     36 #include <sys/timetc.h>
     37 #include <sys/sysctl.h>
     38 
     39 #include <dev/pci/voyagervar.h>
     40 #include <dev/ic/sm502reg.h>
     41 
     42 #include <mips/mips3_clock.h>
     43 #include <mips/locore.h>
     44 #include <mips/bonito/bonitoreg.h>
     45 #include <mips/bonito/bonitovar.h>
     46 
     47 #include "opt_pwmclock.h"
     48 
     49 #ifdef PWMCLOCK_DEBUG
     50 #define DPRINTF aprint_error
     51 #else
     52 #define DPRINTF while (0) printf
     53 #endif
     54 
     55 int pwmclock_intr(void *);
     56 
     57 struct pwmclock_softc {
     58 	device_t sc_dev;
     59 	bus_space_tag_t sc_memt;
     60 	bus_space_handle_t sc_regh;
     61 	uint32_t sc_reg, sc_last;
     62 	uint32_t sc_scale[8];
     63 	uint32_t sc_count;	/* should probably be 64 bit */
     64 	int sc_step;
     65 	int sc_step_wanted;
     66 	void *sc_shutdown_cookie;
     67 };
     68 
     69 static int	pwmclock_match(device_t, cfdata_t, void *);
     70 static void	pwmclock_attach(device_t, device_t, void *);
     71 
     72 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
     73     pwmclock_match, pwmclock_attach, NULL, NULL);
     74 
     75 static void pwmclock_start(void);
     76 static u_int get_pwmclock_timecount(struct timecounter *);
     77 
     78 struct pwmclock_softc *pwmclock;
     79 extern void (*initclocks_ptr)(void);
     80 
     81 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
     82 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
     83 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
     84 
     85 #define scale(x, f) (x * scale_d[f] / scale_m[f])
     86 
     87 void pwmclock_set_speed(struct pwmclock_softc *, int);
     88 static int  pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
     89 static int  pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
     90 static int  pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
     91 
     92 static void pwmclock_shutdown(void *);
     93 
     94 static struct timecounter pwmclock_timecounter = {
     95 	.tc_get_timecount = get_pwmclock_timecount,
     96 	.tc_counter_mask = 0xffffffff,
     97 	.tc_name = "pwm",
     98 	.tc_quality = 100,
     99 };
    100 
    101 static int
    102 pwmclock_match(device_t parent, cfdata_t match, void *aux)
    103 {
    104 	struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
    105 
    106 	if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
    107 	return 0;
    108 }
    109 
    110 static uint32_t
    111 pwmclock_wait_edge(struct pwmclock_softc *sc)
    112 {
    113 	/* clear interrupt */
    114 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    115 	while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
    116 	    SM502_PWM_INTR_PENDING) == 0);
    117 	return mips3_cp0_count_read();
    118 }
    119 
    120 static void
    121 pwmclock_attach(device_t parent, device_t self, void *aux)
    122 {
    123 	struct pwmclock_softc *sc = device_private(self);
    124 	struct voyager_attach_args *vaa = aux;
    125 	const struct sysctlnode *sysctl_node, *me, *freq;
    126 	uint32_t reg, last, curr, diff, acc;
    127 	int i, clk;
    128 
    129 	sc->sc_dev = self;
    130 	sc->sc_memt = vaa->vaa_tag;
    131 	sc->sc_regh = vaa->vaa_regh;
    132 
    133 	aprint_normal("\n");
    134 
    135 	/* NULL here gets us the clockframe */
    136 	voyager_establish_intr(parent, 22, pwmclock_intr, NULL);
    137 	reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
    138 	reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
    139 	       SM502_PWM_INTR_PENDING;
    140 	sc->sc_reg = reg;
    141 	pwmclock = sc;
    142 	initclocks_ptr = pwmclock_start;
    143 
    144 	/*
    145 	 * Establish a hook so on shutdown we can set the CPU clock back to
    146 	 * full speed. This is necessary because PMON doesn't change the
    147 	 * clock scale register on a warm boot, the MIPS clock code gets
    148 	 * confused if we're too slow and the loongson-specific bits run
    149 	 * too late in the boot process
    150 	 */
    151 	sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
    152 
    153 	/* ok, let's see how far the cycle counter gets between interrupts */
    154 	DPRINTF("calibrating CPU timer...\n");
    155 	for (clk = 1; clk < 8; clk++) {
    156 
    157 		REGVAL(LS2F_CHIPCFG0) =
    158 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
    159 		bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
    160 		    sc->sc_reg);
    161 		acc = 0;
    162 		last = pwmclock_wait_edge(sc);
    163 		for (i = 0; i < 16; i++) {
    164 			curr = pwmclock_wait_edge(sc);
    165 			diff = curr - last;
    166 			acc += diff;
    167 			last = curr;
    168 		}
    169 		sc->sc_scale[clk] = (acc >> 4) / 5000;
    170 	}
    171 #ifdef PWMCLOCK_DEBUG
    172 	for (clk = 1; clk < 8; clk++) {
    173 		aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
    174 		    sc->sc_scale[clk]);
    175 	}
    176 #endif
    177 	sc->sc_step = 7;
    178 	sc->sc_step_wanted = 7;
    179 
    180 	/* now setup sysctl */
    181 	if (sysctl_createv(NULL, 0, NULL,
    182 	    &me,
    183 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
    184 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
    185 		aprint_error_dev(sc->sc_dev,
    186 		    "couldn't create 'loongson' node\n");
    187 
    188 	if (sysctl_createv(NULL, 0, NULL,
    189 	    &freq,
    190 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
    191 	    0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
    192 		aprint_error_dev(sc->sc_dev,
    193 		    "couldn't create 'frequency' node\n");
    194 
    195 	if (sysctl_createv(NULL, 0, NULL,
    196 	    &sysctl_node,
    197 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
    198 	    CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
    199 	    0, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    200 	    CTL_CREATE, CTL_EOL) == 0) {
    201 	} else
    202 		aprint_error_dev(sc->sc_dev,
    203 		    "couldn't create 'target' node\n");
    204 
    205 	if (sysctl_createv(NULL, 0, NULL,
    206 	    &sysctl_node,
    207 	    CTLFLAG_READWRITE,
    208 	    CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
    209 	    1, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    210 	    CTL_CREATE, CTL_EOL) == 0) {
    211 	} else
    212 		aprint_error_dev(sc->sc_dev,
    213 		    "couldn't create 'current' node\n");
    214 
    215 	if (sysctl_createv(NULL, 0, NULL,
    216 	    &sysctl_node,
    217 	    CTLFLAG_READWRITE,
    218 	    CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
    219 	    2, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    220 	    CTL_CREATE, CTL_EOL) == 0) {
    221 	} else
    222 		aprint_error_dev(sc->sc_dev,
    223 		    "couldn't create 'available' node\n");
    224 }
    225 
    226 static void
    227 pwmclock_shutdown(void *cookie)
    228 {
    229 	struct pwmclock_softc *sc = cookie;
    230 
    231 	/* just in case the interrupt handler runs again after this */
    232 	sc->sc_step_wanted = 7;
    233 	/* set the clock to full speed */
    234 	REGVAL(LS2F_CHIPCFG0) =
    235 	    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
    236 }
    237 
    238 void
    239 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
    240 {
    241 
    242 	if ((speed < 1) || (speed > 7))
    243 		return;
    244 	sc->sc_step_wanted = speed;
    245 	DPRINTF("%s: %d\n", __func__, speed);
    246 }
    247 
    248 /*
    249  * the PWM interrupt handler
    250  * we don't have a CPU clock independent, high resolution counter so we're
    251  * stuck with a PWM that can't count and a CP0 counter that slows down or
    252  * speeds up with the actual CPU speed. In order to still get halfway
    253  * accurate time we do the following:
    254  * - only change CPU speed in the timer interrupt
    255  * - each timer interrupt we measure how many CP0 cycles passed since last
    256  *   time, adjust for CPU speed since we can be sure it didn't change, use
    257  *   that to update a separate counter
    258  * - when reading the time counter we take the number of CP0 ticks since
    259  *   the last timer interrupt, scale it to CPU clock, return that plus the
    260  *   interrupt updated counter mentioned above to get something close to
    261  *   CP0 running at full speed
    262  * - when changing CPU speed do it as close to taking the time from CP0 as
    263  *   possible to keep the period of time we spend with CP0 running at the
    264  *   wrong frequency as short as possible - hopefully short enough to stay
    265  *   insignificant compared to other noise since switching speeds isn't
    266  *   going to happen all that often
    267  */
    268 
    269 int
    270 pwmclock_intr(void *cookie)
    271 {
    272 	struct clockframe *cf = cookie;
    273 	struct pwmclock_softc *sc = pwmclock;
    274 	uint32_t reg, now, diff;
    275 
    276 	/* is it us? */
    277 	reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
    278 	if ((reg & SM502_PWM_INTR_PENDING) == 0)
    279 		return 0;
    280 
    281 	/* yes, it's us, so clear the interrupt */
    282 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    283 
    284 	/*
    285 	 * this looks kinda funny but what we want here is this:
    286 	 * - reading the counter and changing the CPU clock should be as
    287 	 *   close together as possible in order to remain halfway accurate
    288 	 * - we need to use the previous sc_step in order to scale the
    289 	 *   interval passed since the last clock interrupt correctly, so
    290 	 *   we only change sc_step after doing that
    291 	 */
    292 	if (sc->sc_step_wanted != sc->sc_step) {
    293 
    294 		REGVAL(LS2F_CHIPCFG0) =
    295 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
    296 		     sc->sc_step_wanted;
    297 	}
    298 
    299 	now = mips3_cp0_count_read();
    300 	diff = now - sc->sc_last;
    301 	sc->sc_count += scale(diff, sc->sc_step);
    302 	sc->sc_last = now;
    303 	if (sc->sc_step_wanted != sc->sc_step) {
    304 		sc->sc_step = sc->sc_step_wanted;
    305 	}
    306 
    307 	hardclock(cf);
    308 
    309 	return 1;
    310 }
    311 
    312 static void
    313 pwmclock_start(void)
    314 {
    315 	struct pwmclock_softc *sc = pwmclock;
    316 	sc->sc_count = 0;
    317 	sc->sc_last = mips3_cp0_count_read();
    318 	pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
    319 	tc_init(&pwmclock_timecounter);
    320 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    321 }
    322 
    323 static u_int
    324 get_pwmclock_timecount(struct timecounter *tc)
    325 {
    326 	struct pwmclock_softc *sc = pwmclock;
    327 	uint32_t now, diff;
    328 
    329 	now = mips3_cp0_count_read();
    330 	diff = now - sc->sc_last;
    331 	return sc->sc_count + scale(diff, sc->sc_step);
    332 }
    333 
    334 static int
    335 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
    336 {
    337 	struct sysctlnode node = *rnode;
    338 	struct pwmclock_softc *sc = node.sysctl_data;
    339 	int mhz, i;
    340 
    341 	mhz = sc->sc_scale[sc->sc_step_wanted];
    342 
    343 	node.sysctl_data = &mhz;
    344 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
    345 		int new_reg;
    346 
    347 		new_reg = *(int *)node.sysctl_data;
    348 		i = 1;
    349 		while ((i < 8) && (sc->sc_scale[i] != new_reg))
    350 			i++;
    351 		if (i > 7)
    352 			return EINVAL;
    353 		pwmclock_set_speed(sc, i);
    354 		return 0;
    355 	}
    356 	return EINVAL;
    357 }
    358 
    359 static int
    360 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
    361 {
    362 	struct sysctlnode node = *rnode;
    363 	struct pwmclock_softc *sc = node.sysctl_data;
    364 	int mhz;
    365 
    366 	mhz = sc->sc_scale[sc->sc_step];
    367 	node.sysctl_data = &mhz;
    368 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    369 }
    370 
    371 static int
    372 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
    373 {
    374 	struct sysctlnode node = *rnode;
    375 	struct pwmclock_softc *sc = node.sysctl_data;
    376 	char buf[128];
    377 
    378 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
    379 	    sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
    380 	    sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
    381 	node.sysctl_data = buf;
    382 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
    383 }
    384 
    385 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
    386 {
    387 
    388 	sysctl_createv(NULL, 0, NULL, NULL,
    389 		       CTLFLAG_PERMANENT,
    390 		       CTLTYPE_NODE, "machdep", NULL,
    391 		       NULL, 0, NULL, 0,
    392 		       CTL_MACHDEP, CTL_EOL);
    393 }
    394