Home | History | Annotate | Line # | Download | only in dev
      1 /*	$NetBSD: plcom.c,v 1.69 2023/04/11 12:58:03 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     20  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     22  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum and Nick Hudson.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     47  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     48  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     49  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     50  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     56  * POSSIBILITY OF SUCH DAMAGE.
     57  */
     58 
     59 /*
     60  * Copyright (c) 1991 The Regents of the University of California.
     61  * All rights reserved.
     62  *
     63  * Redistribution and use in source and binary forms, with or without
     64  * modification, are permitted provided that the following conditions
     65  * are met:
     66  * 1. Redistributions of source code must retain the above copyright
     67  *    notice, this list of conditions and the following disclaimer.
     68  * 2. Redistributions in binary form must reproduce the above copyright
     69  *    notice, this list of conditions and the following disclaimer in the
     70  *    documentation and/or other materials provided with the distribution.
     71  * 3. Neither the name of the University nor the names of its contributors
     72  *    may be used to endorse or promote products derived from this software
     73  *    without specific prior written permission.
     74  *
     75  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     76  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     77  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     78  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     79  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     80  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     81  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     82  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     83  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     84  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     85  * SUCH DAMAGE.
     86  *
     87  *	@(#)com.c	7.5 (Berkeley) 5/16/91
     88  */
     89 
     90 /*
     91  * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
     92  * the 16C550, but have a completely different programmer's model.
     93  * Derived from the NS16550AF com driver.
     94  *
     95  * Lock order:
     96  *	ttylock (IPL_VM)
     97  *	-> sc->sc_lock (IPL_HIGH)
     98  *	-> timecounter_lock (IPL_HIGH)
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.69 2023/04/11 12:58:03 riastradh Exp $");
    103 
    104 #include "opt_plcom.h"
    105 #include "opt_kgdb.h"
    106 #include "opt_lockdebug.h"
    107 #include "opt_multiprocessor.h"
    108 
    109 /*
    110  * Override cnmagic(9) macro before including <sys/systm.h>.
    111  * We need to know if cn_check_magic triggered debugger, so set a flag.
    112  * Callers of cn_check_magic must declare int cn_trapped = 0;
    113  * XXX: this is *ugly*!
    114  */
    115 #define cn_trap()				\
    116 	do {					\
    117 		console_debugger();		\
    118 		cn_trapped = 1;			\
    119 	} while (/* CONSTCOND */ 0)
    120 
    121 #include <sys/param.h>
    122 #include <sys/systm.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/select.h>
    125 #include <sys/tty.h>
    126 #include <sys/proc.h>
    127 #include <sys/conf.h>
    128 #include <sys/file.h>
    129 #include <sys/uio.h>
    130 #include <sys/kernel.h>
    131 #include <sys/syslog.h>
    132 #include <sys/types.h>
    133 #include <sys/device.h>
    134 #include <sys/kmem.h>
    135 #include <sys/timepps.h>
    136 #include <sys/vnode.h>
    137 #include <sys/kauth.h>
    138 #include <sys/intr.h>
    139 #include <sys/bus.h>
    140 #ifdef RND_COM
    141 #include <sys/rndsource.h>
    142 #endif
    143 
    144 #include <ddb/db_active.h>
    145 
    146 #include <evbarm/dev/plcomreg.h>
    147 #include <evbarm/dev/plcomvar.h>
    148 
    149 #include <dev/cons.h>
    150 
    151 static void plcom_enable_debugport (struct plcom_softc *);
    152 
    153 void	plcom_config	(struct plcom_softc *);
    154 void	plcom_shutdown	(struct plcom_softc *);
    155 int	pl010comspeed	(long, long);
    156 int	pl011comspeed	(long, long);
    157 static	uint32_t	cflag2lcr (tcflag_t);
    158 int	plcomparam	(struct tty *, struct termios *);
    159 void	plcomstart	(struct tty *);
    160 int	plcomhwiflow	(struct tty *, int);
    161 
    162 void	plcom_loadchannelregs (struct plcom_softc *);
    163 void	plcom_hwiflow	(struct plcom_softc *);
    164 void	plcom_break	(struct plcom_softc *, int);
    165 void	plcom_modem	(struct plcom_softc *, int);
    166 void	tiocm_to_plcom	(struct plcom_softc *, u_long, int);
    167 int	plcom_to_tiocm	(struct plcom_softc *);
    168 void	plcom_iflush	(struct plcom_softc *);
    169 
    170 int	plcom_common_getc (dev_t, struct plcom_instance *);
    171 void	plcom_common_putc (dev_t, struct plcom_instance *, int);
    172 
    173 int	plcominit	(struct plcom_instance *, int, int, tcflag_t);
    174 
    175 dev_type_open(plcomopen);
    176 dev_type_close(plcomclose);
    177 dev_type_read(plcomread);
    178 dev_type_write(plcomwrite);
    179 dev_type_ioctl(plcomioctl);
    180 dev_type_stop(plcomstop);
    181 dev_type_tty(plcomtty);
    182 dev_type_poll(plcompoll);
    183 
    184 int	plcomcngetc	(dev_t);
    185 void	plcomcnputc	(dev_t, int);
    186 void	plcomcnpollc	(dev_t, int);
    187 void	plcomcnhalt	(dev_t);
    188 
    189 void 	plcomsoft	(void *);
    190 static inline void plcom_rxsoft	(struct plcom_softc *, struct tty *);
    191 static inline void plcom_txsoft	(struct plcom_softc *, struct tty *);
    192 static inline void plcom_stsoft	(struct plcom_softc *, struct tty *);
    193 static inline void plcom_schedrx	(struct plcom_softc *);
    194 void	plcomdiag		(void *);
    195 
    196 bool	plcom_intstatus(struct plcom_instance *, u_int *);
    197 
    198 extern struct cfdriver plcom_cd;
    199 
    200 const struct cdevsw plcom_cdevsw = {
    201 	.d_open = plcomopen,
    202 	.d_close = plcomclose,
    203 	.d_read = plcomread,
    204 	.d_write = plcomwrite,
    205 	.d_ioctl = plcomioctl,
    206 	.d_stop = plcomstop,
    207 	.d_tty = plcomtty,
    208 	.d_poll = plcompoll,
    209 	.d_mmap = nommap,
    210 	.d_kqfilter = ttykqfilter,
    211 	.d_discard = nodiscard,
    212 	.d_flag = D_TTY
    213 };
    214 
    215 /*
    216  * Make this an option variable one can patch.
    217  * But be warned:  this must be a power of 2!
    218  */
    219 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
    220 
    221 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
    222 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
    223 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
    224 
    225 static int	plcomconsunit = -1;
    226 static struct plcom_instance plcomcons_info;
    227 
    228 static int plcomconsattached;
    229 static int plcomconsrate;
    230 static tcflag_t plcomconscflag;
    231 static struct cnm_state plcom_cnm_state;
    232 
    233 static int ppscap =
    234 	PPS_TSFMT_TSPEC |
    235 	PPS_CAPTUREASSERT |
    236 	PPS_CAPTURECLEAR |
    237 #ifdef  PPS_SYNC
    238 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
    239 #endif	/* PPS_SYNC */
    240 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
    241 
    242 #ifdef KGDB
    243 #include <sys/kgdb.h>
    244 
    245 static struct plcom_instance plcomkgdb_info;
    246 static int plcom_kgdb_attached;
    247 
    248 int	plcom_kgdb_getc (void *);
    249 void	plcom_kgdb_putc (void *, int);
    250 #endif /* KGDB */
    251 
    252 #define	PLCOMDIALOUT_MASK	TTDIALOUT_MASK
    253 
    254 #define	PLCOMUNIT(x)	TTUNIT(x)
    255 #define	PLCOMDIALOUT(x)	TTDIALOUT(x)
    256 
    257 #define	PLCOM_ISALIVE(sc)	((sc)->enabled != 0 && \
    258 				 device_is_active((sc)->sc_dev))
    259 
    260 #define	BR	BUS_SPACE_BARRIER_READ
    261 #define	BW	BUS_SPACE_BARRIER_WRITE
    262 #define PLCOM_BARRIER(pi, f)	\
    263     bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
    264 
    265 static uint8_t
    266 pread1(struct plcom_instance *pi, bus_size_t reg)
    267 {
    268 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
    269 		return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
    270 
    271 	return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
    272 	    (8 * (reg & 3));
    273 }
    274 
    275 static uint16_t
    276 pread2(struct plcom_instance *pi, bus_size_t reg)
    277 {
    278 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
    279 		return bus_space_read_2(pi->pi_iot, pi->pi_ioh, reg);
    280 
    281 	return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
    282 	    (8 * (reg & 3));
    283 }
    284 
    285 static void
    286 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
    287 {
    288 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
    289 		bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
    290 	} else {
    291 		const size_t shift = 8 * (o & 3);
    292 		o &= -4;
    293 		uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
    294 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    295 		bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
    296 	}
    297 }
    298 
    299 static void
    300 pwrite2(struct plcom_instance *pi, bus_size_t o, uint16_t val)
    301 {
    302 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
    303 		bus_space_write_2(pi->pi_iot, pi->pi_ioh, o, val);
    304 	} else {
    305 		const size_t shift = 8 * (o & 3);
    306 		o &= -4;
    307 		uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
    308 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    309 		bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
    310 	}
    311 }
    312 
    313 static void
    314 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
    315     bus_size_t count)
    316 {
    317 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
    318 		bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
    319 	} else {
    320 		KASSERT((o & 3) == 0);
    321 		while (count--) {
    322 			bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
    323 		};
    324 	}
    325 }
    326 
    327 #define	PREAD1(pi, reg)		pread1(pi, reg)
    328 #define	PREAD2(pi, reg)		pread2(pi, reg)
    329 #define	PREAD4(pi, reg)		\
    330 	bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg))
    331 
    332 #define	PWRITE1(pi, reg, val)	pwrite1(pi, reg, val)
    333 #define	PWRITEM1(pi, reg, d, c)	pwritem1(pi, reg, d, c)
    334 #define	PWRITE2(pi, reg, val)	pwrite2(pi, reg, val)
    335 #define	PWRITE4(pi, reg, val)	\
    336 	bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val))
    337 
    338 int
    339 pl010comspeed(long speed, long frequency)
    340 {
    341 #define	divrnd(n, q)	(((n)*2/(q)+1)/2)	/* divide and round off */
    342 
    343 	int x, err;
    344 
    345 #if 0
    346 	if (speed == 0)
    347 		return 0;
    348 #endif
    349 	if (speed <= 0)
    350 		return -1;
    351 	x = divrnd(frequency / 16, speed);
    352 	if (x <= 0)
    353 		return -1;
    354 	err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
    355 	if (err < 0)
    356 		err = -err;
    357 	if (err > PLCOM_TOLERANCE)
    358 		return -1;
    359 	return x;
    360 
    361 #undef	divrnd
    362 }
    363 
    364 int
    365 pl011comspeed(long speed, long frequency)
    366 {
    367 	int denom = 16 * speed;
    368 	int div = frequency / denom;
    369 	int rem = frequency % denom;
    370 
    371 	int ibrd = div << 6;
    372 	int fbrd = (((8 * rem) / speed) + 1) / 2;
    373 
    374 	/* Tolerance? */
    375 	return ibrd | fbrd;
    376 }
    377 
    378 #ifdef PLCOM_DEBUG
    379 int	plcom_debug = 0;
    380 
    381 void plcomstatus (struct plcom_softc *, const char *);
    382 void
    383 plcomstatus(struct plcom_softc *sc, const char *str)
    384 {
    385 	struct tty *tp = sc->sc_tty;
    386 
    387 	printf("%s: %s %sclocal  %sdcd %sts_carr_on %sdtr %stx_stopped\n",
    388 	    device_xname(sc->sc_dev), str,
    389 	    ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
    390 	    ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
    391 	    ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
    392 	    ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
    393 	    sc->sc_tx_stopped ? "+" : "-");
    394 
    395 	printf("%s: %s %scrtscts %scts %sts_ttstop  %srts %xrx_flags\n",
    396 	    device_xname(sc->sc_dev), str,
    397 	    ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
    398 	    ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
    399 	    ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
    400 	    ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
    401 	    sc->sc_rx_flags);
    402 }
    403 #endif
    404 
    405 #if 0
    406 int
    407 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
    408 {
    409 	int data;
    410 
    411 	/* Disable the UART.  */
    412 	bus_space_write_1(iot, ioh, plcom_cr, 0);
    413 	/* Make sure the FIFO is off.  */
    414 	bus_space_write_4(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
    415 	/* Disable interrupts.  */
    416 	bus_space_write_1(iot, ioh, plcom_iir, 0);
    417 
    418 	/* Make sure we swallow anything in the receiving register.  */
    419 	data = bus_space_read_1(iot, ioh, plcom_dr);
    420 
    421 	if (bus_space_read_4(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
    422 		return 0;
    423 
    424 	data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
    425 
    426 	if (data != PL01X_FR_RXFE)
    427 		return 0;
    428 
    429 	return 1;
    430 }
    431 #endif
    432 
    433 /*
    434  * No locking in this routine; it is only called during attach,
    435  * or with the port already locked.
    436  */
    437 static void
    438 plcom_enable_debugport(struct plcom_softc *sc)
    439 {
    440 	struct plcom_instance *pi = &sc->sc_pi;
    441 
    442 	sc->sc_cr = PL01X_CR_UARTEN;
    443 	SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
    444 
    445 	/* Turn on line break interrupt, set carrier. */
    446 	switch (pi->pi_type) {
    447 	case PLCOM_TYPE_PL010:
    448 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    449 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    450 		if (sc->sc_set_mcr) {
    451 			/* XXX device_unit() abuse */
    452 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
    453 			    device_unit(sc->sc_dev), sc->sc_mcr);
    454 		}
    455 		break;
    456 	case PLCOM_TYPE_PL011:
    457 	case PLCOM_TYPE_GENERIC_UART:
    458 		sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
    459 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    460 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
    461 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
    462 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    463 		break;
    464 	}
    465 
    466 }
    467 
    468 void
    469 plcom_attach_subr(struct plcom_softc *sc)
    470 {
    471 	struct plcom_instance *pi = &sc->sc_pi;
    472 	struct tty *tp;
    473 
    474 	callout_init(&sc->sc_diag_callout, 0);
    475 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
    476 
    477 	switch (pi->pi_type) {
    478 	case PLCOM_TYPE_PL010:
    479 	case PLCOM_TYPE_PL011:
    480 	case PLCOM_TYPE_GENERIC_UART:
    481 		break;
    482 	default:
    483 		aprint_error_dev(sc->sc_dev,
    484 		    "Unknown plcom type: %d\n", pi->pi_type);
    485 		return;
    486 	}
    487 
    488 	/* Disable interrupts before configuring the device. */
    489 	sc->sc_cr = 0;
    490 	sc->sc_imsc = 0;
    491 
    492 	if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
    493 	    pi->pi_iobase == plcomcons_info.pi_iobase) {
    494 		plcomconsattached = 1;
    495 
    496 		/* Make sure the console is always "hardwired". */
    497 		delay(1000);			/* wait for output to finish */
    498 		SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
    499 		SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
    500 		/*
    501 		 * Must re-enable the console immediately, or we will
    502 		 * hang when trying to print.
    503 		 */
    504 		sc->sc_cr = PL01X_CR_UARTEN;
    505 		switch (pi->pi_type) {
    506 		case PLCOM_TYPE_PL011:
    507 		case PLCOM_TYPE_GENERIC_UART:
    508 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    509 			break;
    510 		}
    511 	}
    512 
    513 	switch (pi->pi_type) {
    514 	case PLCOM_TYPE_PL011:
    515 		if (pi->pi_periphid == 0) {
    516 			pi->pi_periphid = PREAD1(pi, PL011COM_PID0) << 0
    517 				| PREAD1(pi, PL011COM_PID1) << 8
    518 				| PREAD1(pi, PL011COM_PID2) << 16
    519 				| PREAD1(pi, PL011COM_PID3) << 24;
    520 		}
    521 		aprint_debug_dev(sc->sc_dev, "PID %08x\n", pi->pi_periphid);
    522 		break;
    523 	}
    524 
    525 	switch (pi->pi_type) {
    526 	case PLCOM_TYPE_PL010:
    527 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    528 		break;
    529 
    530 	case PLCOM_TYPE_PL011:
    531 	case PLCOM_TYPE_GENERIC_UART:
    532 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
    533 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    534 		break;
    535 	}
    536 
    537 	if (sc->sc_fifolen == 0) {
    538 		switch (pi->pi_type) {
    539 		case PLCOM_TYPE_PL010:
    540 			/*
    541 			 * The PL010 has a 16-byte fifo, but the tx interrupt
    542 			 * triggers when there is space for 8 more bytes.
    543 			*/
    544 			sc->sc_fifolen = 8;
    545 			break;
    546 		case PLCOM_TYPE_PL011:
    547 			/* Some revisions have a 32 byte TX FIFO */
    548 			switch (pi->pi_periphid & (PL011_DESIGNER_MASK | PL011_HWREV_MASK)) {
    549 			case PL011_DESIGNER_ARM | __SHIFTIN(0, PL011_HWREV_MASK):
    550 			case PL011_DESIGNER_ARM | __SHIFTIN(1, PL011_HWREV_MASK):
    551 			case PL011_DESIGNER_ARM | __SHIFTIN(2, PL011_HWREV_MASK):
    552 				sc->sc_fifolen = 16;
    553 				break;
    554 			default:
    555 				sc->sc_fifolen = 32;
    556 				break;
    557 			}
    558 			break;
    559 		case PLCOM_TYPE_GENERIC_UART:
    560 			/* At least 32 byte TX FIFO */
    561 			sc->sc_fifolen = 32;
    562 			break;
    563 		}
    564 	}
    565 
    566 	/* Safe amount of bytes to fill when TX FIFO signals empty */
    567 	sc->sc_burstlen = 1;
    568 
    569 	if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
    570 		sc->sc_fifolen = 1;
    571 		aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
    572 	}
    573 
    574 	if (sc->sc_fifolen > 1) {
    575 		SET(sc->sc_hwflags, PLCOM_HW_FIFO);
    576 		aprint_normal_dev(sc->sc_dev, "txfifo %u bytes\n", sc->sc_fifolen);
    577 	}
    578 
    579 	tp = tty_alloc();
    580 	tp->t_oproc = plcomstart;
    581 	tp->t_param = plcomparam;
    582 	tp->t_hwiflow = plcomhwiflow;
    583 
    584 	sc->sc_tty = tp;
    585 	sc->sc_rbuf = kmem_alloc(plcom_rbuf_size << 1, KM_SLEEP);
    586 	sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
    587 	sc->sc_rbavail = plcom_rbuf_size;
    588 	sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
    589 
    590 	tty_attach(tp);
    591 
    592 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    593 		int maj;
    594 
    595 		/* locate the major number */
    596 		maj = cdevsw_lookup_major(&plcom_cdevsw);
    597 
    598 		tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
    599 
    600 		aprint_normal_dev(sc->sc_dev, "console\n");
    601 	}
    602 
    603 #ifdef KGDB
    604 	/*
    605 	 * Allow kgdb to "take over" this port.  If this is
    606 	 * the kgdb device, it has exclusive use.
    607 	 */
    608 	if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
    609 	    pi->pi_iobase == plcomkgdb_info.pi_iobase) {
    610 		if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    611 			plcom_kgdb_attached = 1;
    612 
    613 			SET(sc->sc_hwflags, PLCOM_HW_KGDB);
    614 		}
    615 		aprint_normal_dev(sc->sc_dev, "kgdb\n");
    616 	}
    617 #endif
    618 
    619 	sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
    620 
    621 #ifdef RND_COM
    622 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    623 	    RND_TYPE_TTY, RND_FLAG_DEFAULT);
    624 #endif
    625 
    626 	/*
    627 	 * if there are no enable/disable functions, assume the device
    628 	 * is always enabled
    629 	 */
    630 	if (!sc->enable)
    631 		sc->enabled = 1;
    632 
    633 	plcom_config(sc);
    634 
    635 	SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
    636 }
    637 
    638 void
    639 plcom_config(struct plcom_softc *sc)
    640 {
    641 	struct plcom_instance *pi = &sc->sc_pi;
    642 
    643 	/* Disable interrupts before configuring the device. */
    644 	sc->sc_cr = 0;
    645 	sc->sc_imsc = 0;
    646 	switch (pi->pi_type) {
    647 	case PLCOM_TYPE_PL010:
    648 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    649 		break;
    650 
    651 	case PLCOM_TYPE_PL011:
    652 	case PLCOM_TYPE_GENERIC_UART:
    653 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
    654 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    655 		break;
    656 	}
    657 
    658 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
    659 		plcom_enable_debugport(sc);
    660 }
    661 
    662 int
    663 plcom_detach(device_t self, int flags)
    664 {
    665 	struct plcom_softc *sc = device_private(self);
    666 	int maj, mn;
    667 
    668 	if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
    669 		return EBUSY;
    670 
    671 	if (sc->disable != NULL && sc->enabled != 0) {
    672 		(*sc->disable)(sc);
    673 		sc->enabled = 0;
    674 	}
    675 
    676 	/* locate the major number */
    677 	maj = cdevsw_lookup_major(&plcom_cdevsw);
    678 
    679 	/* Nuke the vnodes for any open instances. */
    680 	mn = device_unit(self);
    681 	vdevgone(maj, mn, mn, VCHR);
    682 
    683 	mn |= PLCOMDIALOUT_MASK;
    684 	vdevgone(maj, mn, mn, VCHR);
    685 
    686 	if (sc->sc_rbuf == NULL) {
    687 		/*
    688 		 * Ring buffer allocation failed in the plcom_attach_subr,
    689 		 * only the tty is allocated, and nothing else.
    690 		 */
    691 		tty_free(sc->sc_tty);
    692 		return 0;
    693 	}
    694 
    695 	/* Free the receive buffer. */
    696 	kmem_free(sc->sc_rbuf, sc->sc_ebuf - sc->sc_rbuf);
    697 
    698 	/* Detach and free the tty. */
    699 	tty_detach(sc->sc_tty);
    700 	tty_free(sc->sc_tty);
    701 
    702 	/* Unhook the soft interrupt handler. */
    703 	softint_disestablish(sc->sc_si);
    704 
    705 #ifdef RND_COM
    706 	/* Unhook the entropy source. */
    707 	rnd_detach_source(&sc->rnd_source);
    708 #endif
    709 	callout_destroy(&sc->sc_diag_callout);
    710 
    711 	/* Destroy the lock. */
    712 	mutex_destroy(&sc->sc_lock);
    713 
    714 	return 0;
    715 }
    716 
    717 int
    718 plcom_activate(device_t self, enum devact act)
    719 {
    720 	struct plcom_softc *sc = device_private(self);
    721 
    722 	switch (act) {
    723 	case DVACT_DEACTIVATE:
    724 		sc->enabled = 0;
    725 		return 0;
    726 	default:
    727 		return EOPNOTSUPP;
    728 	}
    729 }
    730 
    731 void
    732 plcom_shutdown(struct plcom_softc *sc)
    733 {
    734 	struct plcom_instance *pi = &sc->sc_pi;
    735 	struct tty *tp = sc->sc_tty;
    736 	mutex_spin_enter(&sc->sc_lock);
    737 
    738 	/* If we were asserting flow control, then deassert it. */
    739 	SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
    740 	plcom_hwiflow(sc);
    741 
    742 	/* Clear any break condition set with TIOCSBRK. */
    743 	plcom_break(sc, 0);
    744 
    745 	/* Turn off PPS capture on last close. */
    746 	mutex_spin_enter(&timecounter_lock);
    747 	sc->sc_ppsmask = 0;
    748 	sc->ppsparam.mode = 0;
    749 	mutex_spin_exit(&timecounter_lock);
    750 
    751 	/*
    752 	 * Hang up if necessary.  Record when we hung up, so if we
    753 	 * immediately open the port again, we will wait a bit until
    754 	 * the other side has had time to notice that we hung up.
    755 	 */
    756 	if (ISSET(tp->t_cflag, HUPCL)) {
    757 		plcom_modem(sc, 0);
    758 		microuptime(&sc->sc_hup_pending);
    759 		sc->sc_hup_pending.tv_sec++;
    760 	}
    761 
    762 	sc->sc_cr = 0;
    763 	sc->sc_imsc = 0;
    764 	/* Turn off interrupts. */
    765 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    766 		/* interrupt on break */
    767 
    768 		sc->sc_cr = PL01X_CR_UARTEN;
    769 		sc->sc_imsc = 0;
    770 		switch (pi->pi_type) {
    771 		case PLCOM_TYPE_PL010:
    772 			SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    773 			break;
    774 		case PLCOM_TYPE_PL011:
    775 		case PLCOM_TYPE_GENERIC_UART:
    776 			SET(sc->sc_cr, PL011_CR_RXE);
    777 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
    778 			break;
    779 		}
    780 	}
    781 	switch (pi->pi_type) {
    782 	case PLCOM_TYPE_PL010:
    783 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    784 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    785 		break;
    786 	case PLCOM_TYPE_PL011:
    787 	case PLCOM_TYPE_GENERIC_UART:
    788 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    789 		SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
    790 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
    791 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    792 		break;
    793 	}
    794 
    795 	mutex_spin_exit(&sc->sc_lock);
    796 	if (sc->disable) {
    797 #ifdef DIAGNOSTIC
    798 		if (!sc->enabled)
    799 			panic("plcom_shutdown: not enabled?");
    800 #endif
    801 		(*sc->disable)(sc);
    802 		sc->enabled = 0;
    803 	}
    804 }
    805 
    806 int
    807 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
    808 {
    809 	struct plcom_softc *sc;
    810 	struct plcom_instance *pi;
    811 	struct tty *tp;
    812 	int s;
    813 	int error;
    814 
    815 	sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    816 	if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
    817 		sc->sc_rbuf == NULL)
    818 		return ENXIO;
    819 
    820 	if (!device_is_active(sc->sc_dev))
    821 		return ENXIO;
    822 
    823 	pi = &sc->sc_pi;
    824 
    825 #ifdef KGDB
    826 	/*
    827 	 * If this is the kgdb port, no other use is permitted.
    828 	 */
    829 	if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
    830 		return EBUSY;
    831 #endif
    832 
    833 	tp = sc->sc_tty;
    834 
    835 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
    836 		return (EBUSY);
    837 
    838 	s = spltty();
    839 
    840 	/*
    841 	 * Do the following iff this is a first open.
    842 	 */
    843 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
    844 		struct termios t;
    845 		struct timeval now, diff;
    846 
    847 		tp->t_dev = dev;
    848 
    849 		if (sc->enable) {
    850 			if ((*sc->enable)(sc)) {
    851 				splx(s);
    852 				aprint_error_dev(sc->sc_dev,
    853 				    "device enable failed\n");
    854 				return EIO;
    855 			}
    856 			mutex_spin_enter(&sc->sc_lock);
    857 			sc->enabled = 1;
    858 			plcom_config(sc);
    859 		} else {
    860 			mutex_spin_enter(&sc->sc_lock);
    861 		}
    862 
    863 		if (timerisset(&sc->sc_hup_pending)) {
    864 			microuptime(&now);
    865 			while (timercmp(&now, &sc->sc_hup_pending, <)) {
    866 				timersub(&sc->sc_hup_pending, &now, &diff);
    867 				const int ms = diff.tv_sec * 100 +
    868 				    diff.tv_usec / 1000;
    869 				kpause(ttclos, false, uimax(mstohz(ms), 1),
    870 				    &sc->sc_lock);
    871 				microuptime(&now);
    872 			}
    873 			timerclear(&sc->sc_hup_pending);
    874 		}
    875 
    876 		/* Turn on interrupts. */
    877 		/* IER_ERXRDY | IER_ERLS | IER_EMSC;  */
    878 		/* Fetch the current modem control status, needed later. */
    879 		sc->sc_cr = PL01X_CR_UARTEN;
    880 		switch (pi->pi_type) {
    881 		case PLCOM_TYPE_PL010:
    882 			SET(sc->sc_cr,
    883 			    PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
    884 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    885 			sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
    886 			break;
    887 		case PLCOM_TYPE_PL011:
    888 		case PLCOM_TYPE_GENERIC_UART:
    889 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    890 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
    891 			    PL011_INT_MSMASK);
    892 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    893 			sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
    894 			break;
    895 		}
    896 
    897 		/* Clear PPS capture state on first open. */
    898 
    899 		mutex_spin_enter(&timecounter_lock);
    900 		sc->sc_ppsmask = 0;
    901 		sc->ppsparam.mode = 0;
    902 		mutex_spin_exit(&timecounter_lock);
    903 
    904 		mutex_spin_exit(&sc->sc_lock);
    905 
    906 		/*
    907 		 * Initialize the termios status to the defaults.  Add in the
    908 		 * sticky bits from TIOCSFLAGS.
    909 		 */
    910 		if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    911 			t.c_ospeed = plcomconsrate;
    912 			t.c_cflag = plcomconscflag;
    913 		} else {
    914 			t.c_ospeed = TTYDEF_SPEED;
    915 			t.c_cflag = TTYDEF_CFLAG;
    916 		}
    917 		t.c_ispeed = t.c_ospeed;
    918 
    919 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
    920 			SET(t.c_cflag, CLOCAL);
    921 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
    922 			SET(t.c_cflag, CRTSCTS);
    923 		if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
    924 			SET(t.c_cflag, MDMBUF);
    925 		/* Make sure plcomparam() will do something. */
    926 		tp->t_ospeed = 0;
    927 		(void) plcomparam(tp, &t);
    928 		tp->t_iflag = TTYDEF_IFLAG;
    929 		tp->t_oflag = TTYDEF_OFLAG;
    930 		tp->t_lflag = TTYDEF_LFLAG;
    931 		ttychars(tp);
    932 		ttsetwater(tp);
    933 
    934 		mutex_spin_enter(&sc->sc_lock);
    935 
    936 		/*
    937 		 * Turn on DTR.  We must always do this, even if carrier is not
    938 		 * present, because otherwise we'd have to use TIOCSDTR
    939 		 * immediately after setting CLOCAL, which applications do not
    940 		 * expect.  We always assert DTR while the device is open
    941 		 * unless explicitly requested to deassert it.
    942 		 */
    943 		plcom_modem(sc, 1);
    944 
    945 		/* Clear the input ring, and unblock. */
    946 		sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
    947 		sc->sc_rbavail = plcom_rbuf_size;
    948 		plcom_iflush(sc);
    949 		CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
    950 		plcom_hwiflow(sc);
    951 
    952 #ifdef PLCOM_DEBUG
    953 		if (plcom_debug)
    954 			plcomstatus(sc, "plcomopen  ");
    955 #endif
    956 
    957 		mutex_spin_exit(&sc->sc_lock);
    958 	}
    959 
    960 	splx(s);
    961 
    962 	error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
    963 	if (error)
    964 		goto bad;
    965 
    966 	error = (*tp->t_linesw->l_open)(dev, tp);
    967 	if (error)
    968 		goto bad;
    969 
    970 	return 0;
    971 
    972 bad:
    973 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
    974 		/*
    975 		 * We failed to open the device, and nobody else had it opened.
    976 		 * Clean up the state as appropriate.
    977 		 */
    978 		plcom_shutdown(sc);
    979 	}
    980 
    981 	return error;
    982 }
    983 
    984 int
    985 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
    986 {
    987 	struct plcom_softc *sc =
    988 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    989 	struct tty *tp = sc->sc_tty;
    990 
    991 	/* XXX This is for cons.c. */
    992 	if (!ISSET(tp->t_state, TS_ISOPEN))
    993 		return 0;
    994 
    995 	(*tp->t_linesw->l_close)(tp, flag);
    996 	ttyclose(tp);
    997 
    998 	if (PLCOM_ISALIVE(sc) == 0)
    999 		return 0;
   1000 
   1001 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
   1002 		/*
   1003 		 * Although we got a last close, the device may still be in
   1004 		 * use; e.g. if this was the dialout node, and there are still
   1005 		 * processes waiting for carrier on the non-dialout node.
   1006 		 */
   1007 		plcom_shutdown(sc);
   1008 	}
   1009 
   1010 	return 0;
   1011 }
   1012 
   1013 int
   1014 plcomread(dev_t dev, struct uio *uio, int flag)
   1015 {
   1016 	struct plcom_softc *sc =
   1017 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
   1018 	struct tty *tp = sc->sc_tty;
   1019 
   1020 	if (PLCOM_ISALIVE(sc) == 0)
   1021 		return EIO;
   1022 
   1023 	return (*tp->t_linesw->l_read)(tp, uio, flag);
   1024 }
   1025 
   1026 int
   1027 plcomwrite(dev_t dev, struct uio *uio, int flag)
   1028 {
   1029 	struct plcom_softc *sc =
   1030 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
   1031 	struct tty *tp = sc->sc_tty;
   1032 
   1033 	if (PLCOM_ISALIVE(sc) == 0)
   1034 		return EIO;
   1035 
   1036 	return (*tp->t_linesw->l_write)(tp, uio, flag);
   1037 }
   1038 
   1039 int
   1040 plcompoll(dev_t dev, int events, struct lwp *l)
   1041 {
   1042 	struct plcom_softc *sc =
   1043 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
   1044 	struct tty *tp = sc->sc_tty;
   1045 
   1046 	if (PLCOM_ISALIVE(sc) == 0)
   1047 		return EIO;
   1048 
   1049 	return (*tp->t_linesw->l_poll)(tp, events, l);
   1050 }
   1051 
   1052 struct tty *
   1053 plcomtty(dev_t dev)
   1054 {
   1055 	struct plcom_softc *sc =
   1056 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
   1057 	struct tty *tp = sc->sc_tty;
   1058 
   1059 	return tp;
   1060 }
   1061 
   1062 int
   1063 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1064 {
   1065 	struct plcom_softc *sc =
   1066 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
   1067 	struct tty *tp;
   1068 	int error;
   1069 
   1070 	if (sc == NULL)
   1071 		return ENXIO;
   1072 	if (PLCOM_ISALIVE(sc) == 0)
   1073 		return EIO;
   1074 
   1075 	tp = sc->sc_tty;
   1076 
   1077 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
   1078 	if (error != EPASSTHROUGH)
   1079 		return error;
   1080 
   1081 	error = ttioctl(tp, cmd, data, flag, l);
   1082 	if (error != EPASSTHROUGH)
   1083 		return error;
   1084 
   1085 	error = 0;
   1086 	switch (cmd) {
   1087 	case TIOCSFLAGS:
   1088 		error = kauth_authorize_device_tty(l->l_cred,
   1089 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
   1090 		break;
   1091 	default:
   1092 		/* nothing */
   1093 		break;
   1094 	}
   1095 	if (error) {
   1096 		return error;
   1097 	}
   1098 
   1099 	mutex_spin_enter(&sc->sc_lock);
   1100 	switch (cmd) {
   1101 	case TIOCSBRK:
   1102 		plcom_break(sc, 1);
   1103 		break;
   1104 
   1105 	case TIOCCBRK:
   1106 		plcom_break(sc, 0);
   1107 		break;
   1108 
   1109 	case TIOCSDTR:
   1110 		plcom_modem(sc, 1);
   1111 		break;
   1112 
   1113 	case TIOCCDTR:
   1114 		plcom_modem(sc, 0);
   1115 		break;
   1116 
   1117 	case TIOCGFLAGS:
   1118 		*(int *)data = sc->sc_swflags;
   1119 		break;
   1120 
   1121 	case TIOCSFLAGS:
   1122 		sc->sc_swflags = *(int *)data;
   1123 		break;
   1124 
   1125 	case TIOCMSET:
   1126 	case TIOCMBIS:
   1127 	case TIOCMBIC:
   1128 		tiocm_to_plcom(sc, cmd, *(int *)data);
   1129 		break;
   1130 
   1131 	case TIOCMGET:
   1132 		*(int *)data = plcom_to_tiocm(sc);
   1133 		break;
   1134 
   1135 	case PPS_IOC_CREATE:
   1136 		break;
   1137 
   1138 	case PPS_IOC_DESTROY:
   1139 		break;
   1140 
   1141 	case PPS_IOC_GETPARAMS: {
   1142 		pps_params_t *pp;
   1143 		pp = (pps_params_t *)data;
   1144 		mutex_spin_enter(&timecounter_lock);
   1145 		*pp = sc->ppsparam;
   1146 		mutex_spin_exit(&timecounter_lock);
   1147 		break;
   1148 	}
   1149 
   1150 	case PPS_IOC_SETPARAMS: {
   1151 	  	pps_params_t *pp;
   1152 		int mode;
   1153 		pp = (pps_params_t *)data;
   1154 		mutex_spin_enter(&timecounter_lock);
   1155 		if (pp->mode & ~ppscap) {
   1156 			error = EINVAL;
   1157 			mutex_spin_exit(&timecounter_lock);
   1158 			break;
   1159 		}
   1160 		sc->ppsparam = *pp;
   1161 	 	/*
   1162 		 * Compute msr masks from user-specified timestamp state.
   1163 		 */
   1164 		mode = sc->ppsparam.mode;
   1165 #ifdef	PPS_SYNC
   1166 		if (mode & PPS_HARDPPSONASSERT) {
   1167 			mode |= PPS_CAPTUREASSERT;
   1168 			/* XXX revoke any previous HARDPPS source */
   1169 		}
   1170 		if (mode & PPS_HARDPPSONCLEAR) {
   1171 			mode |= PPS_CAPTURECLEAR;
   1172 			/* XXX revoke any previous HARDPPS source */
   1173 		}
   1174 #endif	/* PPS_SYNC */
   1175 		switch (mode & PPS_CAPTUREBOTH) {
   1176 		case 0:
   1177 			sc->sc_ppsmask = 0;
   1178 			break;
   1179 
   1180 		case PPS_CAPTUREASSERT:
   1181 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1182 			sc->sc_ppsassert = PL01X_MSR_DCD;
   1183 			sc->sc_ppsclear = -1;
   1184 			break;
   1185 
   1186 		case PPS_CAPTURECLEAR:
   1187 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1188 			sc->sc_ppsassert = -1;
   1189 			sc->sc_ppsclear = 0;
   1190 			break;
   1191 
   1192 		case PPS_CAPTUREBOTH:
   1193 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1194 			sc->sc_ppsassert = PL01X_MSR_DCD;
   1195 			sc->sc_ppsclear = 0;
   1196 			break;
   1197 
   1198 		default:
   1199 			error = EINVAL;
   1200 			break;
   1201 		}
   1202 		mutex_spin_exit(&timecounter_lock);
   1203 		break;
   1204 	}
   1205 
   1206 	case PPS_IOC_GETCAP:
   1207 		*(int*)data = ppscap;
   1208 		break;
   1209 
   1210 	case PPS_IOC_FETCH: {
   1211 		pps_info_t *pi;
   1212 		pi = (pps_info_t *)data;
   1213 		mutex_spin_enter(&timecounter_lock);
   1214 		*pi = sc->ppsinfo;
   1215 		mutex_spin_exit(&timecounter_lock);
   1216 		break;
   1217 	}
   1218 
   1219 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
   1220 		/*
   1221 		 * Some GPS clocks models use the falling rather than
   1222 		 * rising edge as the on-the-second signal.
   1223 		 * The old API has no way to specify PPS polarity.
   1224 		 */
   1225 		mutex_spin_enter(&timecounter_lock);
   1226 		sc->sc_ppsmask = PL01X_MSR_DCD;
   1227 #ifndef PPS_TRAILING_EDGE
   1228 		sc->sc_ppsassert = PL01X_MSR_DCD;
   1229 		sc->sc_ppsclear = -1;
   1230 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
   1231 		    &sc->ppsinfo.assert_timestamp);
   1232 #else
   1233 		sc->sc_ppsassert = -1
   1234 		sc->sc_ppsclear = 0;
   1235 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
   1236 		    &sc->ppsinfo.clear_timestamp);
   1237 #endif
   1238 		mutex_spin_exit(&timecounter_lock);
   1239 		break;
   1240 
   1241 	default:
   1242 		error = EPASSTHROUGH;
   1243 		break;
   1244 	}
   1245 
   1246 	mutex_spin_exit(&sc->sc_lock);
   1247 
   1248 #ifdef PLCOM_DEBUG
   1249 	if (plcom_debug)
   1250 		plcomstatus(sc, "plcomioctl ");
   1251 #endif
   1252 
   1253 	return error;
   1254 }
   1255 
   1256 static inline void
   1257 plcom_schedrx(struct plcom_softc *sc)
   1258 {
   1259 
   1260 	sc->sc_rx_ready = 1;
   1261 
   1262 	/* Wake up the poller. */
   1263 	softint_schedule(sc->sc_si);
   1264 }
   1265 
   1266 void
   1267 plcom_break(struct plcom_softc *sc, int onoff)
   1268 {
   1269 
   1270 	if (onoff)
   1271 		SET(sc->sc_lcr, PL01X_LCR_BRK);
   1272 	else
   1273 		CLR(sc->sc_lcr, PL01X_LCR_BRK);
   1274 
   1275 	if (!sc->sc_heldchange) {
   1276 		if (sc->sc_tx_busy) {
   1277 			sc->sc_heldtbc = sc->sc_tbc;
   1278 			sc->sc_tbc = 0;
   1279 			sc->sc_heldchange = 1;
   1280 		} else
   1281 			plcom_loadchannelregs(sc);
   1282 	}
   1283 }
   1284 
   1285 void
   1286 plcom_modem(struct plcom_softc *sc, int onoff)
   1287 {
   1288 
   1289 	if (sc->sc_mcr_dtr == 0)
   1290 		return;
   1291 
   1292 	if (onoff)
   1293 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
   1294 	else
   1295 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
   1296 
   1297 	if (!sc->sc_heldchange) {
   1298 		if (sc->sc_tx_busy) {
   1299 			sc->sc_heldtbc = sc->sc_tbc;
   1300 			sc->sc_tbc = 0;
   1301 			sc->sc_heldchange = 1;
   1302 		} else
   1303 			plcom_loadchannelregs(sc);
   1304 	}
   1305 }
   1306 
   1307 void
   1308 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
   1309 {
   1310 	u_char plcombits;
   1311 
   1312 	plcombits = 0;
   1313 	if (ISSET(ttybits, TIOCM_DTR))
   1314 		SET(plcombits, PL01X_MCR_DTR);
   1315 	if (ISSET(ttybits, TIOCM_RTS))
   1316 		SET(plcombits, PL01X_MCR_RTS);
   1317 
   1318 	switch (how) {
   1319 	case TIOCMBIC:
   1320 		CLR(sc->sc_mcr, plcombits);
   1321 		break;
   1322 
   1323 	case TIOCMBIS:
   1324 		SET(sc->sc_mcr, plcombits);
   1325 		break;
   1326 
   1327 	case TIOCMSET:
   1328 		CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
   1329 		SET(sc->sc_mcr, plcombits);
   1330 		break;
   1331 	}
   1332 
   1333 	if (!sc->sc_heldchange) {
   1334 		if (sc->sc_tx_busy) {
   1335 			sc->sc_heldtbc = sc->sc_tbc;
   1336 			sc->sc_tbc = 0;
   1337 			sc->sc_heldchange = 1;
   1338 		} else
   1339 			plcom_loadchannelregs(sc);
   1340 	}
   1341 }
   1342 
   1343 int
   1344 plcom_to_tiocm(struct plcom_softc *sc)
   1345 {
   1346 	u_char plcombits;
   1347 	int ttybits = 0;
   1348 
   1349 	plcombits = sc->sc_mcr;
   1350 	if (ISSET(plcombits, PL01X_MCR_DTR))
   1351 		SET(ttybits, TIOCM_DTR);
   1352 	if (ISSET(plcombits, PL01X_MCR_RTS))
   1353 		SET(ttybits, TIOCM_RTS);
   1354 
   1355 	plcombits = sc->sc_msr;
   1356 	if (ISSET(plcombits, PL01X_MSR_DCD))
   1357 		SET(ttybits, TIOCM_CD);
   1358 	if (ISSET(plcombits, PL01X_MSR_CTS))
   1359 		SET(ttybits, TIOCM_CTS);
   1360 	if (ISSET(plcombits, PL01X_MSR_DSR))
   1361 		SET(ttybits, TIOCM_DSR);
   1362 	if (ISSET(plcombits, PL011_MSR_RI))
   1363 		SET(ttybits, TIOCM_RI);
   1364 
   1365 	if (sc->sc_cr != 0)
   1366 		SET(ttybits, TIOCM_LE);
   1367 
   1368 	return ttybits;
   1369 }
   1370 
   1371 static uint32_t
   1372 cflag2lcr(tcflag_t cflag)
   1373 {
   1374 	uint32_t lcr = 0;
   1375 
   1376 	switch (ISSET(cflag, CSIZE)) {
   1377 	case CS5:
   1378 		SET(lcr, PL01X_LCR_5BITS);
   1379 		break;
   1380 	case CS6:
   1381 		SET(lcr, PL01X_LCR_6BITS);
   1382 		break;
   1383 	case CS7:
   1384 		SET(lcr, PL01X_LCR_7BITS);
   1385 		break;
   1386 	case CS8:
   1387 		SET(lcr, PL01X_LCR_8BITS);
   1388 		break;
   1389 	}
   1390 	if (ISSET(cflag, PARENB)) {
   1391 		SET(lcr, PL01X_LCR_PEN);
   1392 		if (!ISSET(cflag, PARODD))
   1393 			SET(lcr, PL01X_LCR_EPS);
   1394 	}
   1395 	if (ISSET(cflag, CSTOPB))
   1396 		SET(lcr, PL01X_LCR_STP2);
   1397 
   1398 	return lcr;
   1399 }
   1400 
   1401 int
   1402 plcomparam(struct tty *tp, struct termios *t)
   1403 {
   1404 	struct plcom_softc *sc =
   1405 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1406 	struct plcom_instance *pi = &sc->sc_pi;
   1407 	int ospeed = -1, lvl;
   1408 	uint32_t lcr;
   1409 
   1410 	if (PLCOM_ISALIVE(sc) == 0)
   1411 		return EIO;
   1412 
   1413 	switch (pi->pi_type) {
   1414 	case PLCOM_TYPE_PL010:
   1415 		ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
   1416 		break;
   1417 	case PLCOM_TYPE_PL011:
   1418 	case PLCOM_TYPE_GENERIC_UART:
   1419 		ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
   1420 		break;
   1421 	}
   1422 
   1423 	/* Check requested parameters. */
   1424 	if (ospeed < 0)
   1425 		return EINVAL;
   1426 	if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
   1427 		return EINVAL;
   1428 
   1429 	/*
   1430 	 * For the console, always force CLOCAL and !HUPCL, so that the port
   1431 	 * is always active.
   1432 	 */
   1433 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
   1434 	    ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
   1435 		SET(t->c_cflag, CLOCAL);
   1436 		CLR(t->c_cflag, HUPCL);
   1437 	}
   1438 
   1439 	/*
   1440 	 * If there were no changes, don't do anything.  This avoids dropping
   1441 	 * input and improves performance when all we did was frob things like
   1442 	 * VMIN and VTIME.
   1443 	 */
   1444 	if (tp->t_ospeed == t->c_ospeed &&
   1445 	    tp->t_cflag == t->c_cflag)
   1446 		return 0;
   1447 
   1448 	lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
   1449 
   1450 	mutex_spin_enter(&sc->sc_lock);
   1451 
   1452 	sc->sc_lcr = lcr;
   1453 
   1454 	/*
   1455 	 * PL010 has a fixed-length FIFO trigger point.
   1456 	 */
   1457 	if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
   1458 		sc->sc_fifo = 1;
   1459 	else
   1460 		sc->sc_fifo = 0;
   1461 
   1462 	if (sc->sc_fifo) {
   1463 		SET(sc->sc_lcr, PL01X_LCR_FEN);
   1464 
   1465 		switch (pi->pi_type) {
   1466 		case PLCOM_TYPE_PL010:
   1467 			sc->sc_ifls = 0;
   1468 			break;
   1469 		case PLCOM_TYPE_PL011:
   1470 		case PLCOM_TYPE_GENERIC_UART:
   1471 			lvl = PL011_IFLS_3QUARTERS;
   1472 			sc->sc_ifls = PL011_IFLS_RXIFLS(lvl);
   1473 
   1474 			lvl = PL011_IFLS_1QUARTER;
   1475 			sc->sc_ifls |= PL011_IFLS_TXIFLS(lvl);
   1476 			sc->sc_burstlen = uimin(sc->sc_fifolen * 3 / 4, 1);
   1477 			break;
   1478 		}
   1479 	} else
   1480 		sc->sc_ifls = 0;
   1481 
   1482 	/*
   1483 	 * If we're not in a mode that assumes a connection is present, then
   1484 	 * ignore carrier changes.
   1485 	 */
   1486 	if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
   1487 		sc->sc_msr_dcd = 0;
   1488 	else
   1489 		sc->sc_msr_dcd = PL01X_MSR_DCD;
   1490 	/*
   1491 	 * Set the flow control pins depending on the current flow control
   1492 	 * mode.
   1493 	 */
   1494 	if (ISSET(t->c_cflag, CRTSCTS)) {
   1495 		sc->sc_mcr_dtr = PL01X_MCR_DTR;
   1496 
   1497 		switch (pi->pi_type) {
   1498 		case PLCOM_TYPE_PL010:
   1499 			sc->sc_mcr_rts = PL01X_MCR_RTS;
   1500 			sc->sc_msr_cts = PL01X_MSR_CTS;
   1501 			break;
   1502 		case PLCOM_TYPE_PL011:
   1503 		case PLCOM_TYPE_GENERIC_UART:
   1504 			sc->sc_mcr_rts = 0;
   1505 			sc->sc_msr_cts = 0;
   1506 			SET(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
   1507 			break;
   1508 		}
   1509 	} else if (ISSET(t->c_cflag, MDMBUF)) {
   1510 		/*
   1511 		 * For DTR/DCD flow control, make sure we don't toggle DTR for
   1512 		 * carrier detection.
   1513 		 */
   1514 		sc->sc_mcr_dtr = 0;
   1515 		sc->sc_mcr_rts = PL01X_MCR_DTR;
   1516 		sc->sc_msr_cts = PL01X_MSR_DCD;
   1517 
   1518 		switch (pi->pi_type) {
   1519 		case PLCOM_TYPE_PL011:
   1520 			CLR(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
   1521 			break;
   1522 		}
   1523 	} else {
   1524 		/*
   1525 		 * If no flow control, then always set RTS.  This will make
   1526 		 * the other side happy if it mistakenly thinks we're doing
   1527 		 * RTS/CTS flow control.
   1528 		 */
   1529 		sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
   1530 		sc->sc_mcr_rts = 0;
   1531 		sc->sc_msr_cts = 0;
   1532 		if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
   1533 			SET(sc->sc_mcr, PL01X_MCR_RTS);
   1534 		else
   1535 			CLR(sc->sc_mcr, PL01X_MCR_RTS);
   1536 		switch (pi->pi_type) {
   1537 		case PLCOM_TYPE_PL011:
   1538 		case PLCOM_TYPE_GENERIC_UART:
   1539 			CLR(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
   1540 			break;
   1541 		}
   1542 	}
   1543 	sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
   1544 
   1545 #if 0
   1546 	if (ospeed == 0)
   1547 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
   1548 	else
   1549 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
   1550 #endif
   1551 
   1552 	switch (pi->pi_type) {
   1553 	case PLCOM_TYPE_PL010:
   1554 		sc->sc_ratel = ospeed & 0xff;
   1555 		sc->sc_rateh = (ospeed >> 8) & 0xff;
   1556 		break;
   1557 	case PLCOM_TYPE_PL011:
   1558 	case PLCOM_TYPE_GENERIC_UART:
   1559 		sc->sc_ratel = ospeed & ((1 << 6) - 1);
   1560 		sc->sc_rateh = ospeed >> 6;
   1561 		break;
   1562 	}
   1563 
   1564 	/* And copy to tty. */
   1565 	tp->t_ispeed = t->c_ospeed;
   1566 	tp->t_ospeed = t->c_ospeed;
   1567 	tp->t_cflag = t->c_cflag;
   1568 
   1569 	if (!sc->sc_heldchange) {
   1570 		if (sc->sc_tx_busy) {
   1571 			sc->sc_heldtbc = sc->sc_tbc;
   1572 			sc->sc_tbc = 0;
   1573 			sc->sc_heldchange = 1;
   1574 		} else
   1575 			plcom_loadchannelregs(sc);
   1576 	}
   1577 
   1578 	if (!ISSET(t->c_cflag, CHWFLOW)) {
   1579 		/* Disable the high water mark. */
   1580 		sc->sc_r_hiwat = 0;
   1581 		sc->sc_r_lowat = 0;
   1582 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
   1583 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1584 			plcom_schedrx(sc);
   1585 		}
   1586 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
   1587 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
   1588 			plcom_hwiflow(sc);
   1589 		}
   1590 	} else {
   1591 		sc->sc_r_hiwat = plcom_rbuf_hiwat;
   1592 		sc->sc_r_lowat = plcom_rbuf_lowat;
   1593 	}
   1594 
   1595 	mutex_spin_exit(&sc->sc_lock);
   1596 
   1597 	/*
   1598 	 * Update the tty layer's idea of the carrier bit, in case we changed
   1599 	 * CLOCAL or MDMBUF.  We don't hang up here; we only do that by
   1600 	 * explicit request.
   1601 	 */
   1602 	(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
   1603 
   1604 #ifdef PLCOM_DEBUG
   1605 	if (plcom_debug)
   1606 		plcomstatus(sc, "plcomparam ");
   1607 #endif
   1608 
   1609 	if (!ISSET(t->c_cflag, CHWFLOW)) {
   1610 		if (sc->sc_tx_stopped) {
   1611 			sc->sc_tx_stopped = 0;
   1612 			plcomstart(tp);
   1613 		}
   1614 	}
   1615 
   1616 	return 0;
   1617 }
   1618 
   1619 void
   1620 plcom_iflush(struct plcom_softc *sc)
   1621 {
   1622 	struct plcom_instance *pi = &sc->sc_pi;
   1623 #ifdef DIAGNOSTIC
   1624 	int reg;
   1625 #endif
   1626 	int timo;
   1627 
   1628 #ifdef DIAGNOSTIC
   1629 	reg = 0xffff;
   1630 #endif
   1631 	timo = 50000;
   1632 	/* flush any pending I/O */
   1633 	while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
   1634 	    && --timo)
   1635 #ifdef DIAGNOSTIC
   1636 		reg =
   1637 #else
   1638 		    (void)
   1639 #endif
   1640 		    PREAD1(pi, PL01XCOM_DR);
   1641 #ifdef DIAGNOSTIC
   1642 	if (!timo)
   1643 		aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
   1644 		    reg);
   1645 #endif
   1646 }
   1647 
   1648 void
   1649 plcom_loadchannelregs(struct plcom_softc *sc)
   1650 {
   1651 	struct plcom_instance *pi = &sc->sc_pi;
   1652 	uint16_t ifls;
   1653 
   1654 	/* XXXXX necessary? */
   1655 	plcom_iflush(sc);
   1656 
   1657 	switch (pi->pi_type) {
   1658 	case PLCOM_TYPE_PL010:
   1659 		PWRITE1(pi, PL010COM_CR, 0);
   1660 		if (sc->sc_frequency != 0) {
   1661 			PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
   1662 			PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
   1663 		}
   1664 		PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
   1665 
   1666 		/* XXX device_unit() abuse */
   1667 		if (sc->sc_set_mcr)
   1668 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
   1669 			    device_unit(sc->sc_dev),
   1670 			    sc->sc_mcr_active = sc->sc_mcr);
   1671 
   1672 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1673 		break;
   1674 
   1675 	case PLCOM_TYPE_PL011:
   1676 	case PLCOM_TYPE_GENERIC_UART:
   1677 		PWRITE2(pi, PL011COM_CR, 0);
   1678 		if (sc->sc_frequency != 0) {
   1679 			PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
   1680 			PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
   1681 		}
   1682 
   1683 		/* Bits 6..15 are reserved, don't modify, read as zero */
   1684 		ifls = PREAD2(pi, PL011COM_IFLS) & ~PL011_IFLS_MASK;
   1685 		ifls |= sc->sc_ifls & PL011_IFLS_MASK;
   1686 		PWRITE2(pi, PL011COM_IFLS, ifls);
   1687 
   1688 		PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
   1689 		sc->sc_mcr_active = sc->sc_mcr;
   1690 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
   1691 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
   1692 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
   1693 		break;
   1694 	}
   1695 }
   1696 
   1697 int
   1698 plcomhwiflow(struct tty *tp, int block)
   1699 {
   1700 	struct plcom_softc *sc =
   1701 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1702 
   1703 	if (PLCOM_ISALIVE(sc) == 0)
   1704 		return 0;
   1705 
   1706 	if (sc->sc_mcr_rts == 0)
   1707 		return 0;
   1708 
   1709 	mutex_spin_enter(&sc->sc_lock);
   1710 
   1711 	if (block) {
   1712 		if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1713 			SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
   1714 			plcom_hwiflow(sc);
   1715 		}
   1716 	} else {
   1717 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
   1718 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1719 			plcom_schedrx(sc);
   1720 		}
   1721 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1722 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
   1723 			plcom_hwiflow(sc);
   1724 		}
   1725 	}
   1726 
   1727 	mutex_spin_exit(&sc->sc_lock);
   1728 	return 1;
   1729 }
   1730 
   1731 /*
   1732  * (un)block input via hw flowcontrol
   1733  */
   1734 void
   1735 plcom_hwiflow(struct plcom_softc *sc)
   1736 {
   1737 	struct plcom_instance *pi = &sc->sc_pi;
   1738 
   1739 	if (sc->sc_mcr_rts == 0)
   1740 		return;
   1741 
   1742 	if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
   1743 		CLR(sc->sc_mcr, sc->sc_mcr_rts);
   1744 		CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
   1745 	} else {
   1746 		SET(sc->sc_mcr, sc->sc_mcr_rts);
   1747 		SET(sc->sc_mcr_active, sc->sc_mcr_rts);
   1748 	}
   1749 	switch (pi->pi_type) {
   1750 	case PLCOM_TYPE_PL010:
   1751 		if (sc->sc_set_mcr)
   1752 			/* XXX device_unit() abuse */
   1753 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
   1754 			     device_unit(sc->sc_dev), sc->sc_mcr_active);
   1755 		break;
   1756 	case PLCOM_TYPE_PL011:
   1757 	case PLCOM_TYPE_GENERIC_UART:
   1758 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
   1759 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
   1760 		PWRITE2(pi, PL011COM_CR, sc->sc_cr);
   1761 		break;
   1762 	}
   1763 }
   1764 
   1765 
   1766 void
   1767 plcomstart(struct tty *tp)
   1768 {
   1769 	struct plcom_softc *sc =
   1770 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1771 	struct plcom_instance *pi = &sc->sc_pi;
   1772 
   1773 	if (PLCOM_ISALIVE(sc) == 0)
   1774 		return;
   1775 
   1776 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
   1777 		return;
   1778 	if (sc->sc_tx_stopped)
   1779 		return;
   1780 
   1781 	if (!ttypull(tp))
   1782 		return;
   1783 
   1784 	/* Grab the first contiguous region of buffer space. */
   1785 	{
   1786 		u_char *tba;
   1787 		int tbc;
   1788 
   1789 		tba = tp->t_outq.c_cf;
   1790 		tbc = ndqb(&tp->t_outq, 0);
   1791 
   1792 		mutex_spin_enter(&sc->sc_lock);
   1793 
   1794 		sc->sc_tba = tba;
   1795 		sc->sc_tbc = tbc;
   1796 	}
   1797 
   1798 	SET(tp->t_state, TS_BUSY);
   1799 	sc->sc_tx_busy = 1;
   1800 
   1801 	/* Enable transmit completion interrupts if necessary. */
   1802 	switch (pi->pi_type) {
   1803 	case PLCOM_TYPE_PL010:
   1804 		if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
   1805 			SET(sc->sc_cr, PL010_CR_TIE);
   1806 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1807 		}
   1808 		break;
   1809 	case PLCOM_TYPE_PL011:
   1810 	case PLCOM_TYPE_GENERIC_UART:
   1811 		if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
   1812 			SET(sc->sc_imsc, PL011_INT_TX);
   1813 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   1814 		}
   1815 		break;
   1816 	}
   1817 
   1818 	/* Output the first chunk of the contiguous buffer. */
   1819 	{
   1820 		int n;
   1821 
   1822 		n = sc->sc_tbc;
   1823 		if (n > sc->sc_burstlen)
   1824 			n = sc->sc_burstlen;
   1825 		PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
   1826 		sc->sc_tbc -= n;
   1827 		sc->sc_tba += n;
   1828 	}
   1829 	mutex_spin_exit(&sc->sc_lock);
   1830 }
   1831 
   1832 /*
   1833  * Stop output on a line.
   1834  */
   1835 void
   1836 plcomstop(struct tty *tp, int flag)
   1837 {
   1838 	struct plcom_softc *sc =
   1839 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1840 
   1841 	mutex_spin_enter(&sc->sc_lock);
   1842 	if (ISSET(tp->t_state, TS_BUSY)) {
   1843 		/* Stop transmitting at the next chunk. */
   1844 		sc->sc_tbc = 0;
   1845 		sc->sc_heldtbc = 0;
   1846 		if (!ISSET(tp->t_state, TS_TTSTOP))
   1847 			SET(tp->t_state, TS_FLUSH);
   1848 	}
   1849 	mutex_spin_exit(&sc->sc_lock);
   1850 }
   1851 
   1852 void
   1853 plcomdiag(void *arg)
   1854 {
   1855 	struct plcom_softc *sc = arg;
   1856 	int overflows, floods;
   1857 
   1858 	mutex_spin_enter(&sc->sc_lock);
   1859 	overflows = sc->sc_overflows;
   1860 	sc->sc_overflows = 0;
   1861 	floods = sc->sc_floods;
   1862 	sc->sc_floods = 0;
   1863 	sc->sc_errors = 0;
   1864 	mutex_spin_exit(&sc->sc_lock);
   1865 
   1866 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
   1867 	    device_xname(sc->sc_dev),
   1868 	    overflows, overflows == 1 ? "" : "s",
   1869 	    floods, floods == 1 ? "" : "s");
   1870 }
   1871 
   1872 static inline void
   1873 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
   1874 {
   1875 	int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
   1876 	struct plcom_instance *pi = &sc->sc_pi;
   1877 	u_char *get, *end;
   1878 	u_int cc, scc;
   1879 	u_char rsr;
   1880 	int code;
   1881 
   1882 	end = sc->sc_ebuf;
   1883 	get = sc->sc_rbget;
   1884 	scc = cc = plcom_rbuf_size - sc->sc_rbavail;
   1885 
   1886 	if (cc == plcom_rbuf_size) {
   1887 		sc->sc_floods++;
   1888 		if (sc->sc_errors++ == 0)
   1889 			callout_reset(&sc->sc_diag_callout, 60 * hz,
   1890 			    plcomdiag, sc);
   1891 	}
   1892 
   1893 	while (cc) {
   1894 		code = get[0];
   1895 		rsr = get[1];
   1896 		if (ISSET(rsr, PL01X_RSR_ERROR)) {
   1897 			if (ISSET(rsr, PL01X_RSR_OE)) {
   1898 				sc->sc_overflows++;
   1899 				if (sc->sc_errors++ == 0)
   1900 					callout_reset(&sc->sc_diag_callout,
   1901 					    60 * hz, plcomdiag, sc);
   1902 			}
   1903 			if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
   1904 				SET(code, TTY_FE);
   1905 			if (ISSET(rsr, PL01X_RSR_PE))
   1906 				SET(code, TTY_PE);
   1907 		}
   1908 		if ((*rint)(code, tp) == -1) {
   1909 			/*
   1910 			 * The line discipline's buffer is out of space.
   1911 			 */
   1912 			if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1913 				/*
   1914 				 * We're either not using flow control, or the
   1915 				 * line discipline didn't tell us to block for
   1916 				 * some reason.  Either way, we have no way to
   1917 				 * know when there's more space available, so
   1918 				 * just drop the rest of the data.
   1919 				 */
   1920 				get += cc << 1;
   1921 				if (get >= end)
   1922 					get -= plcom_rbuf_size << 1;
   1923 				cc = 0;
   1924 			} else {
   1925 				/*
   1926 				 * Don't schedule any more receive processing
   1927 				 * until the line discipline tells us there's
   1928 				 * space available (through plcomhwiflow()).
   1929 				 * Leave the rest of the data in the input
   1930 				 * buffer.
   1931 				 */
   1932 				SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1933 			}
   1934 			break;
   1935 		}
   1936 		get += 2;
   1937 		if (get >= end)
   1938 			get = sc->sc_rbuf;
   1939 		cc--;
   1940 	}
   1941 	if (cc != scc) {
   1942 		sc->sc_rbget = get;
   1943 		mutex_spin_enter(&sc->sc_lock);
   1944 
   1945 		cc = sc->sc_rbavail += scc - cc;
   1946 		/* Buffers should be ok again, release possible block. */
   1947 		if (cc >= sc->sc_r_lowat) {
   1948 			if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
   1949 				CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
   1950 				switch (pi->pi_type) {
   1951 				case PLCOM_TYPE_PL010:
   1952 					SET(sc->sc_cr,
   1953 					    PL010_CR_RIE | PL010_CR_RTIE);
   1954 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1955 					break;
   1956 				case PLCOM_TYPE_PL011:
   1957 				case PLCOM_TYPE_GENERIC_UART:
   1958 					SET(sc->sc_imsc,
   1959 					    PL011_INT_RX | PL011_INT_RT);
   1960 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   1961 					break;
   1962 				}
   1963 			}
   1964 			if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
   1965 				CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
   1966 				plcom_hwiflow(sc);
   1967 			}
   1968 		}
   1969 		mutex_spin_exit(&sc->sc_lock);
   1970 	}
   1971 }
   1972 
   1973 static inline void
   1974 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
   1975 {
   1976 
   1977 	CLR(tp->t_state, TS_BUSY);
   1978 	if (ISSET(tp->t_state, TS_FLUSH))
   1979 		CLR(tp->t_state, TS_FLUSH);
   1980 	else
   1981 		ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
   1982 	(*tp->t_linesw->l_start)(tp);
   1983 }
   1984 
   1985 static inline void
   1986 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
   1987 {
   1988 	u_char msr, delta;
   1989 
   1990 	mutex_spin_enter(&sc->sc_lock);
   1991 	msr = sc->sc_msr;
   1992 	delta = sc->sc_msr_delta;
   1993 	sc->sc_msr_delta = 0;
   1994 	mutex_spin_exit(&sc->sc_lock);
   1995 
   1996 	if (ISSET(delta, sc->sc_msr_dcd)) {
   1997 		/*
   1998 		 * Inform the tty layer that carrier detect changed.
   1999 		 */
   2000 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
   2001 	}
   2002 
   2003 	if (ISSET(delta, sc->sc_msr_cts)) {
   2004 		/* Block or unblock output according to flow control. */
   2005 		if (ISSET(msr, sc->sc_msr_cts)) {
   2006 			sc->sc_tx_stopped = 0;
   2007 			(*tp->t_linesw->l_start)(tp);
   2008 		} else {
   2009 			sc->sc_tx_stopped = 1;
   2010 		}
   2011 	}
   2012 
   2013 #ifdef PLCOM_DEBUG
   2014 	if (plcom_debug)
   2015 		plcomstatus(sc, "plcom_stsoft");
   2016 #endif
   2017 }
   2018 
   2019 void
   2020 plcomsoft(void *arg)
   2021 {
   2022 	struct plcom_softc *sc = arg;
   2023 	struct tty *tp;
   2024 
   2025 	if (PLCOM_ISALIVE(sc) == 0)
   2026 		return;
   2027 
   2028 	tp = sc->sc_tty;
   2029 
   2030 	if (sc->sc_rx_ready) {
   2031 		sc->sc_rx_ready = 0;
   2032 		plcom_rxsoft(sc, tp);
   2033 	}
   2034 
   2035 	if (sc->sc_st_check) {
   2036 		sc->sc_st_check = 0;
   2037 		plcom_stsoft(sc, tp);
   2038 	}
   2039 
   2040 	if (sc->sc_tx_done) {
   2041 		sc->sc_tx_done = 0;
   2042 		plcom_txsoft(sc, tp);
   2043 	}
   2044 }
   2045 
   2046 bool
   2047 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
   2048 {
   2049 	bool ret = false;
   2050 	u_int stat = 0;
   2051 
   2052 	switch (pi->pi_type) {
   2053 	case PLCOM_TYPE_PL010:
   2054 		stat = PREAD1(pi, PL010COM_IIR);
   2055 		ret = ISSET(stat, PL010_IIR_IMASK);
   2056 		break;
   2057 	case PLCOM_TYPE_PL011:
   2058 	case PLCOM_TYPE_GENERIC_UART:
   2059 		stat = PREAD4(pi, PL011COM_MIS);
   2060 		ret = ISSET(stat, PL011_INT_ALLMASK);
   2061 		break;
   2062 	}
   2063 	*istatus = stat;
   2064 
   2065 	return ret;
   2066 }
   2067 
   2068 int
   2069 plcomintr(void *arg)
   2070 {
   2071 	struct plcom_softc *sc = arg;
   2072 	struct plcom_instance *pi = &sc->sc_pi;
   2073 	u_char *put, *end;
   2074 	u_int cc;
   2075 	u_int istatus = 0;
   2076 	u_char rsr;
   2077 	bool intr = false;
   2078 
   2079 	PLCOM_BARRIER(pi, BR | BW);
   2080 
   2081 	if (PLCOM_ISALIVE(sc) == 0)
   2082 		return 0;
   2083 
   2084 	mutex_spin_enter(&sc->sc_lock);
   2085 	intr = plcom_intstatus(pi, &istatus);
   2086 	if (!intr) {
   2087 		mutex_spin_exit(&sc->sc_lock);
   2088 		return 0;
   2089 	}
   2090 
   2091 	end = sc->sc_ebuf;
   2092 	put = sc->sc_rbput;
   2093 	cc = sc->sc_rbavail;
   2094 
   2095 	do {
   2096 		u_int msr = 0, delta, fr;
   2097 		bool rxintr = false, txintr = false, msintr;
   2098 
   2099 		/* don't need RI here*/
   2100 		fr = PREAD1(pi, PL01XCOM_FR);
   2101 
   2102 		if (!ISSET(fr, PL01X_FR_RXFE) &&
   2103 		    !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
   2104 			while (cc > 0) {
   2105 				int cn_trapped = 0;
   2106 				put[0] = PREAD1(pi, PL01XCOM_DR);
   2107 				rsr = PREAD1(pi, PL01XCOM_RSR);
   2108 				/* Clear any error status.  */
   2109 				if (ISSET(rsr, PL01X_RSR_ERROR))
   2110 					PWRITE1(pi, PL01XCOM_ECR, 0);
   2111 
   2112 				if (ISSET(rsr, PL01X_RSR_BE)) {
   2113 					cn_trapped = 0;
   2114 					cn_check_magic(sc->sc_tty->t_dev,
   2115 					    CNC_BREAK, plcom_cnm_state);
   2116 					if (cn_trapped)
   2117 						continue;
   2118 #if defined(KGDB)
   2119 					if (ISSET(sc->sc_hwflags,
   2120 					    PLCOM_HW_KGDB)) {
   2121 						kgdb_connect(1);
   2122 						continue;
   2123 					}
   2124 #endif
   2125 				}
   2126 
   2127 				put[1] = rsr;
   2128 				cn_trapped = 0;
   2129 				cn_check_magic(sc->sc_tty->t_dev, put[0],
   2130 				    plcom_cnm_state);
   2131 				if (cn_trapped) {
   2132 					fr = PREAD1(pi, PL01XCOM_FR);
   2133 					if (ISSET(fr, PL01X_FR_RXFE))
   2134 						break;
   2135 
   2136 					continue;
   2137 				}
   2138 				put += 2;
   2139 				if (put >= end)
   2140 					put = sc->sc_rbuf;
   2141 				cc--;
   2142 
   2143 				/* don't need RI here*/
   2144 				fr = PREAD1(pi, PL01XCOM_FR);
   2145 				if (ISSET(fr, PL01X_FR_RXFE))
   2146 					break;
   2147 			}
   2148 
   2149 			/*
   2150 			 * Current string of incoming characters ended because
   2151 			 * no more data was available or we ran out of space.
   2152 			 * Schedule a receive event if any data was received.
   2153 			 * If we're out of space, turn off receive interrupts.
   2154 			 */
   2155 			sc->sc_rbput = put;
   2156 			sc->sc_rbavail = cc;
   2157 			if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
   2158 				sc->sc_rx_ready = 1;
   2159 
   2160 			/*
   2161 			 * See if we are in danger of overflowing a buffer. If
   2162 			 * so, use hardware flow control to ease the pressure.
   2163 			 */
   2164 			if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
   2165 			    cc < sc->sc_r_hiwat) {
   2166 				SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
   2167 				plcom_hwiflow(sc);
   2168 			}
   2169 
   2170 			/*
   2171 			 * If we're out of space, disable receive interrupts
   2172 			 * until the queue has drained a bit.
   2173 			 */
   2174 			if (!cc) {
   2175 				SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
   2176 				switch (pi->pi_type) {
   2177 				case PLCOM_TYPE_PL010:
   2178 					CLR(sc->sc_cr,
   2179 					    PL010_CR_RIE | PL010_CR_RTIE);
   2180 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   2181 					break;
   2182 				case PLCOM_TYPE_PL011:
   2183 				case PLCOM_TYPE_GENERIC_UART:
   2184 					CLR(sc->sc_imsc,
   2185 					    PL011_INT_RT | PL011_INT_RX);
   2186 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   2187 					break;
   2188 				}
   2189 			}
   2190 		} else {
   2191 			switch (pi->pi_type) {
   2192 			case PLCOM_TYPE_PL010:
   2193 				rxintr = ISSET(istatus, PL010_IIR_RIS);
   2194 				if (rxintr) {
   2195 					PWRITE1(pi, PL010COM_CR, 0);
   2196 					delay(10);
   2197 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   2198 					continue;
   2199 				}
   2200 				break;
   2201 			case PLCOM_TYPE_PL011:
   2202 			case PLCOM_TYPE_GENERIC_UART:
   2203 				rxintr = ISSET(istatus, PL011_INT_RX);
   2204 				if (rxintr) {
   2205 					PWRITE2(pi, PL011COM_CR, 0);
   2206 					delay(10);
   2207 					PWRITE2(pi, PL011COM_CR, sc->sc_cr);
   2208 					continue;
   2209 				}
   2210 				break;
   2211 			}
   2212 		}
   2213 
   2214 		switch (pi->pi_type) {
   2215 		case PLCOM_TYPE_PL010:
   2216 			msr = PREAD1(pi, PL01XCOM_FR);
   2217 			break;
   2218 		case PLCOM_TYPE_PL011:
   2219 		case PLCOM_TYPE_GENERIC_UART:
   2220 			msr = PREAD4(pi, PL01XCOM_FR);
   2221 			break;
   2222 		}
   2223 		delta = msr ^ sc->sc_msr;
   2224 		sc->sc_msr = msr;
   2225 
   2226 		/* Clear any pending modem status interrupt.  */
   2227 		switch (pi->pi_type) {
   2228 		case PLCOM_TYPE_PL010:
   2229 			msintr = ISSET(istatus, PL010_IIR_MIS);
   2230 			if (msintr) {
   2231 				PWRITE1(pi, PL010COM_ICR, 0);
   2232 			}
   2233 			break;
   2234 		case PLCOM_TYPE_PL011:
   2235 		case PLCOM_TYPE_GENERIC_UART:
   2236 			msintr = ISSET(istatus, PL011_INT_MSMASK);
   2237 			if (msintr) {
   2238 				PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
   2239 			}
   2240 			break;
   2241 		}
   2242 		/*
   2243 		 * Pulse-per-second (PSS) signals on edge of DCD?
   2244 		 * Process these even if line discipline is ignoring DCD.
   2245 		 */
   2246 		if (delta & sc->sc_ppsmask) {
   2247 			struct timeval tv;
   2248 			mutex_spin_enter(&timecounter_lock);
   2249 		    	if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
   2250 				/* XXX nanotime() */
   2251 				microtime(&tv);
   2252 				TIMEVAL_TO_TIMESPEC(&tv,
   2253 				    &sc->ppsinfo.assert_timestamp);
   2254 				if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
   2255 					timespecadd(&sc->ppsinfo.assert_timestamp,
   2256 					    &sc->ppsparam.assert_offset,
   2257 						    &sc->ppsinfo.assert_timestamp);
   2258 				}
   2259 
   2260 #ifdef PPS_SYNC
   2261 				if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
   2262 					hardpps(&tv, tv.tv_usec);
   2263 #endif
   2264 				sc->ppsinfo.assert_sequence++;
   2265 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
   2266 
   2267 			} else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
   2268 				/* XXX nanotime() */
   2269 				microtime(&tv);
   2270 				TIMEVAL_TO_TIMESPEC(&tv,
   2271 				    &sc->ppsinfo.clear_timestamp);
   2272 				if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
   2273 					timespecadd(&sc->ppsinfo.clear_timestamp,
   2274 					    &sc->ppsparam.clear_offset,
   2275 					    &sc->ppsinfo.clear_timestamp);
   2276 				}
   2277 
   2278 #ifdef PPS_SYNC
   2279 				if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
   2280 					hardpps(&tv, tv.tv_usec);
   2281 #endif
   2282 				sc->ppsinfo.clear_sequence++;
   2283 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
   2284 			}
   2285 			mutex_spin_exit(&timecounter_lock);
   2286 		}
   2287 
   2288 		/*
   2289 		 * Process normal status changes
   2290 		 */
   2291 		if (ISSET(delta, sc->sc_msr_mask)) {
   2292 			SET(sc->sc_msr_delta, delta);
   2293 
   2294 			/*
   2295 			 * Stop output immediately if we lose the output
   2296 			 * flow control signal or carrier detect.
   2297 			 */
   2298 			if (ISSET(~msr, sc->sc_msr_mask)) {
   2299 				sc->sc_tbc = 0;
   2300 				sc->sc_heldtbc = 0;
   2301 #ifdef PLCOM_DEBUG
   2302 				if (plcom_debug)
   2303 					plcomstatus(sc, "plcomintr  ");
   2304 #endif
   2305 			}
   2306 
   2307 			sc->sc_st_check = 1;
   2308 		}
   2309 
   2310 		/*
   2311 		 * Done handling any receive interrupts. See if data
   2312 		 * can be transmitted as well. Schedule tx done
   2313 		 * event if no data left and tty was marked busy.
   2314 		 */
   2315 
   2316 		switch (pi->pi_type) {
   2317 		case PLCOM_TYPE_PL010:
   2318 			txintr = ISSET(istatus, PL010_IIR_TIS);
   2319 			break;
   2320 		case PLCOM_TYPE_PL011:
   2321 			txintr = ISSET(istatus, PL011_INT_TX);
   2322 			break;
   2323 		}
   2324 		if (txintr) {
   2325 			/*
   2326 			 * If we've delayed a parameter change, do it
   2327 			 * now, and restart * output.
   2328 			 */
   2329 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
   2330 			if (sc->sc_heldchange) {
   2331 				plcom_loadchannelregs(sc);
   2332 				sc->sc_heldchange = 0;
   2333 				sc->sc_tbc = sc->sc_heldtbc;
   2334 				sc->sc_heldtbc = 0;
   2335 			}
   2336 
   2337 			/*
   2338 			 * Output the next chunk of the contiguous
   2339 			 * buffer, if any.
   2340 			 */
   2341 			if (sc->sc_tbc > 0) {
   2342 				int n;
   2343 
   2344 				n = sc->sc_tbc;
   2345 				if (n > sc->sc_burstlen)
   2346 					n = sc->sc_burstlen;
   2347 				PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
   2348 				sc->sc_tbc -= n;
   2349 				sc->sc_tba += n;
   2350 			} else {
   2351 				/*
   2352 				 * Disable transmit completion
   2353 				 * interrupts if necessary.
   2354 				 */
   2355 				switch (pi->pi_type) {
   2356 				case PLCOM_TYPE_PL010:
   2357 					if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
   2358 						CLR(sc->sc_cr, PL010_CR_TIE);
   2359 						PWRITE1(pi, PL010COM_CR,
   2360 						    sc->sc_cr);
   2361 					}
   2362 					break;
   2363 				case PLCOM_TYPE_PL011:
   2364 				case PLCOM_TYPE_GENERIC_UART:
   2365 					if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
   2366 						CLR(sc->sc_imsc, PL011_INT_TX);
   2367 						PWRITE4(pi, PL011COM_IMSC,
   2368 						    sc->sc_imsc);
   2369 					}
   2370 					break;
   2371 				}
   2372 				if (sc->sc_tx_busy) {
   2373 					sc->sc_tx_busy = 0;
   2374 					sc->sc_tx_done = 1;
   2375 				}
   2376 			}
   2377 		}
   2378 
   2379 	} while (plcom_intstatus(pi, &istatus));
   2380 
   2381 	mutex_spin_exit(&sc->sc_lock);
   2382 
   2383 	/* Wake up the poller. */
   2384 	if ((sc->sc_rx_ready | sc->sc_st_check | sc->sc_tx_done) != 0)
   2385 		softint_schedule(sc->sc_si);
   2386 
   2387 #ifdef RND_COM
   2388 	rnd_add_uint32(&sc->rnd_source, istatus | rsr);
   2389 #endif
   2390 
   2391 	PLCOM_BARRIER(pi, BR | BW);
   2392 
   2393 	return 1;
   2394 }
   2395 
   2396 /*
   2397  * The following functions are polled getc and putc routines, shared
   2398  * by the console and kgdb glue.
   2399  *
   2400  * The read-ahead code is so that you can detect pending in-band
   2401  * cn_magic in polled mode while doing output rather than having to
   2402  * wait until the kernel decides it needs input.
   2403  */
   2404 
   2405 #define MAX_READAHEAD	20
   2406 static int plcom_readahead[MAX_READAHEAD];
   2407 static int plcom_readaheadcount = 0;
   2408 
   2409 int
   2410 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
   2411 {
   2412 	int s = splserial();
   2413 	u_char c;
   2414 
   2415 	/* got a character from reading things earlier */
   2416 	if (plcom_readaheadcount > 0) {
   2417 		int i;
   2418 
   2419 		c = plcom_readahead[0];
   2420 		for (i = 1; i < plcom_readaheadcount; i++) {
   2421 			plcom_readahead[i-1] = plcom_readahead[i];
   2422 		}
   2423 		plcom_readaheadcount--;
   2424 		splx(s);
   2425 		return c;
   2426 	}
   2427 
   2428 	if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
   2429 		splx(s);
   2430 		return -1;
   2431 	}
   2432 
   2433 	c = PREAD1(pi, PL01XCOM_DR);
   2434 	{
   2435 		int cn_trapped __unused = 0;
   2436 
   2437 		if (!db_active)
   2438 			cn_check_magic(dev, c, plcom_cnm_state);
   2439 	}
   2440 	splx(s);
   2441 	return c;
   2442 }
   2443 
   2444 void
   2445 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
   2446 {
   2447 	int s = splserial();
   2448 	int timo;
   2449 
   2450 	int cin, stat;
   2451 	if (plcom_readaheadcount < MAX_READAHEAD
   2452 	     && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
   2453 		int cn_trapped __unused = 0;
   2454 		cin = PREAD1(pi, PL01XCOM_DR);
   2455 		cn_check_magic(dev, cin, plcom_cnm_state);
   2456 		plcom_readahead[plcom_readaheadcount++] = cin;
   2457 	}
   2458 
   2459 	/* wait for any pending transmission to finish */
   2460 	timo = 150000;
   2461 	while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
   2462 		continue;
   2463 
   2464 	PWRITE1(pi, PL01XCOM_DR, c);
   2465 	PLCOM_BARRIER(pi, BR | BW);
   2466 
   2467 	splx(s);
   2468 }
   2469 
   2470 /*
   2471  * Initialize UART for use as console or KGDB line.
   2472  */
   2473 int
   2474 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
   2475 {
   2476 	uint32_t lcr;
   2477 
   2478 	switch (pi->pi_type) {
   2479 	case PLCOM_TYPE_PL010:
   2480 		if (pi->pi_size == 0)
   2481 			pi->pi_size = PL010COM_UART_SIZE;
   2482 		break;
   2483 	case PLCOM_TYPE_PL011:
   2484 	case PLCOM_TYPE_GENERIC_UART:
   2485 		if (pi->pi_size == 0)
   2486 			pi->pi_size = PL011COM_UART_SIZE;
   2487 		break;
   2488 	default:
   2489 		panic("Unknown plcom type");
   2490 	}
   2491 
   2492 	if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
   2493 	    &pi->pi_ioh))
   2494 		return ENOMEM; /* ??? */
   2495 
   2496 	lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
   2497 	switch (pi->pi_type) {
   2498 	case PLCOM_TYPE_PL010:
   2499 		PWRITE1(pi, PL010COM_CR, 0);
   2500 
   2501 		if (rate && frequency) {
   2502 			rate = pl010comspeed(rate, frequency);
   2503 			PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
   2504 			PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
   2505 		}
   2506 		PWRITE1(pi, PL010COM_LCR, lcr);
   2507 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
   2508 		break;
   2509 	case PLCOM_TYPE_PL011:
   2510 	case PLCOM_TYPE_GENERIC_UART:
   2511 		PWRITE2(pi, PL011COM_CR, 0);
   2512 
   2513 		if (rate && frequency) {
   2514 			rate = pl011comspeed(rate, frequency);
   2515 			PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
   2516 			PWRITE4(pi, PL011COM_IBRD, rate >> 6);
   2517 		}
   2518 		PWRITE1(pi, PL011COM_LCRH, lcr);
   2519 		PWRITE2(pi, PL011COM_CR,
   2520 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
   2521 		break;
   2522 	}
   2523 
   2524 #if 0
   2525 	/* Ought to do something like this, but we have no sc to
   2526 	   dereference. */
   2527 	/* XXX device_unit() abuse */
   2528 	sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
   2529 	    PL01X_MCR_DTR | PL01X_MCR_RTS);
   2530 #endif
   2531 
   2532 	return 0;
   2533 }
   2534 
   2535 /*
   2536  * Following are all routines needed for PLCOM to act as console
   2537  */
   2538 struct consdev plcomcons = {
   2539 	NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
   2540 	plcomcnhalt, NULL, NODEV, CN_NORMAL
   2541 };
   2542 
   2543 int
   2544 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
   2545     tcflag_t cflag, int unit)
   2546 {
   2547 	int res;
   2548 
   2549 	plcomcons_info = *pi;
   2550 
   2551 	res = plcominit(&plcomcons_info, rate, frequency, cflag);
   2552 	if (res)
   2553 		return res;
   2554 
   2555 	cn_tab = &plcomcons;
   2556 	cn_init_magic(&plcom_cnm_state);
   2557 	cn_set_magic("\047\001"); /* default magic is BREAK */
   2558 
   2559 	plcomconsunit = unit;
   2560 	plcomconsrate = rate;
   2561 	plcomconscflag = cflag;
   2562 
   2563 	return 0;
   2564 }
   2565 
   2566 void
   2567 plcomcndetach(void)
   2568 {
   2569 
   2570 	bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
   2571 	    plcomcons_info.pi_size);
   2572 	plcomcons_info.pi_iot = NULL;
   2573 
   2574 	cn_tab = NULL;
   2575 }
   2576 
   2577 int
   2578 plcomcngetc(dev_t dev)
   2579 {
   2580 	return plcom_common_getc(dev, &plcomcons_info);
   2581 }
   2582 
   2583 /*
   2584  * Console kernel output character routine.
   2585  */
   2586 void
   2587 plcomcnputc(dev_t dev, int c)
   2588 {
   2589 	plcom_common_putc(dev, &plcomcons_info, c);
   2590 }
   2591 
   2592 void
   2593 plcomcnpollc(dev_t dev, int on)
   2594 {
   2595 
   2596 	plcom_readaheadcount = 0;
   2597 }
   2598 
   2599 void
   2600 plcomcnhalt(dev_t dev)
   2601 {
   2602 	struct plcom_instance *pi = &plcomcons_info;
   2603 
   2604 	switch (pi->pi_type) {
   2605 	case PLCOM_TYPE_PL010:
   2606 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
   2607 		break;
   2608 	case PLCOM_TYPE_PL011:
   2609 	case PLCOM_TYPE_GENERIC_UART:
   2610 		PWRITE2(pi, PL011COM_CR,
   2611 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
   2612 		PWRITE4(pi, PL011COM_IMSC, 0);
   2613 		break;
   2614 	}
   2615 }
   2616 
   2617 #ifdef KGDB
   2618 int
   2619 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
   2620     tcflag_t cflag, int unit)
   2621 {
   2622 	int res;
   2623 
   2624 	if (pi->pi_iot == plcomcons_info.pi_iot &&
   2625 	    pi->pi_iobase == plcomcons_info.pi_iobase)
   2626 		return EBUSY; /* cannot share with console */
   2627 
   2628 	res = plcominit(pi, rate, frequency, cflag);
   2629 	if (res)
   2630 		return res;
   2631 
   2632 	kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
   2633 	kgdb_dev = 123; /* unneeded, only to satisfy some tests */
   2634 
   2635 	plcomkgdb_info.pi_iot = pi->pi_iot;
   2636 	plcomkgdb_info.pi_ioh = pi->pi_ioh;
   2637 	plcomkgdb_info.pi_iobase = pi->pi_iobase;
   2638 
   2639 	return 0;
   2640 }
   2641 
   2642 /* ARGSUSED */
   2643 int
   2644 plcom_kgdb_getc(void *arg)
   2645 {
   2646 	return plcom_common_getc(NODEV, &plcomkgdb_info);
   2647 }
   2648 
   2649 /* ARGSUSED */
   2650 void
   2651 plcom_kgdb_putc(void *arg, int c)
   2652 {
   2653 	plcom_common_putc(NODEV, &plcomkgdb_info, c);
   2654 }
   2655 #endif /* KGDB */
   2656 
   2657 /* helper function to identify the plcom ports used by
   2658  console or KGDB (and not yet autoconf attached) */
   2659 int
   2660 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
   2661     bus_space_handle_t *ioh)
   2662 {
   2663 	bus_space_handle_t help;
   2664 
   2665 	if (!plcomconsattached &&
   2666 	    bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
   2667 	    iobase == plcomcons_info.pi_iobase)
   2668 		help = plcomcons_info.pi_ioh;
   2669 #ifdef KGDB
   2670 	else if (!plcom_kgdb_attached &&
   2671 	    bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
   2672 	    iobase == plcomkgdb_info.pi_iobase)
   2673 		help = plcomkgdb_info.pi_ioh;
   2674 #endif
   2675 	else
   2676 		return 0;
   2677 
   2678 	if (ioh)
   2679 		*ioh = help;
   2680 	return 1;
   2681 }
   2682