Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_softint.c,v 1.76 2024/03/01 04:32:38 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Generic software interrupt framework.
     34  *
     35  * Overview
     36  *
     37  *	The soft interrupt framework provides a mechanism to schedule a
     38  *	low priority callback that runs with thread context.  It allows
     39  *	for dynamic registration of software interrupts, and for fair
     40  *	queueing and prioritization of those interrupts.  The callbacks
     41  *	can be scheduled to run from nearly any point in the kernel: by
     42  *	code running with thread context, by code running from a
     43  *	hardware interrupt handler, and at any interrupt priority
     44  *	level.
     45  *
     46  * Priority levels
     47  *
     48  *	Since soft interrupt dispatch can be tied to the underlying
     49  *	architecture's interrupt dispatch code, it can be limited
     50  *	both by the capabilities of the hardware and the capabilities
     51  *	of the interrupt dispatch code itself.  The number of priority
     52  *	levels is restricted to four.  In order of priority (lowest to
     53  *	highest) the levels are: clock, bio, net, serial.
     54  *
     55  *	The names are symbolic and in isolation do not have any direct
     56  *	connection with a particular kind of device activity: they are
     57  *	only meant as a guide.
     58  *
     59  *	The four priority levels map directly to scheduler priority
     60  *	levels, and where the architecture implements 'fast' software
     61  *	interrupts, they also map onto interrupt priorities.  The
     62  *	interrupt priorities are intended to be hidden from machine
     63  *	independent code, which should use thread-safe mechanisms to
     64  *	synchronize with software interrupts (for example: mutexes).
     65  *
     66  * Capabilities
     67  *
     68  *	Software interrupts run with limited machine context.  In
     69  *	particular, they do not posess any address space context.  They
     70  *	should not try to operate on user space addresses, or to use
     71  *	virtual memory facilities other than those noted as interrupt
     72  *	safe.
     73  *
     74  *	Unlike hardware interrupts, software interrupts do have thread
     75  *	context.  They may block on synchronization objects, sleep, and
     76  *	resume execution at a later time.
     77  *
     78  *	Since software interrupts are a limited resource and run with
     79  *	higher priority than most other LWPs in the system, all
     80  *	block-and-resume activity by a software interrupt must be kept
     81  *	short to allow further processing at that level to continue.  By
     82  *	extension, code running with process context must take care to
     83  *	ensure that any lock that may be taken from a software interrupt
     84  *	can not be held for more than a short period of time.
     85  *
     86  *	The kernel does not allow software interrupts to use facilities
     87  *	or perform actions that may block for a significant amount of
     88  *	time.  This means that it's not valid for a software interrupt
     89  *	to sleep on condition variables	or wait for resources to become
     90  *	available (for example,	memory).
     91  *
     92  * Per-CPU operation
     93  *
     94  *	If a soft interrupt is triggered on a CPU, it can only be
     95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97  *	and needs to run again, it can only run there.  Nearly all data
     98  *	structures used to manage software interrupts are per-CPU.
     99  *
    100  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101  *	cache lines between CPUs: lines occupied by data structures
    102  *	used to manage the soft interrupts, and lines occupied by data
    103  *	items being passed down to the soft interrupt.  As a positive
    104  *	side effect, this also means that the soft interrupt dispatch
    105  *	code does not need to to use spinlocks to synchronize.
    106  *
    107  * Generic implementation
    108  *
    109  *	A generic, low performance implementation is provided that
    110  *	works across all architectures, with no machine-dependent
    111  *	modifications needed.  This implementation uses the scheduler,
    112  *	and so has a number of restrictions:
    113  *
    114  *	1) The software interrupts are not currently preemptive, so
    115  *	must wait for the currently executing LWP to yield the CPU.
    116  *	This can introduce latency.
    117  *
    118  *	2) An expensive context switch is required for a software
    119  *	interrupt to be handled.
    120  *
    121  * 'Fast' software interrupts
    122  *
    123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124  *	the fast mechanism.  Threads running either in the kernel or in
    125  *	userspace will be interrupted, but will not be preempted.  When
    126  *	the soft interrupt completes execution, the interrupted LWP
    127  *	is resumed.  Interrupt dispatch code must provide the minimum
    128  *	level of context necessary for the soft interrupt to block and
    129  *	be resumed at a later time.  The machine-dependent dispatch
    130  *	path looks something like the following:
    131  *
    132  *	softintr()
    133  *	{
    134  *		go to IPL_HIGH if necessary for switch;
    135  *		save any necessary registers in a format that can be
    136  *		    restored by cpu_switchto if the softint blocks;
    137  *		arrange for cpu_switchto() to restore into the
    138  *		    trampoline function;
    139  *		identify LWP to handle this interrupt;
    140  *		switch to the LWP's stack;
    141  *		switch register stacks, if necessary;
    142  *		assign new value of curlwp;
    143  *		call MI softint_dispatch, passing old curlwp and IPL
    144  *		    to execute interrupt at;
    145  *		switch back to old stack;
    146  *		switch back to old register stack, if necessary;
    147  *		restore curlwp;
    148  *		return to interrupted LWP;
    149  *	}
    150  *
    151  *	If the soft interrupt blocks, a trampoline function is returned
    152  *	to in the context of the interrupted LWP, as arranged for by
    153  *	softint():
    154  *
    155  *	softint_ret()
    156  *	{
    157  *		unlock soft interrupt LWP;
    158  *		resume interrupt processing, likely returning to
    159  *		    interrupted LWP or dispatching another, different
    160  *		    interrupt;
    161  *	}
    162  *
    163  *	Once the soft interrupt has fired (and even if it has blocked),
    164  *	no further soft interrupts at that level will be triggered by
    165  *	MI code until the soft interrupt handler has ceased execution.
    166  *	If a soft interrupt handler blocks and is resumed, it resumes
    167  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168  *	when it has completed and is ready to fire again will it
    169  *	interrupt other threads.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.76 2024/03/01 04:32:38 mrg Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/proc.h>
    177 #include <sys/intr.h>
    178 #include <sys/ipi.h>
    179 #include <sys/lock.h>
    180 #include <sys/mutex.h>
    181 #include <sys/kernel.h>
    182 #include <sys/kthread.h>
    183 #include <sys/evcnt.h>
    184 #include <sys/cpu.h>
    185 #include <sys/xcall.h>
    186 #include <sys/psref.h>
    187 #include <sys/sdt.h>
    188 
    189 #include <uvm/uvm_extern.h>
    190 
    191 /* This could overlap with signal info in struct lwp. */
    192 typedef struct softint {
    193 	SIMPLEQ_HEAD(, softhand) si_q;
    194 	struct lwp		*si_lwp;
    195 	struct cpu_info		*si_cpu;
    196 	uintptr_t		si_machdep;
    197 	struct evcnt		si_evcnt;
    198 	struct evcnt		si_evcnt_block;
    199 	volatile int		si_active;
    200 	int			si_ipl;
    201 	char			si_name[8];
    202 	char			si_name_block[8+6];
    203 } softint_t;
    204 
    205 typedef struct softhand {
    206 	SIMPLEQ_ENTRY(softhand)	sh_q;
    207 	void			(*sh_func)(void *);
    208 	void			*sh_arg;
    209 	softint_t		*sh_isr;
    210 	u_int			sh_flags;
    211 	u_int			sh_ipi_id;
    212 } softhand_t;
    213 
    214 typedef struct softcpu {
    215 	struct cpu_info		*sc_cpu;
    216 	softint_t		sc_int[SOFTINT_COUNT];
    217 	softhand_t		sc_hand[1];
    218 } softcpu_t;
    219 
    220 static void	softint_thread(void *);
    221 
    222 u_int		softint_bytes = 32768;
    223 u_int		softint_timing;
    224 static u_int	softint_max;
    225 static kmutex_t	softint_lock;
    226 
    227 SDT_PROBE_DEFINE4(sdt, kernel, softint, establish,
    228     "void *"/*sih*/,
    229     "void (*)(void *)"/*func*/,
    230     "void *"/*arg*/,
    231     "unsigned"/*flags*/);
    232 
    233 SDT_PROBE_DEFINE1(sdt, kernel, softint, disestablish,
    234     "void *"/*sih*/);
    235 
    236 SDT_PROBE_DEFINE2(sdt, kernel, softint, schedule,
    237     "void *"/*sih*/,
    238     "struct cpu_info *"/*ci*/);
    239 
    240 SDT_PROBE_DEFINE4(sdt, kernel, softint, entry,
    241     "void *"/*sih*/,
    242     "void (*)(void *)"/*func*/,
    243     "void *"/*arg*/,
    244     "unsigned"/*flags*/);
    245 
    246 SDT_PROBE_DEFINE4(sdt, kernel, softint, return,
    247     "void *"/*sih*/,
    248     "void (*)(void *)"/*func*/,
    249     "void *"/*arg*/,
    250     "unsigned"/*flags*/);
    251 
    252 /*
    253  * softint_init_isr:
    254  *
    255  *	Initialize a single interrupt level for a single CPU.
    256  */
    257 static void
    258 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
    259     int ipl)
    260 {
    261 	struct cpu_info *ci;
    262 	softint_t *si;
    263 	int error;
    264 
    265 	si = &sc->sc_int[level];
    266 	ci = sc->sc_cpu;
    267 	si->si_cpu = ci;
    268 
    269 	SIMPLEQ_INIT(&si->si_q);
    270 
    271 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    272 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    273 	    "soft%s/%u", desc, ci->ci_index);
    274 	if (error != 0)
    275 		panic("softint_init_isr: error %d", error);
    276 
    277 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    278 	    ci->ci_index);
    279 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    280 	   "softint", si->si_name);
    281 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    282 	    desc, ci->ci_index);
    283 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    284 	   "softint", si->si_name_block);
    285 
    286 	si->si_ipl = ipl;
    287 	si->si_lwp->l_private = si;
    288 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    289 }
    290 
    291 /*
    292  * softint_init:
    293  *
    294  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    295  */
    296 void
    297 softint_init(struct cpu_info *ci)
    298 {
    299 	static struct cpu_info *first;
    300 	softcpu_t *sc, *scfirst;
    301 	softhand_t *sh, *shmax;
    302 
    303 	if (first == NULL) {
    304 		/* Boot CPU. */
    305 		first = ci;
    306 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    307 		softint_bytes = round_page(softint_bytes);
    308 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    309 		    sizeof(softhand_t);
    310 	}
    311 
    312 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    313 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    314 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    315 	if (sc == NULL)
    316 		panic("softint_init_cpu: cannot allocate memory");
    317 
    318 	ci->ci_data.cpu_softcpu = sc;
    319 	ci->ci_data.cpu_softints = 0;
    320 	sc->sc_cpu = ci;
    321 
    322 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
    323 	    IPL_SOFTNET);
    324 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
    325 	    IPL_SOFTBIO);
    326 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
    327 	    IPL_SOFTCLOCK);
    328 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
    329 	    IPL_SOFTSERIAL);
    330 
    331 	if (first != ci) {
    332 		mutex_enter(&softint_lock);
    333 		scfirst = first->ci_data.cpu_softcpu;
    334 		sh = sc->sc_hand;
    335 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    336 		/* Update pointers for this CPU. */
    337 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    338 			if (sh->sh_func == NULL)
    339 				continue;
    340 			sh->sh_isr =
    341 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    342 		}
    343 		mutex_exit(&softint_lock);
    344 	}
    345 }
    346 
    347 /*
    348  * softint_establish:
    349  *
    350  *	Register a software interrupt handler.
    351  */
    352 void *
    353 softint_establish(u_int flags, void (*func)(void *), void *arg)
    354 {
    355 	CPU_INFO_ITERATOR cii;
    356 	struct cpu_info *ci;
    357 	softcpu_t *sc;
    358 	softhand_t *sh;
    359 	u_int level, index;
    360 	u_int ipi_id = 0;
    361 	void *sih;
    362 
    363 	level = (flags & SOFTINT_LVLMASK);
    364 	KASSERT(level < SOFTINT_COUNT);
    365 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    366 
    367 	mutex_enter(&softint_lock);
    368 
    369 	/* Find a free slot. */
    370 	sc = curcpu()->ci_data.cpu_softcpu;
    371 	for (index = 1; index < softint_max; index++) {
    372 		if (sc->sc_hand[index].sh_func == NULL)
    373 			break;
    374 	}
    375 	if (index == softint_max) {
    376 		mutex_exit(&softint_lock);
    377 		printf("WARNING: softint_establish: table full, "
    378 		    "increase softint_bytes\n");
    379 		return NULL;
    380 	}
    381 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    382 
    383 	if (flags & SOFTINT_RCPU) {
    384 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    385 			mutex_exit(&softint_lock);
    386 			return NULL;
    387 		}
    388 	}
    389 
    390 	/* Set up the handler on each CPU. */
    391 	if (ncpu < 2) {
    392 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    393 		sc = curcpu()->ci_data.cpu_softcpu;
    394 		sh = &sc->sc_hand[index];
    395 		sh->sh_isr = &sc->sc_int[level];
    396 		sh->sh_func = func;
    397 		sh->sh_arg = arg;
    398 		sh->sh_flags = flags;
    399 		sh->sh_ipi_id = ipi_id;
    400 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    401 		sc = ci->ci_data.cpu_softcpu;
    402 		sh = &sc->sc_hand[index];
    403 		sh->sh_isr = &sc->sc_int[level];
    404 		sh->sh_func = func;
    405 		sh->sh_arg = arg;
    406 		sh->sh_flags = flags;
    407 		sh->sh_ipi_id = ipi_id;
    408 	}
    409 	mutex_exit(&softint_lock);
    410 
    411 	SDT_PROBE4(sdt, kernel, softint, establish,  sih, func, arg, flags);
    412 
    413 	return sih;
    414 }
    415 
    416 /*
    417  * softint_disestablish:
    418  *
    419  *	Unregister a software interrupt handler.  The soft interrupt could
    420  *	still be active at this point, but the caller commits not to try
    421  *	and trigger it again once this call is made.  The caller must not
    422  *	hold any locks that could be taken from soft interrupt context,
    423  *	because we will wait for the softint to complete if it's still
    424  *	running.
    425  */
    426 void
    427 softint_disestablish(void *arg)
    428 {
    429 	CPU_INFO_ITERATOR cii;
    430 	struct cpu_info *ci;
    431 	softcpu_t *sc;
    432 	softhand_t *sh;
    433 	uintptr_t offset;
    434 
    435 	offset = (uintptr_t)arg;
    436 	KASSERT(offset != 0);
    437 	KASSERTMSG(offset < softint_bytes, "%"PRIuPTR" %u",
    438 	    offset, softint_bytes);
    439 
    440 	/*
    441 	 * Unregister IPI handler if there is any.  Note: there is no need
    442 	 * to disable preemption here - ID is stable.
    443 	 */
    444 	sc = curcpu()->ci_data.cpu_softcpu;
    445 	sh = (softhand_t *)((uint8_t *)sc + offset);
    446 	if (sh->sh_ipi_id) {
    447 		ipi_unregister(sh->sh_ipi_id);
    448 	}
    449 
    450 	/*
    451 	 * Run a dummy softint at the same level on all CPUs and wait for
    452 	 * completion, to make sure this softint is no longer running
    453 	 * anywhere.
    454 	 */
    455 	xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
    456 
    457 	/*
    458 	 * Notify dtrace probe when the old softint can't be running
    459 	 * any more, but before it can be recycled for a new softint.
    460 	 */
    461 	SDT_PROBE1(sdt, kernel, softint, disestablish,  arg);
    462 
    463 	/* Clear the handler on each CPU. */
    464 	mutex_enter(&softint_lock);
    465 	for (CPU_INFO_FOREACH(cii, ci)) {
    466 		sc = ci->ci_data.cpu_softcpu;
    467 		sh = (softhand_t *)((uint8_t *)sc + offset);
    468 		KASSERT(sh->sh_func != NULL);
    469 		sh->sh_func = NULL;
    470 	}
    471 	mutex_exit(&softint_lock);
    472 }
    473 
    474 /*
    475  * softint_schedule:
    476  *
    477  *	Trigger a software interrupt.  Must be called from a hardware
    478  *	interrupt handler, or with preemption disabled (since we are
    479  *	using the value of curcpu()).
    480  */
    481 void
    482 softint_schedule(void *arg)
    483 {
    484 	softhand_t *sh;
    485 	softint_t *si;
    486 	uintptr_t offset;
    487 	int s;
    488 
    489 	SDT_PROBE2(sdt, kernel, softint, schedule,  arg, /*ci*/NULL);
    490 
    491 	/*
    492 	 * If this assert fires, rather than disabling preemption explicitly
    493 	 * to make it stop, consider that you are probably using a softint
    494 	 * when you don't need to.
    495 	 */
    496 	KASSERT(kpreempt_disabled());
    497 
    498 	/* Find the handler record for this CPU. */
    499 	offset = (uintptr_t)arg;
    500 	KASSERT(offset != 0);
    501 	KASSERTMSG(offset < softint_bytes, "%"PRIuPTR" %u",
    502 	    offset, softint_bytes);
    503 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    504 
    505 	/* If it's already pending there's nothing to do. */
    506 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    507 		return;
    508 	}
    509 
    510 	/*
    511 	 * Enqueue the handler into the LWP's pending list.
    512 	 * If the LWP is completely idle, then make it run.
    513 	 */
    514 	s = splhigh();
    515 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    516 		si = sh->sh_isr;
    517 		sh->sh_flags |= SOFTINT_PENDING;
    518 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    519 		if (si->si_active == 0) {
    520 			si->si_active = 1;
    521 			softint_trigger(si->si_machdep);
    522 		}
    523 	}
    524 	splx(s);
    525 }
    526 
    527 /*
    528  * softint_schedule_cpu:
    529  *
    530  *	Trigger a software interrupt on a target CPU.  This invokes
    531  *	softint_schedule() for the local CPU or send an IPI to invoke
    532  *	this routine on the remote CPU.  Preemption must be disabled.
    533  */
    534 void
    535 softint_schedule_cpu(void *arg, struct cpu_info *ci)
    536 {
    537 	KASSERT(kpreempt_disabled());
    538 
    539 	if (curcpu() != ci) {
    540 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    541 		const uintptr_t offset = (uintptr_t)arg;
    542 		const softhand_t *sh;
    543 
    544 		SDT_PROBE2(sdt, kernel, softint, schedule,  arg, ci);
    545 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    546 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    547 		ipi_trigger(sh->sh_ipi_id, ci);
    548 		return;
    549 	}
    550 
    551 	/* Just a local CPU. */
    552 	softint_schedule(arg);
    553 }
    554 
    555 /*
    556  * softint_execute:
    557  *
    558  *	Invoke handlers for the specified soft interrupt.
    559  *	Must be entered at splhigh.  Will drop the priority
    560  *	to the level specified, but returns back at splhigh.
    561  */
    562 static inline void
    563 softint_execute(lwp_t *l, int s)
    564 {
    565 	softint_t *si = l->l_private;
    566 	softhand_t *sh;
    567 
    568 	KASSERT(si->si_lwp == curlwp);
    569 	KASSERT(si->si_cpu == curcpu());
    570 	KASSERT(si->si_lwp->l_wchan == NULL);
    571 	KASSERT(si->si_active);
    572 	KASSERTMSG(l->l_nopreempt == 0, "lwp %p nopreempt %d",
    573 	    l, l->l_nopreempt);
    574 
    575 	/*
    576 	 * Note: due to priority inheritance we may have interrupted a
    577 	 * higher priority LWP.  Since the soft interrupt must be quick
    578 	 * and is non-preemptable, we don't bother yielding.
    579 	 */
    580 
    581 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    582 		/*
    583 		 * Pick the longest waiting handler to run.  We block
    584 		 * interrupts but do not lock in order to do this, as
    585 		 * we are protecting against the local CPU only.
    586 		 */
    587 		sh = SIMPLEQ_FIRST(&si->si_q);
    588 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    589 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    590 		sh->sh_flags ^= SOFTINT_PENDING;
    591 		splx(s);
    592 
    593 		/* Run the handler. */
    594 		SDT_PROBE4(sdt, kernel, softint, entry,
    595 		    ((const char *)sh -
    596 			(const char *)curcpu()->ci_data.cpu_softcpu),
    597 		    sh->sh_func, sh->sh_arg, sh->sh_flags);
    598 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
    599 			(*sh->sh_func)(sh->sh_arg);
    600 		} else {
    601 			KERNEL_LOCK(1, l);
    602 			(*sh->sh_func)(sh->sh_arg);
    603 			KERNEL_UNLOCK_ONE(l);
    604 		}
    605 		SDT_PROBE4(sdt, kernel, softint, return,
    606 		    ((const char *)sh -
    607 			(const char *)curcpu()->ci_data.cpu_softcpu),
    608 		    sh->sh_func, sh->sh_arg, sh->sh_flags);
    609 
    610 		/* Diagnostic: check that spin-locks have not leaked. */
    611 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    612 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    613 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    614 		/* Diagnostic: check that psrefs have not leaked. */
    615 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    616 		    __func__, l->l_psrefs, sh->sh_func);
    617 		/* Diagnostic: check that biglocks have not leaked. */
    618 		KASSERTMSG(l->l_blcnt == 0,
    619 		    "%s: sh_func=%p leaked %d biglocks",
    620 		    __func__, sh->sh_func, curlwp->l_blcnt);
    621 		/* Diagnostic: check that LWP nopreempt remains zero. */
    622 		KASSERTMSG(l->l_nopreempt == 0,
    623 		    "%s: lwp %p nopreempt %d func %p",
    624 		    __func__, l, l->l_nopreempt, sh->sh_func);
    625 
    626 		(void)splhigh();
    627 	}
    628 
    629 	PSREF_DEBUG_BARRIER();
    630 
    631 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
    632 
    633 	KASSERT(si->si_cpu == curcpu());
    634 	KASSERT(si->si_lwp->l_wchan == NULL);
    635 	KASSERT(si->si_active);
    636 	si->si_evcnt.ev_count++;
    637 	si->si_active = 0;
    638 }
    639 
    640 /*
    641  * softint_block:
    642  *
    643  *	Update statistics when the soft interrupt blocks.
    644  */
    645 void
    646 softint_block(lwp_t *l)
    647 {
    648 	softint_t *si = l->l_private;
    649 
    650 	KASSERT((l->l_pflag & LP_INTR) != 0);
    651 	si->si_evcnt_block.ev_count++;
    652 }
    653 
    654 #ifndef __HAVE_FAST_SOFTINTS
    655 
    656 #ifdef __HAVE_PREEMPTION
    657 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    658 #endif
    659 
    660 /*
    661  * softint_init_md:
    662  *
    663  *	Slow path: perform machine-dependent initialization.
    664  */
    665 void
    666 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    667 {
    668 	struct proc *p;
    669 	softint_t *si;
    670 
    671 	*machdep = (1 << level);
    672 	si = l->l_private;
    673 	p = l->l_proc;
    674 
    675 	mutex_enter(p->p_lock);
    676 	lwp_lock(l);
    677 	/* Cheat and make the KASSERT in softint_thread() happy. */
    678 	si->si_active = 1;
    679 	setrunnable(l);
    680 	/* LWP now unlocked */
    681 	mutex_exit(p->p_lock);
    682 }
    683 
    684 /*
    685  * softint_trigger:
    686  *
    687  *	Slow path: cause a soft interrupt handler to begin executing.
    688  *	Called at IPL_HIGH.
    689  */
    690 void
    691 softint_trigger(uintptr_t machdep)
    692 {
    693 	struct cpu_info *ci;
    694 	lwp_t *l;
    695 
    696 	ci = curcpu();
    697 	ci->ci_data.cpu_softints |= machdep;
    698 	l = ci->ci_onproc;
    699 
    700 	/*
    701 	 * Arrange for mi_switch() to be called.  If called from interrupt
    702 	 * mode, we don't know if curlwp is executing in kernel or user, so
    703 	 * post an AST and have it take a trip through userret().  If not in
    704 	 * interrupt mode, curlwp is running in kernel and will notice the
    705 	 * resched soon enough; avoid the AST.
    706 	 */
    707 	if (l == ci->ci_data.cpu_idlelwp) {
    708 		atomic_or_uint(&ci->ci_want_resched,
    709 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    710 	} else {
    711 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
    712 		if (cpu_intr_p()) {
    713 			cpu_signotify(l);
    714 		}
    715 	}
    716 }
    717 
    718 /*
    719  * softint_thread:
    720  *
    721  *	Slow path: MI software interrupt dispatch.
    722  */
    723 void
    724 softint_thread(void *cookie)
    725 {
    726 	softint_t *si;
    727 	lwp_t *l;
    728 	int s;
    729 
    730 	l = curlwp;
    731 	si = l->l_private;
    732 
    733 	for (;;) {
    734 		/* Clear pending status and run it. */
    735 		s = splhigh();
    736 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    737 		softint_execute(l, s);
    738 		splx(s);
    739 
    740 		/* Interrupts allowed to run again before switching. */
    741 		lwp_lock(l);
    742 		l->l_stat = LSIDL;
    743 		spc_lock(l->l_cpu);
    744 		mi_switch(l);
    745 	}
    746 }
    747 
    748 /*
    749  * softint_picklwp:
    750  *
    751  *	Slow path: called from mi_switch() to pick the highest priority
    752  *	soft interrupt LWP that needs to run.
    753  */
    754 lwp_t *
    755 softint_picklwp(void)
    756 {
    757 	struct cpu_info *ci;
    758 	u_int mask;
    759 	softint_t *si;
    760 	lwp_t *l;
    761 
    762 	ci = curcpu();
    763 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    764 	mask = ci->ci_data.cpu_softints;
    765 
    766 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    767 		l = si[SOFTINT_SERIAL].si_lwp;
    768 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    769 		l = si[SOFTINT_NET].si_lwp;
    770 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    771 		l = si[SOFTINT_BIO].si_lwp;
    772 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    773 		l = si[SOFTINT_CLOCK].si_lwp;
    774 	} else {
    775 		panic("softint_picklwp");
    776 	}
    777 
    778 	return l;
    779 }
    780 
    781 #else	/*  !__HAVE_FAST_SOFTINTS */
    782 
    783 /*
    784  * softint_thread:
    785  *
    786  *	Fast path: the LWP is switched to without restoring any state,
    787  *	so we should not arrive here - there is a direct handoff between
    788  *	the interrupt stub and softint_dispatch().
    789  */
    790 void
    791 softint_thread(void *cookie)
    792 {
    793 
    794 	panic("softint_thread");
    795 }
    796 
    797 /*
    798  * softint_dispatch:
    799  *
    800  *	Fast path: entry point from machine-dependent code.
    801  */
    802 void
    803 softint_dispatch(lwp_t *pinned, int s)
    804 {
    805 	struct bintime now;
    806 	u_int timing;
    807 	lwp_t *l;
    808 
    809 #ifdef DIAGNOSTIC
    810 	if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
    811 		struct lwp *onproc = curcpu()->ci_onproc;
    812 		int s2 = splhigh();
    813 		printf("curcpu=%d, spl=%d curspl=%d\n"
    814 			"onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    815 			"curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    816 			"pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
    817 			cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
    818 			onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
    819 			curlwp->l_stat, curlwp->l_flag,
    820 			cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
    821 			pinned->l_flag, cpu_index(pinned->l_cpu));
    822 		splx(s2);
    823 		panic("softint screwup");
    824 	}
    825 #endif
    826 
    827 	/*
    828 	 * Note the interrupted LWP, and mark the current LWP as running
    829 	 * before proceeding.  Although this must as a rule be done with
    830 	 * the LWP locked, at this point no external agents will want to
    831 	 * modify the interrupt LWP's state.
    832 	 */
    833 	timing = softint_timing;
    834 	l = curlwp;
    835 	l->l_switchto = pinned;
    836 	l->l_stat = LSONPROC;
    837 
    838 	/*
    839 	 * Dispatch the interrupt.  If softints are being timed, charge
    840 	 * for it.
    841 	 */
    842 	if (timing) {
    843 		binuptime(&l->l_stime);
    844 		membar_producer();	/* for calcru */
    845 		l->l_pflag |= LP_TIMEINTR;
    846 	}
    847 	l->l_pflag |= LP_RUNNING;
    848 	softint_execute(l, s);
    849 	if (timing) {
    850 		binuptime(&now);
    851 		updatertime(l, &now);
    852 		l->l_pflag &= ~LP_TIMEINTR;
    853 	}
    854 
    855 	/*
    856 	 * If we blocked while handling the interrupt, the pinned LWP is
    857 	 * gone and we are now running as a kthread, so find another LWP to
    858 	 * run.  softint_dispatch() won't be reentered until the priority is
    859 	 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
    860 	 */
    861 	l->l_stat = LSIDL;
    862 	if (l->l_switchto == NULL) {
    863 		lwp_lock(l);
    864 		spc_lock(l->l_cpu);
    865 		mi_switch(l);
    866 		/* NOTREACHED */
    867 	}
    868 	l->l_switchto = NULL;
    869 	l->l_pflag &= ~LP_RUNNING;
    870 }
    871 
    872 #endif	/* !__HAVE_FAST_SOFTINTS */
    873