Home | History | Annotate | Line # | Download | only in gdtoa
      1 /*	$NetBSD: hdtoa.c,v 1.14 2024/06/09 15:06:07 jakllsch Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #if 0
     31 __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
     32 #else
     33 __RCSID("$NetBSD: hdtoa.c,v 1.14 2024/06/09 15:06:07 jakllsch Exp $");
     34 #endif
     35 
     36 #include <float.h>
     37 #include <limits.h>
     38 #include <math.h>
     39 #ifndef __vax__
     40 #include <machine/ieee.h>
     41 #else
     42 #include <machine/vaxfp.h>
     43 #define ieee_double_u vax_dfloating_u
     44 #define dblu_d dfltu_d
     45 #define dblu_dbl dfltu_dflt
     46 #define dbl_sign dflt_sign
     47 #define dbl_exp dflt_exp
     48 #define dbl_frach dflt_frach
     49 #define dbl_fracm dflt_fracm
     50 #define dbl_fracl dflt_fracl
     51 #define DBL_FRACHBITS	DFLT_FRACHBITS
     52 #define DBL_FRACMBITS	DFLT_FRACMBITS
     53 #define DBL_FRACLBITS	DFLT_FRACLBITS
     54 #define DBL_EXPBITS	DFLT_EXPBITS
     55 #endif
     56 #include "gdtoaimp.h"
     57 
     58 /* Strings values used by dtoa() */
     59 #define	INFSTR	"Infinity"
     60 #define	NANSTR	"NaN"
     61 
     62 #ifndef __vax__
     63 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
     64 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
     65 #else /* __vax__ */
     66 #define	DBL_ADJ		(DBL_MAX_EXP + 4 + ((DBL_MANT_DIG) % 4))
     67 #endif
     68 
     69 /*
     70  * Round up the given digit string.  If the digit string is fff...f,
     71  * this procedure sets it to 100...0 and returns 1 to indicate that
     72  * the exponent needs to be bumped.  Otherwise, 0 is returned.
     73  */
     74 static int
     75 roundup(char *s0, int ndigits)
     76 {
     77 	char *s;
     78 
     79 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
     80 		if (s == s0) {
     81 			*s = 1;
     82 			return (1);
     83 		}
     84 		*s = 0;
     85 	}
     86 	++*s;
     87 	return (0);
     88 }
     89 
     90 /*
     91  * Round the given digit string to ndigits digits according to the
     92  * current rounding mode.  Note that this could produce a string whose
     93  * value is not representable in the corresponding floating-point
     94  * type.  The exponent pointed to by decpt is adjusted if necessary.
     95  */
     96 static void
     97 dorounding(char *s0, int ndigits, int sign, int *decpt)
     98 {
     99 	int adjust = 0;	/* do we need to adjust the exponent? */
    100 
    101 	switch (FLT_ROUNDS) {
    102 	case 0:		/* toward zero */
    103 	default:	/* implementation-defined */
    104 		break;
    105 	case 1:		/* to nearest, halfway rounds to even */
    106 		if ((s0[ndigits] > 8) ||
    107 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
    108 			adjust = roundup(s0, ndigits);
    109 		break;
    110 	case 2:		/* toward +inf */
    111 		if (sign == 0)
    112 			adjust = roundup(s0, ndigits);
    113 		break;
    114 	case 3:		/* toward -inf */
    115 		if (sign != 0)
    116 			adjust = roundup(s0, ndigits);
    117 		break;
    118 	}
    119 
    120 	if (adjust)
    121 		*decpt += 4;
    122 }
    123 
    124 /*
    125  * This procedure converts a double-precision number in IEEE format
    126  * into a string of hexadecimal digits and an exponent of 2.  Its
    127  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
    128  * following exceptions:
    129  *
    130  * - An ndigits < 0 causes it to use as many digits as necessary to
    131  *   represent the number exactly.
    132  * - The additional xdigs argument should point to either the string
    133  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
    134  *   which case is desired.
    135  * - This routine does not repeat dtoa's mistake of setting decpt
    136  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
    137  *   for this purpose instead.
    138  *
    139  * Note that the C99 standard does not specify what the leading digit
    140  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
    141  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
    142  * first digit so that subsequent digits are aligned on nibble
    143  * boundaries (before rounding).
    144  *
    145  * Inputs:	d, xdigs, ndigits
    146  * Outputs:	decpt, sign, rve
    147  */
    148 char *
    149 hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    150     char **rve)
    151 {
    152 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
    153 	union ieee_double_u u;
    154 	char *s, *s0;
    155 	size_t bufsize;
    156 
    157 	u.dblu_d = d;
    158 	*sign = u.dblu_dbl.dbl_sign;
    159 #ifdef __vax__
    160 	u.dfltu_dflt.dflt_fracl =
    161 	    ((u.dfltu_dflt.dflt_fracl >> 16) & 0xFFFF) |
    162 	    ((u.dfltu_dflt.dflt_fracl & 0xffff) << 16);
    163 #endif
    164 
    165 	switch (fpclassify(d)) {
    166 	case FP_NORMAL:
    167 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
    168 		break;
    169 	case FP_ZERO:
    170 		*decpt = 1;
    171 		return (nrv_alloc("0", rve, 1));
    172 #ifndef __vax__
    173 	case FP_SUBNORMAL:
    174 		/* (DBL_MAX_EXP=1024 / 2) + 2 = 514? */
    175 		u.dblu_d *= 0x1p514;
    176 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
    177 		break;
    178 	case FP_INFINITE:
    179 		*decpt = INT_MAX;
    180 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    181 	case FP_NAN:
    182 		*decpt = INT_MAX;
    183 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    184 #endif
    185 	default:
    186 		abort();
    187 	}
    188 
    189 	/* FP_NORMAL or FP_SUBNORMAL */
    190 
    191 	if (ndigits == 0)		/* dtoa() compatibility */
    192 		ndigits = 1;
    193 
    194 	/*
    195 	 * For simplicity, we generate all the digits even if the
    196 	 * caller has requested fewer.
    197 	 */
    198 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    199 	s0 = rv_alloc(bufsize);
    200 	if (s0 == NULL)
    201 		return NULL;
    202 
    203 	/*
    204 	 * We work from right to left, first adding any requested zero
    205 	 * padding, then the least significant portion of the
    206 	 * mantissa, followed by the most significant.  The buffer is
    207 	 * filled with the byte values 0x0 through 0xf, which are
    208 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    209 	 * rounding phase.
    210 	 */
    211 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    212 		*s = 0;
    213 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
    214 		*s = u.dblu_dbl.dbl_fracl & 0xf;
    215 		u.dblu_dbl.dbl_fracl >>= 4;
    216 	}
    217 #ifdef DBL_FRACMBITS
    218 	for (; s > s0 + sigfigs - ((DBL_FRACLBITS + DBL_FRACMBITS) / 4) - 1
    219             && s > s0; s--) {
    220 		*s = u.dblu_dbl.dbl_fracm & 0xf;
    221 		u.dblu_dbl.dbl_fracm >>= 4;
    222 	}
    223 #endif
    224 	for (; s > s0; s--) {
    225 		*s = u.dblu_dbl.dbl_frach & 0xf;
    226 		u.dblu_dbl.dbl_frach >>= 4;
    227 	}
    228 
    229 	/*
    230 	 * At this point, we have snarfed all the bits in the
    231 	 * mantissa, with the possible exception of the highest-order
    232 	 * (partial) nibble, which is dealt with by the next
    233 	 * statement.  We also tack on the implicit normalization bit.
    234 	 */
    235 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
    236 
    237 	/* If ndigits < 0, we are expected to auto-size the precision. */
    238 	if (ndigits < 0) {
    239 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    240 			continue;
    241 	}
    242 
    243 	if (sigfigs > ndigits && s0[ndigits] != 0)
    244 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
    245 
    246 	s = s0 + ndigits;
    247 	if (rve != NULL)
    248 		*rve = s;
    249 	*s-- = '\0';
    250 	for (; s >= s0; s--)
    251 		*s = xdigs[(unsigned int)*s];
    252 
    253 	return (s0);
    254 }
    255 
    256 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
    257 
    258 /*
    259  * This is the long double version of hdtoa().
    260  */
    261 char *
    262 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    263     char **rve)
    264 {
    265 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
    266 	union ieee_ext_u u;
    267 	char *s, *s0;
    268 	size_t bufsize;
    269 
    270 	memset(&u, 0, sizeof u);
    271 	u.extu_ld = e;
    272 	*sign = u.extu_ext.ext_sign;
    273 
    274 	switch (fpclassify(e)) {
    275 	case FP_NORMAL:
    276 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
    277 		break;
    278 	case FP_ZERO:
    279 		*decpt = 1;
    280 		return (nrv_alloc("0", rve, 1));
    281 	case FP_SUBNORMAL:
    282 		u.extu_ld *= 0x1p514L;
    283 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
    284 		break;
    285 	case FP_INFINITE:
    286 		*decpt = INT_MAX;
    287 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    288 	case FP_NAN:
    289 		*decpt = INT_MAX;
    290 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    291 	default:
    292 		abort();
    293 	}
    294 
    295 	/* FP_NORMAL or FP_SUBNORMAL */
    296 
    297 	if (ndigits == 0)		/* dtoa() compatibility */
    298 		ndigits = 1;
    299 
    300 	/*
    301 	 * For simplicity, we generate all the digits even if the
    302 	 * caller has requested fewer.
    303 	 */
    304 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    305 	s0 = rv_alloc(bufsize);
    306 	if (s0 == NULL)
    307 		return NULL;
    308 
    309 	/*
    310 	 * We work from right to left, first adding any requested zero
    311 	 * padding, then the least significant portion of the
    312 	 * mantissa, followed by the most significant.  The buffer is
    313 	 * filled with the byte values 0x0 through 0xf, which are
    314 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    315 	 * rounding phase.
    316 	 */
    317 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    318 		*s = 0;
    319 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
    320 		*s = u.extu_ext.ext_fracl & 0xf;
    321 		u.extu_ext.ext_fracl >>= 4;
    322 	}
    323 #ifdef EXT_FRACHMBITS
    324 	for (; s > s0; s--) {
    325 		*s = u.extu_ext.ext_frachm & 0xf;
    326 		u.extu_ext.ext_frachm >>= 4;
    327 	}
    328 #endif
    329 #ifdef EXT_FRACLMBITS
    330 	for (; s > s0; s--) {
    331 		*s = u.extu_ext.ext_fraclm & 0xf;
    332 		u.extu_ext.ext_fraclm >>= 4;
    333 	}
    334 #endif
    335 	for (; s > s0; s--) {
    336 		*s = u.extu_ext.ext_frach & 0xf;
    337 		u.extu_ext.ext_frach >>= 4;
    338 	}
    339 
    340 	/*
    341 	 * At this point, we have snarfed all the bits in the
    342 	 * mantissa, with the possible exception of the highest-order
    343 	 * (partial) nibble, which is dealt with by the next
    344 	 * statement.  We also tack on the implicit normalization bit.
    345 	 */
    346 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
    347 
    348 	/* If ndigits < 0, we are expected to auto-size the precision. */
    349 	if (ndigits < 0) {
    350 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    351 			continue;
    352 	}
    353 
    354 	if (sigfigs > ndigits && s0[ndigits] != 0)
    355 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
    356 
    357 	s = s0 + ndigits;
    358 	if (rve != NULL)
    359 		*rve = s;
    360 	*s-- = '\0';
    361 	for (; s >= s0; s--)
    362 		*s = xdigs[(unsigned int)*s];
    363 
    364 	return (s0);
    365 }
    366 
    367 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    368 
    369 char *
    370 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    371     char **rve)
    372 {
    373 
    374 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
    375 }
    376 
    377 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    378